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1. Introduction

Machine learning (ML) and artificial intelligence (AI) can provide powerful tools for the
scientific community, as demonstrated by the recent Nobel Prize in Chemistry. Reversely, insights
from traditional physics theories also contribute to a deeper understanding of the mechanism of
learning. Ref. [1] contains a broad overview of the successful cross-fertilisation between ML and the
physical sciences, covering a number of domains. One way to mitigate against possible scepticism
with regard to using ML as a “black box” is by unveiling the dynamics of training (or learning) and
explaining how the relevant information is engraved in the model during the training stage.

To further develop this programme, we study here the dynamics of first-order stochastic gradient
descent as applied to weight matrices, reporting and expanding on the work presented in Ref. [2].
When training ML models, weight matrices are commonly updated by one of the variants of the
stochastic gradient descent algorithm. The dynamics can then be decomposed into a drift and
a fluctuating term, and such a system can be described by a discrete Langevin equation. The
dynamics of stochastic matrix updates is richer than the dynamics for vector or scalar quantities,
as captured by Dyson Brownian motion and random matrix theory (RMT), with the appearance
of universal features for the eigenvalues [3–9]. Earlier descriptions of the statistical properties of
weight matrices in terms of RMT can be found in e.g. Refs. [10, 11], but here we specifically
focus on RMT effects for stochastic gradient dynamics via Dyson Brownian motion, which leads
to additional Coulomb-type repulsion between eigenvalues due to the Vandermonde determinant.
Importantly, we have shown that in this framework a specific combination of hyperparameters of the
optimiser, namely the ratio of the learning rate (or step size) and the batch size, naturally arises as
a scaling factor determining the strength of the fluctuations in the process [2]. In fact, this specific
combination had already been observed at an empirical level in practical ML training and dubbed
the linear scaling rule [12–15]. We derived this relation from first-principle matrix dynamics [2].

In this contribution, we first summarise the results of Ref. [2] and then present some new results
for a simple linear neural network with one hidden layer. Related results for a nano-GPT can be
found in Ref. [16].

2. Langevin equation for stochastic gradient descent

Stochastic gradient descent (SGD) is one of the most commonly used first-order gradient
optimisation algorithms in the ML community. Given an objective function L(𝑊) depending on a
(collection of) weight matrices 𝑊 , the optimal state that minimises the objective function is found
by searching for the stationary point of the first-order equation,

𝑊𝑛+1 = 𝑊𝑛 − 𝛼
〈
Δ𝑝

〉
𝑝∈B , (1)

where 〈
Δ𝑝

〉
𝑝∈B ≡ 1

|B|
∑︁
𝑝∈B

Δ𝑝, Δ𝑝 ≡ 𝜕L
𝜕𝑊𝑛

����
𝑝

. (2)

Here 𝛼 is the learning rate and the gradient Δ𝑝 of the objective function L(𝑊), depending on the
current state𝑊𝑛, is calculated for each data point 𝑝 and then averaged over the data points within a
(mini-)batch B.
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Unlike in standard gradient descent, the input data is split into a number of small mini-batches
and stochasticity is introduced due to the effect of having finite sample sizes. Assuming that the
input data is well standardised, each gradient within a mini-batch is an i.i.d. random variable as
each data point in the mini-batch is randomly sampled from the total dataset. As the measured
batch gradient is the average of i.i.d. variables, we can use the central limit theorem to write

〈
Δ𝑝

〉
in terms of the mean gradient of the batch and its fluctuation,〈

Δ𝑝

〉
𝑝∈B = EB [Δ𝑝] +

1√︁
|B|

√︃
VB [Δ𝑝] 𝜂, 𝜂 ∼ N(0, 1), (3)

where EB [Δ𝑝] and VB [Δ𝑝] are the mean and the variance of the gradient distribution of the batch
respectively, and 𝜂 is Gaussian noise. Rewriting Eq. (1) in terms of the mean drift and the fluctuation
then yields

𝑊𝑛+1 = 𝑊𝑛 − 𝛼EB [Δ𝑝] +
𝛼√︁
|B|

√︃
VB [Δ𝑝] 𝜂, (4)

i.e., a discrete Langevin equation for SGD.
Note that the learning rate does not have a natural interpretation as a ‘physical’ step size, as

naively sending 𝛼 → 0 does not give a correct stochastic differential equation [17–19]. Instead,
to obtain a continuous time limit that satisfies Itô calculus, one must consider a combination of
parameters that jointly acquire the dimension of time, which we plan to discuss in the future.

