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We present spectral functions extracted from Euclidean-time correlation functions by using sparse
modeling. Sparse modeling is a method that solves inverse problems by considering only the
sparseness of the solution we seek. To check applicability of the method, we firstly test it with mock
data which imitate charmonium correlation functions on a fine lattice. We show that the method
can reconstruct the resonance peaks in the spectral functions. Then, we extract charmonium
spectral functions from correlation functions obtained from lattice QCD at temperatures below
and above the critical temperature 𝑇c. We show that this method yields results like those obtained
with MEM and other methods.
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1. Introduction

Theoretically accessible real-frequency spectral functions are crucial for the study of properties
of the hot and dense medium such as the Quark-Gluon Plasma [1–4]. However, the extraction of
these spectral functions presents a significant challenge due to the inability to obtain them directly
from lattice QCD calculations.

In lattice QCD, an imaginary time description is employed to calculate the correlation function
𝐺 of Euclidean time 𝜏, which relates the spectral function 𝜌 of frequency 𝜔 through the following
integral equation:

𝐺 (𝜏) =
∫ ∞

0
𝑑𝜔𝐾 (𝜔, 𝜏)𝜌(𝜔), (1)

where 𝐾 is the integration kernel defined by

𝐾 (𝜔, 𝜏) ≡
cosh

[
𝜔

(
𝜏 − 1

2𝑇

)]
sinh

(
𝜔
2𝑇
) (2)

in the Euclidean time range 0 ≤ 𝜏 ≤ 1/𝑇 with temperature 𝑇 . Consequently, in order to obtain
spectral functions, it is necessary to perform analytical continuations from correlation functions.
In general, the correlation functions obtained by lattice QCD contain noise, and the analytical
continuation is extremely sensitive to this noise.

When the frequency 𝜔 is discretized, eq. (1) can be simply written as a linear equation

®𝐺 = 𝐾 ®𝜌, (3)

where ®𝐺 and ®𝜌 are 𝑀 and 𝑁 dimensional vectors, respectively, and 𝐾 is an 𝑀 × 𝑁 matrix. For
typical lattice QCD calculations the temporal lattice size, i.e., 𝑀 is of 𝑂 (10) while 𝑁 must be of
𝑂 (103) for sufficiently good resolution of the spectral function. Therefore, solving eq. (3) to extract
the spectral function is an ill-posed inverse problem.

There have been lots of previous studies on extracting spectral functions from lattice QCD
data, employing a variety of techniques based on different ideas [5–7]. Sparse modeling is one
of such techniques, which was recently applied for the first time to lattice QCD data to obtain
spectral functions of the energy-momentum tensor and the shear viscosity [8]. In Ref. [9], we
have considered the covariance between different Euclidean times of the correlation function when
utilizing sparse modeling, checked the applicability of the method and extracted the charmonium
spectral functions. In this study we aim to conduct a more comprehensive investigation into the
applicability of sparse modeling. Furthermore, we also compare our results with those of one of
the previous studies to properly estimate the systematic uncertainty.

2. Sparse modeling

Extracting spectral functions by using sparse modeling has been proposed in condensed matter
physics [10, 11] (see also a review paper [12] for detail). The procedure of the sparse modeling
is outlined in Ref. [9], and we summarize the key characteristics of the sparse modeling in the
following three points.
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First, the reduction in rank of the spectral functions and correlation functions is achieved by the
exclusion of the contribution of small singular values after their bases are transformed as follows,

®𝐺′ ≡ 𝑈t ®𝐺, ®𝜌t ≡ 𝑉 t ®𝜌, (4)

where 𝑈 and 𝑉 are 𝑀 × 𝑀 and 𝑁 × 𝑁 orthogonal matrices, respectively, obtained through the
singular value decomposition of the kernel 𝐾 ,

𝐾 = 𝑈𝑆𝑉 t, (5)

where 𝑆 is a diagonal matrix composed of singular values. In this study, we retain only the
components of ®𝜌′ and ®𝐺′ that fulfill the condition 𝑠𝑙/𝑠1 ≥ 10−15 where 𝑠𝑙 is the 𝑙-th largest singular
value. The number of components that satisfy this condition is denoted as 𝐿. Thus the rank of the
retained components is 𝐿 and the size of𝑈, 𝑉 and 𝑆 become 𝑀 × 𝐿, 𝑁 × 𝐿 and 𝐿 × 𝐿, respectively.

