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We propose a Transformer neural network architecture specifically designed for lattice QCD,
focusing on preserving the fundamental symmetries required in lattice gauge theory. The proposed
architecture is gauge covariant/equivariant, ensuring it respects gauge symmetry on the lattice, and
is also equivariant under spacetime symmetries such as rotations and translations on the lattice. A
key feature of our approach lies in the attention matrix, which forms the core of the Transformer
architecture. To preserve symmetries, we define the attention matrix using a Frobenius inner
product between link variables and extended staples. This construction ensures that the attention
matrix remains invariant under gauge transformations, thereby making the entire Transformer
architecture covariant. We evaluated the performance of the gauge covariant Transformer in
the context of self-learning HMC. Numerical experiments show that the proposed architecture
achieves higher performance compared to the gauge covariant neural networks, demonstrating its
potential to improve lattice QCD calculations.
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1. Introduction

Machine learning has become a powerful tool in high energy physics, where the computational
cost of large-scale simulations is often prohibitively high. One promising approach involves
the use of neural surrogate models, which serve as cheaper approximations to the exact theory
and can significantly reduce computational cost [1]. In particular, gauge covariant/equivariant
neural networks' are attracting considerable attention because they allow flexible and differentiable
mappings between gauge fields, controlled by learnable parameters.

Machine learning (ML) techniques have recently made significant inroads into lattice QCD,
offering novel strategies to tackle long-standing computational challenges. One notable direction
is the development of flow-based sampling algorithms [3—9] and continuous flow approaches [10—
12], which promise more efficient generation of gauge field configurations. ML has also begun to
play a key role in non-equilibrium Monte Carlo [13-15]. Furthermore, perfect action techniques
are being refined through advanced neural network methods [16], and preconditioning strategies
employing neural networks have been shown to enhance numerical efficiency [17-19]. Taken
together, these innovations highlight the rapidly evolving synergy between ML and lattice QCD,
potentially broadening the scope of feasible calculations.

In order for a neural network architecture to be useful in lattice QCD, it must satisfy several
important criteria without sacrificing either efficiency or physical rigor. It must be compatible with
gauge symmetry, as gauge invariance is a cornerstone of QCD and its lattice formulation [20]. It
must also be “fermion friendly” and accommodate modern lattice QCD simulations that incorporate
dynamical fermions. Furthermore, the architecture must be fully differentiable to allow training via
gradient-based methods, which have shown immense utility in machine learning [21-23].

Recent breakthroughs in deep learning suggest that Transformers, originally popularized in
natural language processing [24] and known for their ability to capture non-local correlations, can
be beneficial for problems in lattice QCD. Their core technology, the attention matrix, can handle
long-range interactions [25], a feature particularly relevant in the presence of fermions. There is
also growing interest in exploiting symmetries within the data, motivating research on how to scale
equivariant architectures with Transformers [26].

Despite these promising directions, constructing a network that is both gauge covariant and
capable of leveraging the flexibility of the Transformer paradigm remains a challenge. In this work,
we address these issues by introducing a new neural network layer, Covariant Attention with Stout
Kernel (CASK), which serves as a gauge covariant attention block. Our approach integrates the
requirements of gauge covariance, differentiability, and fermion friendliness, while harnessing the
ability of Transformer architectures to learn and exploit non-local correlations in lattice QCD.

2. Gauge covariant Transformer (CASK)

We first provide an overview of the gauge covariant neural network formalism, which serves
as the foundation for constructing CASK.

IThe conceptual foundations of these architectures draw on the distinction between equivariance and covariance [2].
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2.1 Gauge covariant neural network

We first recall the gauge covariant neural network [27], which can be viewed as a trainable
version of the stout smearing commonly used in lattice gauge theory. The gauge covariant neural
network is also known as a residual flow [9]. In the following discussion, we focus on the simplest
version of this gauge covariant neural network, namely the stout-type construction, which can be
regarded as a convolutional layer acting on the links of the lattice gauge field.