3. Dynamics of eigenvalues, random matrix theory and the Coulomb gas

To follow the dynamics during learning, it is convenient to work with singular or eigenvalues,
as some statistical properties of those are well known in RMT. RMT is usually defined for square
symmetric or hermitian matrices. Since weight matrices in ML are typically rectangular, of size
𝑀 ×𝑁 , we consider the symmetric combination 𝑋 = 𝑊𝑇𝑊 . The update for 𝑋 follows directly from
the update for 𝑊 given above, using 𝛿𝑋 = 𝑊𝑇𝛿𝑊 + 𝛿𝑊𝑇𝑊 . We denote the eigenvalues of 𝑋 with
𝑥𝑖 (𝑖 = 1, . . . , 𝑁), where we assume 𝑁 ≤ 𝑀 (if not, swap𝑊 and𝑊𝑇 ). Note that the eigenvalues 𝑥𝑖
are real and non-negative.

To obtain a discrete Langevin equation for the eigenvalues, we would have to write the matrix
as a product of rotations and a diagonal matrix, and separate the dynamics of the eigenvalues from
the dynamics of the angles, which is non-trivial in general. A key result from Dyson Brownian
motion [8, 9] is that the equation satisfied by the eigenvalues of 𝑋 can be written down directly in
terms of the drift and fluctuations of 𝑋 , as well as a Coulomb term, namely [2]

𝑥′𝑖 = 𝑥𝑖 + 𝛼�̃�𝑖 +
𝛼2

|B|
∑︁
𝑗≠𝑖

�̃�2
𝑖

𝑥𝑖 − 𝑥 𝑗
+ 𝛼√︁

|B|

√
2�̃�𝑖𝜂𝑖 . (5)

where �̃�𝑖 = −EB
[
Δ𝑝

]
𝑖𝑖

and 2�̃�2
𝑖
= VB

[
Δ𝑝

]
𝑖𝑖
= 2VB

[
Δ𝑝

]
𝑖≠ 𝑗

. Quantities with a tilde are indepen-
dent of learning rate and batch size at leading order. The additional Coulomb-type interaction arises
from the Jacobian determinant of the change of variables from matrix elements to eigenvalues, cf.
the Vandermonde determinant. Intuitively, the interaction term originates from the fact that the
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orthogonal transformation that diagonalises 𝑋 does not necessarily diagonalise the noise matrix
𝜂𝑖 𝑗 , as in the equivalent of Eq. (4) for 𝑋 .

After having obtained the Langevin equation for the eigenvalues, we can proceed and solve the
associated Fokker-Planck equation to study the stationary distribution. The Fokker-Planck equation
reads (using continuous time here, we are mostly interested in the stationary solution)

𝜕𝑡𝑃 ({𝑥𝑖}, 𝑡) =
𝑁∑︁
𝑖=1

𝜕𝑥𝑖

[
𝛼2

|B| �̃�
2
𝑖 𝜕𝑥𝑖 − 𝛼�̃�𝑖 −

𝛼2

|B|
∑︁
𝑗≠𝑖

�̃�2
𝑖

𝑥𝑖 − 𝑥 𝑗

]
𝑃 ({𝑥𝑖}, 𝑡) . (6)

The stationary distribution, 𝜕𝑡𝑃 ({𝑥𝑖}, 𝑡) = 0, is solved using the Coulomb gas description [8, 9]