Second, an L1 regularization term is incorporated into the cost function based on the square
error, making the optimization problem a form of Least Absolute Shrinkage and Selection Operator
(LASSO). The cost function that we seek to minimise can be expressed as follows,

𝐹 ( ®𝜌′) = 1
2
( ®𝐺′ − 𝑆 ®𝜌′)2 + 𝜆 | | ®𝜌′ | |1, (6)

where | | · | |1 stands for the L1 norm defined by | | ®𝜌′ | |1 ≡ ∑𝐿
𝑖=1 |𝜌′𝑖 | and 𝜆 is a positive hyperparameter

which controls the contribution of the L1 regularization relative to the square error. This regular-
ization promotes sparsity in the solution of ®𝜌′.

Third, this optimization problem is solved iteratively by alternating direction method of mul-
tipliers (ADMM) algorithm [13]. In this study, the problem is solved for multiple values of 𝜆, and
the most likely spectral function ®𝜌 is determined at the optimal value 𝜆opt. The estimation of 𝜆opt

follows the procedure used in previous work [8].

3. Mock data tests

Before we apply the sparse modeling to the actual lattice QCD data, we test it with mock data
which imitate possible charmonium spectral functions.

Following in Ref. [6], we make the input spectral functions at temperatures below and above
𝑇c:

• For 𝑇 < 𝑇c,
𝜌̂below(𝜔̂) = Θ̃(𝜔̂, 𝜔̂1,Δ1) (1 − Θ̃(𝜔̂, 𝜔̂2,Δ2)) 𝜌̂res + Θ̃(𝜔̂, 𝜔̂3,Δ3) 𝜌̂Wilson.

• For 𝑇 > 𝑇c,
𝜌̂above(𝜔̂) = 𝜌̂trans + Θ̃(𝜔̂, 𝜔̂4,Δ4) (1 − Θ̃(𝜔̂, 𝜔̂5,Δ5)) 𝜌̂res + Θ̃(𝜔̂, 𝜔̂6,Δ6) 𝜌̂Wilson.

Here 𝜌̂res, 𝜌̂trans and 𝜌̂Wilson denote a resonance peak, a transport peak and a free Wilson spectral
function, respectively, and the hatted letters are dimensionless quantities. The function Θ̃ is a
modified Θ function introduced to smoothly connect each spectral function. In Ref. [6], free
continuum spectral function is employed in 𝜌̂below. In this study, however, free Wilson spectral
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Spectral function Parameters
𝜌̂res for 𝜌̂below 𝑐res = 0.08/7, Γ = 0.05, 𝑀 = 0.155
𝜌̂Wilson for 𝜌̂below 𝑐Wilson = 0.5, 𝑏 (1) = 2, 𝑏 (2) = 1, 𝑚 = 0.073, 𝑁𝑐 = 3, 𝑁𝜎 = 4096
𝜌̂trans for 𝜌̂above 𝑐trans = 5 × 10−5, 𝜂 = 0.006
𝜌̂res for 𝜌̂above 𝑐res = 0.06, Γ = 0.15, 𝑀 = 0.225
𝜌̂Wilson for 𝜌̂above 𝑐Wilson = 1, 𝑏 (1) = 3, 𝑏 (2) = 1, 𝑚 = 0.073, 𝑁𝑐 = 3, 𝑁𝜎 = 4096

Table 1: Parameters for the mock spectral functions. See Ref. [6] for notations.

function is utilized to account for lattice cutoff effects at temperature below 𝑇c. For details on the
functional forms of 𝜌̂res, 𝜌̂trans, 𝜌̂Wilson and Θ̃, see Ref. [6].

The values of the parameters used in the above spectral functions are summarized in table 1.
The position of the resonance peak is about 𝐽/𝜓 meson mass (∼ 3.1 GeV) for𝑇 < 𝑇c, and a transport
peak appears and the resonance peak becomes broader for 𝑇 > 𝑇c. The values of the parameters
used in the modified Θ function are same as Ref. [6]. In this study, we consider that the range of
frequencies 𝜔̂ is from 0 to 4 with 8,001 points in 𝜔̂-space.