𝑃𝑠 ({𝑥𝑖}) =
1
𝑍

∏
𝑖< 𝑗

��𝑥𝑖 − 𝑥 𝑗 �� exp

[
−

∑︁
𝑖

1
𝛼/|B|

�̃�𝑖 (𝑥𝑖)
�̃�2
𝑖

]
, �̃�𝑖 (𝑥𝑖) = −𝑑�̃�𝑖 (𝑥𝑖)

𝑑𝑥𝑖
, (7)

where the potential �̃�𝑖 (𝑥𝑖) of the Coulomb gas is defined via the drift. If one assumes there is a
unique minimum 𝑥𝑖 = 𝑥

𝑠
𝑖

for each eigenvalue, such that the potential can be expanded as

�̃�𝑖 (𝑥𝑖) = �̃�𝑖 (𝑥𝑠𝑖 ) +
1
2
Ω𝑖

(
𝑥𝑖 − 𝑥𝑠𝑖

)2 + . . . , (8)

with Ω𝑖 the curvature around the minimum, the Coulomb gas potential becomes a sum of Gaussians
centred at 𝑥𝑖 = 𝑥𝑠𝑖 with variance

𝜎2
𝑖 =

𝛼

|B|
�̃�2
𝑖

Ω𝑖

=
𝛼

|B|
VB

[
Δ𝑝

]
𝑖𝑖

2Ω𝑖

, (9)

The beauty of expression (9) is that the contributions to the fluctuations in the system are clearly
separated into two factors from different sources, with the first part 𝛼/|B| solely coming from
the stochasticity of the optimiser, which leads to the linear scaling rule [12], and the second part
VB

[
Δ𝑝

]
𝑖𝑖
/Ω𝑖 only depending on the specific profile of the model [2].

4. Applications

In this section, we validate the RMT description of matrix-valued SGD and the linear scaling
rule by observing the eigenvalue distribution of a Gaussian Restricted Boltzmann Machine and
explore a dense linear neural network within the teacher-student setting.

4.1 Gaussian Restricted Boltzmann Machine

Restricted Boltzmann Machines (RBMs) are generative energy-based models consisting of
two layers as shown in Fig. 1 [20–22]. When a sample is fed into the visible layer, the value of
the hidden layer is sampled from a conditional probability distribution obtained by marginalising
visible degrees of freedom of the given energy function of the model. Subsequently the output
of the model is sampled from a conditional probability distribution obtained by marginalising the
hidden degrees of freedom. The model is stochastically updated by maximising the log-likelihood
between the model distribution and the target distribution. If both the visible and hidden degrees of
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Figure 1: General structure of a Restricted Boltzmann Machine, with 𝑁𝑣 (𝑁ℎ) visible (hidden) nodes.

freedom are Gaussian fields, interacting via a bilinear coupling, 𝜙𝑖𝑊𝑖𝑎ℎ𝑎, one obtains a Gaussian
RBM, with a probability distribution 𝑝(𝜙, ℎ) ∼ exp[−𝑆(𝜙, ℎ)] and the “action”,

𝑆(𝜙, ℎ) = 1
2
𝜇2𝜙𝑇𝜙 + 1

2𝜎2
ℎ

(ℎ − 𝜂)𝑇 (ℎ − 𝜂) − 𝜙𝑇𝑊ℎ. (10)

Here 𝜇2 and 𝜎2
ℎ

are hyperparameters and we will put the bias 𝜂 = 0. A full analysis of this model
using the language of lattice field theory (LFT) can be found in Ref. [23].

We train the Gaussian RBM to learn a distribution representing a one-dimensional non-
interacting lattice scalar field theory, i.e., the eigenvalues of the target distribution are given as
𝜅𝑛 = 𝑚2 + 2 − 2 cos (2𝜋𝑛/𝑁), where 𝑚 is the mass of the scalar field, 𝑁 = 𝑁𝑣 is the size of the
lattice and−𝑁/2 < 𝑛 ≤ 𝑁/2. The smallest and largest eigenvalues are non-degenerate, while all the
intermediate ones are doubly degenerate. We denote the learnt RBM eigenvalues as 𝜆𝑖 = 𝜇2 − 𝑥𝑖 ,
where 𝑥𝑖 = 𝜎2

ℎ
𝜉2
𝑖
, with 𝜉𝑖 the singular values of𝑊 [2, 23].

After training, the eigenvalues of the RBM flow towards the target eigenvalues, but rather than
learning the exact values, they form a distribution around the target values, as shown in Fig. 2 (left).
The precise structure of the distributions can be analysed using RMT [2]. In Fig. 2 (right) we show
one of the distributions (note that 𝜇2 = 9 and hence 𝑥 = 9−𝜆). Using the Coulomb gas description,
the predicted spectral density, a.k.a. the Wigner semi-circle, for each pair of doubly-degenerate
eigenvalues, is

𝜌(𝑥; 𝑥𝑚, 𝜎) =
1
𝑁

𝑁∑︁
𝑖=1

⟨𝛿(𝑥 − 𝑥𝑖)⟩
𝑁=2
=

𝑒−𝛿𝑥2/(2𝜎2)
4
√
𝜋𝜎

[
2𝑒−𝛿𝑥2/(2𝜎2) +

√
2𝜋
𝛿𝑥

𝜎
Erf

(
𝛿𝑥
√

2𝜎

)]
, (11)

where 𝛿𝑥 = 𝑥 − 𝑥𝑚, with 𝑥𝑚 the centre of the distribution, and 𝜎 ∼
√︁
𝛼/|B| is given by Eq. (9) and

used as a fit parameter. Fig. 2 (right) shows the fit of this spectral density to one of the histograms.
To illustrate that the histogram is indeed not a Gaussian we also compute the Binder cumulant𝑈4,

𝑈4 ≡
〈
𝛿𝑥4〉

3
〈
𝛿𝑥2

〉2 − 1 = − 4
27

≈ −0.148 . . . for the Wigner semi-circle, (12)
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Figure 2: (Left) Target eigenvalues (dashed lines) and model eigenvalues (histograms) after training. The
middle 8 target eigenvalues are doubly degenerate due to periodic boundary conditions. (Right) Close-up of
one of the peaks: the learnt eigenvalue distribution of the RBM follows the Wigner semi-circle (solid line).
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afit = 2.4167± 0.0161

|B|
α

Figure 3: (Left) Deviation of the fitted centres of the model eigenvalue distributions from the target ones
due to the inter-mode Coulomb interaction. The offset decreases as stochasticity in the model decreases.
(Right) The width of eigenvalue distributions scales with the predicted universal scaling factor

√︁
𝛼/|B|. In

both cases 𝛼 and |B| are varied independently.

and find excellent agreement. One may note in Fig. 2 (right) that the centre of the peak is slightly
displaced from the target value. This is due to the Coulomb repulsion between all the modes, as
demonstrated in Fig. 3 (left), where the ratio of the fitted peak centres and the target values is shown.
Only in the limit of vanishing stochasticity (𝛼/|B| → 0) is the spectrum learnt exactly.

The universal appearance of 𝛼/|B| is also demonstrated in Fig. 3 (right), where the dependence
of the width 𝜎 of the spectral density on

√︁
𝛼/|B| is shown, including the non-universal (model-

dependent) factor 𝜅2Ω. Finally, the spacing between nearest eigenvalues follows the Wigner surmise,
𝑃(𝑠) = (𝜋/2)𝑠 exp(−𝜋𝑠2/4), where 𝑠 = 𝑆/⟨𝑆⟩ and ⟨𝑆⟩ =

√
𝜋𝜎 ∼

√︁
𝛼/|B|, see Ref. [2] for details.

4.2 Neural network in teacher-student setting

To extend the analysis to more general architectures, we consider here the simplest case of a
neural network with one hidden layer in the teacher-student setting, with the activation function
put equal to the identity. Even though this is a linear network, it introduces a new feature in the

6
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spectral density, which is already interesting to understand, since it indicates how the architecture
may interplay with the RMT structure seen above.