The central values of correlation function 𝐺 (𝜏) are given by integrating the input spectral
function and the kernel. The kernel is given in eq. (2), which diverges at 𝜔 = 0. Moreover, the
correlation function is influenced by lattice cutoff effects at small 𝜏 distances. To address these
issues, we used a modified kernel and a modified spectral function defined by

𝐾̃ (𝜔̂, 𝜏; 𝜏0) ≡ 𝜔̂
𝐾 (𝜔̂, 𝜏)
𝐾 (𝜔̂, 𝜏0)

= 𝜔̂

cosh
[
𝜔̂

(
𝜏 − 𝑁𝜏

2

)]
cosh

[
𝜔̂

(
𝜏0 − 𝑁𝜏

2

)] , 𝜌̃(𝜔̂; 𝜏0) =
𝜌̂(𝜔̂)
𝜔̂

𝐾 (𝜔̂, 𝜏0), (7)

and we used the mock correlation function data from 𝜏0 to 𝑁𝜏/2, where 𝜏0 was set to 1 in our
mock data tests. Errors of 𝐺 (𝜏) are generated by gaussian random numbers with the variance
𝜎(𝜏) = 𝜀 · 𝜏 · 𝐺 (𝜏) in order to incorporate the fact that the error of lattice correlation functions
increases as 𝜏 increases. One of the purpose of this study is to examine the applicability of sparse
modeling to the number of input data and the magnitude of noise. Therefore, we consider three
types of temporal extents, 𝑁𝜏 = 48, 64 and 96, and three types of noise levels, 𝜀 = 10−2, 5 × 10−3

and 10−5 in our mock data tests.
Figure 1 shows the spectral functions as a function of 𝜔̂ for 𝑇 < 𝑇c. In Fig. 1(a), the results

with a fixed noise level of 𝜀 = 5× 10−3 for various 𝑁𝜏 are illustrated. The blue solid line represents
the input spectral function, and the black dashed, green dotted and red dash-dotted lines represent
the output results with 𝑁𝜏 = 48, 64 and 96, respectively. Increasing 𝑁𝜏 results in better spectral
functions that are closer to the input spectral function. Similar results are obtained for the other
noise levels 𝜀. In Fig. 1(b), the results with a fixed temporal extent of 𝑁𝜏 = 96 for various 𝜀 are
illustrated. The black dashed, green dotted and red dash-dotted lines represent the output results
with 𝜀 = 10−2, 5 × 10−3 and 10−5, respectively. The meaning of the blue solid line is same as
Fig. 1(a). Reducing 𝜀 results in better spectral functions that are closer to the input spectral function.
Similar results are obtained for the other temporal extents 𝑁𝜏 .

Same results as Fig. 1 but for 𝑇 < 𝑇c are shown in Fig. 2, where 𝜀 = 10−2 and 𝑁𝜏 = 48 are
chosen in Fig. 2(a) and Fig. 2(b), respectively. 𝜀 and 𝑁𝜏 dependences are also the same as Fig. 1,
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Figure 1: Spectral functions calculated by using sparse modeling in the mock-data tests for 𝑇 < 𝑇c. Figure
(a) shows the results with a fixed noise level of 𝜀 = 5 × 10−3. The black dashed, green dotted and red
dash-dotted lines represent the output results with 𝑁𝜏 = 48, 64 and 96, respectively. Figure (b) shows the
results with a fixed temporal extent of 𝑁𝜏 = 96. The black dashed, green dotted and red dash-dotted lines
represent the output results with 𝜀 = 10−2, 5 × 10−3 and 10−5, respectively. In both figures, the blue solid
line represents the input spectral function.

Figure 2: Same as Fig. 1 but for 𝑇 > 𝑇c. Figure (a) and (b) show the results with 𝜀 = 10−2 and 𝑁𝜏 = 48,
respectively.

i.e., larger 𝑁𝜏 and smaller 𝜀 make the output closer to the input. Nevertheless, no transport peaks
appear in the calculations for any 𝑁𝜏 and 𝜀 combinations.