Teacher-student models are widely used in the statistical mechanics of learning, see e.g.
Refs. [24, 25]. They are formulated in terms of a teacher and a student network, with weight
matrices 𝑊𝑡 and 𝑊𝑠 respectively. The input data x is drawn from a normal distribution with unit
variance. The teacher network has fixed weights and it is the task of the student to determine these
weights. Denoting the output of the network with y𝑝 = f (x𝑝;𝑊) for each data point x𝑝, this can be
summarised as

L(𝑊𝑠) =
1

2𝑃

𝑃∑︁
𝑝=1

���y(𝑡 )
𝑝 − y(𝑠)

𝑝

���2 , y(𝑡 )
𝑝 = f (x𝑝;𝑊𝑡 ), y(𝑠)

𝑝 = f (x𝑝;𝑊𝑠), (13)

where the sum in the loss function is over the 𝑃 data points.
The one-hidden-layer network function we use here can be written as

f (x;𝑊) = 𝑍 a(𝑊x). (14)

Bold-faced quantities are vectors; 𝑊 and 𝑍 are rectangular matrices in general. The input and
output dimensions do not have to be the same. As stated, we replace the activation function a(·)
with the identity and we will not write it from now on. The 𝑍 matrix is the same for the teacher and
the student, such that only𝑊 needs to be learnt.

The gradient of the loss function for a data point x with components 𝑥𝑖 is given by

𝜕L(𝑊𝑠)
𝜕𝑊𝑠,𝑖′𝑖

= −
∑︁
𝑗′ , 𝑗

(𝑍𝑇𝑍)𝑖′ 𝑗′ (𝑊𝑡 −𝑊𝑠) 𝑗′ 𝑗 𝑥 𝑗𝑥𝑖 , (15)

where primed and unprimed indices may have a different range, reflecting that the matrices are
typically rectangular. Averaging over a mini-batch, we can write

1
|B|

∑︁
𝑝∈B

𝑥𝑖, 𝑝𝑥 𝑗 , 𝑝 ≃ 𝛿𝑖 𝑗 . (16)

This approximation ignores some stochasticity due to mini-batch sampling, but if the batches are
not too small, we found that this can safely be ignored. The gradient of the loss function, averaged
over a mini-batch, then reads

𝜕L(𝑊𝑠)
𝜕𝑊𝑠,𝑖′𝑖

����
B
= −

∑︁
𝑗′
(𝑍𝑇𝑍)𝑖′ 𝑗′ (𝑊𝑡 −𝑊𝑠) 𝑗′𝑖 . (17)

To analyse the dynamics analytically, we assume that some continuous time limit exists, while
keeping 𝛼 as an explicit learning rate, and consider the equation

𝑊 ′
𝑠 = 𝑊𝑠 − 𝛼

𝜕L(𝑊𝑠)
𝜕𝑊𝑠

����
B

⇒ ¤𝑊𝑠 = 𝛼(𝑍𝑇𝑍) (𝑊𝑡 −𝑊𝑠). (18)

Here the dot indicates the time derivative and we no longer write the indices explicitly.
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We can study this dynamics in more detail by introducing a singular value decomposition of
both the teacher and the student weight matrix, writing

𝑊𝑠 = 𝑈𝑠Ξ𝑠𝑉
𝑇
𝑠 , 𝑊𝑡 = 𝑈𝑡Ξ𝑡𝑉

𝑇
𝑡 , (19)

where𝑈𝑠,𝑡 and 𝑉𝑠,𝑡 are orthogonal matrices and Ξ𝑠,𝑡 are diagonal matrices containing the singular
values 𝜉𝑠,𝑖 and 𝜉𝑡 ,𝑖 . Closely following Ref. [23], we take the time derivative of𝑊𝑠𝑊

𝑇
𝑠 and conjugate

the resulting expression with𝑈𝑇
𝑠 and𝑈𝑠. This yields

𝑈𝑇
𝑠

𝑑

𝑑𝑡
(𝑊𝑠𝑊

𝑇
𝑠 )𝑈𝑠 =

𝑑

𝑑𝑡
(Ξ𝑠Ξ

𝑇
𝑠 ) + (𝑈𝑇

𝑠
¤𝑈𝑠) (Ξ𝑠Ξ

𝑇
𝑠 ) + (Ξ𝑠Ξ

𝑇
𝑠 ) ( ¤𝑈𝑇

𝑠 𝑈𝑠)

= 𝛼(𝑈𝑇
𝑠 𝑍

𝑇𝑍𝑈𝑠)
[
𝑈𝑇

𝑠 𝑈𝑡Ξ𝑡𝑉
𝑇
𝑡 𝑉𝑠Ξ

𝑇
𝑠 − Ξ𝑠Ξ

𝑇
𝑠

]
+ 𝛼

[
Ξ𝑠𝑉

𝑇
𝑠 𝑉𝑡Ξ

𝑇
𝑡 𝑈

𝑇
𝑡 𝑈𝑠 − Ξ𝑠Ξ

𝑇
𝑠

]
(𝑈𝑇

𝑠 𝑍
𝑇𝑍𝑈𝑠). (20)

A similar expression is obtained starting from 𝑊𝑇
𝑠 𝑊𝑠, but with 𝑉𝑇

𝑠
¤𝑉𝑠 instead of 𝑈𝑇

𝑠
¤𝑈𝑠, etc. From

these expressions we can clearly see the process of learning: the RHS of the equation vanishes
when the singular values of 𝑊𝑠 and 𝑊𝑡 agree, Ξ𝑠 → Ξ𝑡 , as well as the left and right basis,
𝑈𝑠 → 𝑈𝑡 , 𝑉𝑠 → 𝑉𝑡 . The rate of learning is determined by both 𝛼 and the combination 𝑈𝑇

𝑠 𝑍
𝑇𝑍𝑈𝑠.

Note that the final two terms on the first line form a symmetric matrix with zeroes on the diagonal,
whereas the first term is purely diagonal.

We focus here on the diagonal terms, i.e. the eigenvalues of Ξ𝑠Ξ
𝑇
𝑠 , or equivalently the square

of the singular values of Ξ𝑠. We denote the eigenvalues of the student matrix with 𝑥𝑖 = 𝜉2
𝑠,𝑖

, as in
the RBM (there should be no confusion with the data points x discussed above). Assuming that
𝑈𝑠 ∼ 𝑈𝑡 , 𝑉𝑠 ∼ 𝑉𝑡 , the diagonal part of Eq. (20) can then be reduced to

¤𝑥𝑖 = 2𝑎𝑖
(√
𝜅𝑖𝑥𝑖 − 𝑥𝑖

)
, (21)

where 𝑎𝑖 > 0 depends on 𝛼 times the diagonal components of𝑈𝑇
𝑠 𝑍

𝑇𝑍𝑈𝑠, and √
𝜅𝑖 is the 𝑖th singular

value of the teacher matrix Ξ𝑡 . This equation is solved as

𝑥𝑖 (𝑡) =
[√
𝜅𝑖 +

(√
𝑥𝑖,0 −

√
𝜅𝑖

)
𝑒−𝑎𝑖 𝑡

]2
, (22)

with 𝑥𝑖 (𝑡 → ∞) = 𝜅𝑖 , as expected for learning in the absence of stochasticity. Initialising𝑊𝑠 from
a normal distribution with variance 1, the initial average value of 𝑥𝑖 equals ⟨𝑥𝑖,0⟩ = 1. Note that the
dynamics is linear for the singular values,

¤𝜉𝑠,𝑖 = 𝑎𝑖
(√
𝜅𝑖 − 𝜉𝑠,𝑖

)
, 𝜉𝑠,𝑖 (𝑡) =

√
𝜅𝑖 +

(
𝜉𝑠,𝑖 (0) −

√
𝜅𝑖

)
𝑒−𝑎𝑖 𝑡 . (23)