4. Results from lattice QCD data

Next, we extracted the spectral function from actual lattice QCD data.
We used the lattice data given in ref. [14], where the correlation functions were measured with

the 𝑂 (𝑎)-improved Wilson quark action on quenched gauge configurations generated by using the
standard plaquette gauge action. The lattice spacing 𝑎 = 0.010 fm and the corresponding 𝑎−1 is
about 18.97 GeV. The spatial extent 𝑁𝜎 , the temporal extent 𝑁𝜏 , corresponding temperatures and
the numbers of gauge configurations are summarized in table 2. We utilized meson correlation
functions in the vector and the pseudoscalar channels for each temperature. We set 𝜏0 = 4, and used
the correlation function data from 𝜏0 to 𝑁𝜏/2.
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𝑁𝜎 𝑁𝜏 𝑇/𝑇c # of conf.
128 96 0.73 234
128 48 1.46 461

Table 2: The values of 𝑁𝜎 , 𝑁𝜏 , corresponding temperatures, and number of configurations.

Figure 3: Spectral functions in (a) vector and (b) pseudoscalar channels extracted from actual lattice QCD
data for 𝑇 < 𝑇c by using sparse modeling. The blue shaded areas represent the statistical errors of the spectral
functions from Jackknife analyses, the blue solid lines represent the mean values, and the black horizontal
error bars represent the uncertainty of the location of the first peak for each spectral function.

Figure 3 shows our results of the spectral functions in (a) vector and (b) pseudoscalar channels
for 𝑇 < 𝑇c. The blue shaded areas represent the statistical errors of the spectral functions from
Jackknife analyses, the blue solid lines represent the mean values, and the black horizontal error
bars represent the uncertainty of the location of the first peak for each spectral function. The value
of the spectral function increases around 2GeV. The average value of the location of the first peak
is 4.3 GeV in the vector channel and 4.1 GeV in the pseudoscalar channel, while those obtained
from the maximum entropy method (MEM) are about 3.48 GeV in the vector channel and about
3.31 GeV in the pseudoscalar channel [14]. Our result is a bit larger compared to the result of the
previous study.

Figure 4 shows the same as Fig. 3 but for 𝑇 > 𝑇c. Compared to the results for 𝑇 < 𝑇c, the
peaks are broader and are located at higher energies. The average values of the location of the
first peak are 5.7 GeV in the vector channel and 4.9 GeV in the pseudoscalar channel, while those
obtained from MEM are about 4.7 GeV in the vector channel and about 4.1 GeV in the pseudoscalar
channel [14]. Our results for higher temperatures are also a bit larger compared to the results of the
previous study. In addition, the transport peak does not appear.

5. Summary

We applied sparse modeling for extracting a spectral function from a Euclidean-time meson
correlation function. Sparse modeling is a method that solves inverse problems by considering only
the sparseness of the solution we seek.

First, we tested sparse modeling with mock data of the spectral function which imitate possible
charmonium spectral function for 𝑇 < 𝑇c and 𝑇 > 𝑇c and checked applicability of sparse modeling.

6



P
o
S
(
L
A
T
T
I
C
E
2
0
2
4
)
0
3
2

Sparse modeling study to extract spectral functions from lattice QCD data Junichi Takahashi

Figure 4: Same as Fig. 3 but for 𝑇 > 𝑇c. Figure (a) and (b) show the results in vector and pseudoscalar
channels, respectively.

This test confirmed that increasing the number of data points of the correlation function and reducing
the noise level of errors of the correlation function lead to output spectral functions closer to the
input spectral function. Despite the inclusion of transport peaks in the input spectral function for
𝑇 > 𝑇c, our calculations do not yield the transport peak.

Next, we tried to extract the spectral functions from the charmonium correlation functions in
vector and pseudoscalar channels for 𝑇 < 𝑇c and 𝑇 > 𝑇c obtained from lattice QCD. Then, we got
a spectral function with a broad peak around 4 GeV in each channel for 𝑇 < 𝑇c, which is a bit
larger compared to the results in the previous study using the maximum entropy method [14]. For
𝑇 > 𝑇c, compared to the results for 𝑇 < 𝑇c, we got a spectral function with a broader peak around 5
GeV in each channel, which is also a bit larger compared to the results from MEM. In addition, the
transport peak does not appear. In order to estimate the transport peak, it may be necessary to make
assumptions that extend beyond the sparse modeling, including the shape of the transport peak.
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