For reference to the Coulomb gas description, we note that the drift, i.e., the RHS of Eq. (21), can
be obtained from a potential,

𝑉 (𝑥𝑖) = 𝑎𝑖
(
𝑥2
𝑖 −

4
3
√
𝜅𝑖𝑥

3/2
𝑖

)
. (24)

Expanding this potential around the minimum at 𝑥𝑖 = 𝜅𝑖 yields

𝑉 (𝑥𝑖) = −1
3
𝑎𝑖𝜅

2
𝑖 +

𝑎𝑖

2
(𝑥𝑖 − 𝜅𝑖)2 + . . . , (25)

i.e., the width of the potential is proportional to the rate of learning 𝑎𝑖 .
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Figure 4: Training dynamics of the square of the singular values of a 2 × 2 student matrix, given a teacher
matrix with doubly degenerate eigenvalues, using 𝑍 as in Eq. (26) (left) and Eq. (27) (right). The presence of
𝑍 affects the rate of convergence. Shown are an ensemble of 20 networks (with opaque lines), the evolution
averaged over an ensemble of 500 networks (with solid blue and orange lines), and fits to Eq. (22), starting
from epoch 𝑡 = 2 (with dashed lines), agreeing with the averaged evolution.

We solved the teacher-student model numerically using SGD for the case of two-dimensional
input and output, and with 𝑍 and 𝑊 2 × 2 matrices. To study the case of (near-)degeneracy, the
eigenvalues of 𝑊𝑡 are taken identical. The modes mix due to the presence of 𝑍 . We study two
examples, with

𝑍 =

(
−0.1727 −0.8341
−0.0106 −0.7750

)
, 𝑍𝑇𝑍 =

(
0.0299 0.1522
0.1522 1.2964

)
, (26)

and with

𝑍 =

(
−1.8198 0.5861
−0.6574 0.0473

)
, 𝑍𝑇𝑍 =

(
3.7437 −1.0977
−1.0977 0.3458

)
. (27)

We add a noise term in the learning process, i.e., the update rule for𝑊 is modified as

𝑊 ′
𝑠 = 𝑊𝑠 + 𝛼(𝑍𝑇𝑍) (𝑊𝑡 −𝑊𝑠 − 𝜂), 𝜂 ∼ N(0, 0.01). (28)

This is required, as the algorithm by itself is not noisy enough, unlike in the RBM discussed above.
The respective eigenvalue dynamics is shown in Fig. 4. We used here a finite learning rate and batch
size, and associate epoch with time. The eigenvalue converging faster is associated with the larger
value on the diagonal of 𝑍𝑇𝑍 and the fit obtained using Eq. (22) aligns with the ensemble average
of the eigenvalue dynamics. When 𝑍 = 11, the rate of convergence is the same for all eigenvalues.

To analyse these results in terms of RMT and the Coulomb potential, we note that the addi-
tional layer in the network leads to different rates of learning and curvatures in the potential (24),
parametrised by 𝑎𝑖 . We incorporate this by extending the RMT description to a two-component
Coulomb gas, where particles of each species are characterised by a different mass (or variance).
We focus on the case of doubly degenerate eigenvalues, with 𝜅1 = 𝜅2 = 𝜅. By shifting 𝑥1,2 by 𝜅 and
extending the integration boundaries to −∞, we arrive at the Coulomb gas partition function

𝑍 =
1
𝑁0

∫
𝑑𝑥1𝑑𝑥2 |𝑥1 − 𝑥2 |𝑒−𝑉 (𝑥1,𝑥2 ) , 𝑉 (𝑥1, 𝑥2) =

𝑥2
1

2𝜎2
1
+
𝑥2

2

2𝜎2
2
, (29)

9
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Figure 5: Histogram of the spectral density 𝜌(𝑥) in the presence of a hidden layer, with 𝑍 as in Eq. (26)
(left) and Eq. (27) (right). Also shown are fits to the standard Wigner semi-circle (11) (dashed line) and the
generalised Wigner semi-circle (32) for two species (solid line). The generalised Wigner semi-circle better
captures the histogram’s peak and wider tails, as seen in particular on the right.

where the two modes have different variances𝜎2
1,2. The normalisation constant is𝑁0 = 4

√
𝜋𝜎1𝜎2𝜎𝑚,

with

𝜎2
𝑚 =

1
2

(
𝜎2

1 + 𝜎2
2

)
. (30)

We follow the same procedure as in the RBM. For the Wigner surmise, we write 𝑆 = 𝑥1 − 𝑥2,
𝑥𝑐 = 𝜎2/(2𝜎1)𝑥1 + 𝜎1/(2𝜎2)𝑥2, such that 𝑉 (𝑥1, 𝑥2) = 𝑆2/(4𝜎2

𝑚) + 𝑥2
𝑐/𝜎2

𝑚. The Wigner surmise
and the average level spacing are then

𝑃(𝑆) = 𝑆

2𝜎2
𝑚

exp[−𝑆2/(4𝜎2
𝑚)], ⟨𝑆⟩ =

√
𝜋𝜎𝑚. (31)

The spectral density is given by

𝜌(𝑥; 𝑥𝑐, 𝜎1, 𝜎2) =
𝑒−𝜎2

𝑚 𝛿𝑥2/(𝜎2
1 𝜎

2
2 )

8
√
𝜋𝜎1𝜎2𝜎𝑚

∑︁
𝑖=1,2

[
2𝜎2

𝑖 + 𝑒𝛿𝑥2/(2𝜎2
𝑖
)√2𝜋𝛿𝑥𝜎𝑖Erf

(
𝛿𝑥

√
2𝜎𝑖

)]
, (32)

where 𝛿𝑥 = 𝑥 − 𝑥𝑐 and 𝜎𝑚 is related to 𝜎1,2 using Eq. (30). The presence of the additional layer
affects the spectral density, which becomes a generalised version of the Wigner semi-circle, whereas
the Wigner surmise is unchanged, albeit with a modified factor for the average level spacing.

We have verified this Coulomb gas description for both the Wigner surmise (not shown here)
and the generalised Wigner semi-circle. In Fig. 5, we show the histogram of the eigenvalues and a
comparison between the fits performed with the standard Wigner semi-circle (11) and its generalised
version (32). It is evident that the standard expression is not able to reproduce the high peak and
the wider tails, but that the generalised version is. Finally we note that inserting the values of 𝜎1,2

into Eq. (30), we obtain a result for 𝜎𝑚 compatible with the value obtained directly from a fit of the
surmise to Eq. (31).
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5. Summary

To further develop our understanding of machine learning algorithms, we have formulated
stochastic gradient descent in terms of Dyson Brownian motion and the Coulomb gas. In the
stationary limit the statistical properties of singular/eigenvalues of weight matrices then follow
predictions from random matrix theory. In particular, we have shown that the width of the Coulomb
potential around a learnt target value scales proportionally to a specific combination of two hyper-
parameters of the optimiser, namely the learning rate over batch size, and hence derived the linear
scaling rule.

We have verified this behaviour in the Gaussian Restricted Boltzmann Machine, in which the
spectral density takes the form of the Wigner semi-circle and the level spacing follows the Wigner
surmise, and the predicted scaling of the eigenvalue distribution and level spacing with the learning
rate and batch size is observed. Subsequently we have extended the analysis into a more general
scenario by considering a linear neural network with one hidden layer in a teacher-student setting.
Interestingly, the additional layer modifies the width of the potential for each eigenvalue, resulting
in a Coulomb gas with multiple species and a generalised Wigner semi-circle.

For the future we plan to consider larger non-linear neural networks, in which the spectral
density is expected to be more intricate, as seen in e.g. Refs. [10, 11, 16].
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