To process gauge fields in a covariant manner, we consider an iterative evolution equation for
the link variables Ul(ll) (n) € SU(N,.) of the form

I+1 (!
U () = g3, U (), )
where the gauge update
g =expli ). pD0U ()| € SUN.) @)
f

encodes the action of the neural network at layer /. Here, [ is the number of layers (or smearing
levels), and f indicates the type of loops considered (for example, staples of various shapes). The
real parameters p("-f) € R are trainable weights.
Each Q'f,l’f ) (n) is an element of the Lie algebra su(N.) constructed from a closed loop Q, (n)
surrounding the link U, (n). Concretely,
i
2N,

0,(n) = %(QL(n) - Q,,(n)) - Tr(QL(n) - Q#(n)) e su(N.), 3)

where Q,,(n) € SU(N,) is formed by the product of links associated with U, (n). In essence, this
construction implements a local transformation that “smears” or modifies the original link U l(,l) (n)
to produce U l(,m) (n), while ensuring that the operation remains gauge covariant. By design, this
network preserves gauge symmetry and can be trained using a generalized backpropagation scheme
adapted for matrix-valued variables.

Viewed this way, the stout-type gauge covariant neural network recasts a well-known smearing
procedure as a trainable, parameterized transformation. This perspective not only bridges lattice
smearing methods and modern deep learning, but also connects them in a unified framework.

2.2 Lesson from Transformer for spins

Before introducing gauge covariant Transformer, here we briefly review transformer for a
classical O(3) spin model with quantum electrons in two dimensions [28, 29]. This is helpful
to understand gauge covariant Transformer. Let §n € R? be a scalar field on lattice, which is
a component of a classical spin. Here n indicates lattice site. Spin variables are normalized as
Zizl |§n |> = 1 for all n. The Hamiltonian of the system is invariant under a spin rotation S, — RS,
with R € O(3). This transformation is independent of coordinate n (global symmetry).

As a first step of the procedure, we perform three different block spin transformations with
different weights. The transformation is,

S =25 2, Wi )

6
k=0 s e N ()
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fora = Q,K,V and w,((a) € Ris a weight. N,f,k) indicates a set of k-th neighbors for a lattice site n.
We remark that this is covariant (equivariant) under global O(3) transformation for spin S, ,,. Next
we construct an attention matrix. By using the standard inner product for two real vectors,

M=) 5 520 = 3 (50)) 5,20 Mun = ReLu(Myn) 5)
u u

Here M,/, € R, is called an attention matrix and ReLu is the rectified linear function®. M, is
obviously related to correlation functions. This matrix connects correlations between all points to all
points, so it is a dense matrix. We emphasize that this is invariant under global O(3) transformation
for spin S,.. Next we construct a spin operator with attention,

S;;A) = Z Mnn’s:fly)’ (6)
n/

and this is covariant/equivariant under global O(3) transformation. This contains correlations from
all points from this system. Finally, we construct output of the self-attention block,

S/ = N(S, +5) )

N (+) is a normalization operation to keep length of output vector to be one point-wisely. In neural
network language, this is a layer normalization. This is equivariant under global O(3) as well.
Whole procedure can be nested, which makes the network deeper.

Lessons are as follows. The attention matrix is essentially a correlation function, which
allows us to capture long-range correlations. The attention matrix should be invariant under the
symmetry transformation. So the output of the attention operation is covariant. Output should be
normalized, otherwise we cannot regard the output of a Transformer block as a spin configuration.
The normalization operation helps the training because we initialize weights with nearly zero and
the attention block behaves as an identity. This enables greedy layer-wise training [30].

2.3 CASK (Gauge covariant Transformer)

Here we introduce CASK, which is a new Transformer specifically designed to process gauge
configurations in a manner analogous to the covariant attention for spin systems, but with additional
structure so that CASK is covariant under local gauge transformations. CASK can be regarded as
a synthesis of two core ideas, namely the gauge covariant neural network and the O(3) equivariant
Transformer. The central challenge in constructing a gauge covariant Transformer is the design of
an invariant attention matrix.

To achieve an invariant attention matrix, we employ the Frobenius inner product tr(A"B) for
complex matrices A and B. This quantity is invariant under the transformation A — w;Aw; and
B — w1Bw; for wy,w; € SU(N,), because

tr(ATB) — tr(w;ATaﬁ;wlez) = tr(A'B).

The attention matrix in a Transformer is a collection of pairwise correlations, we would like to
construct the attention matrix from gauge symmetric two-point functions. A naive extension from

2In the original Transformer uses softmax function instead of ReLu. ReLu helps to keep symmetry and numerically
cheaper than the softmax. The latter is philosophically similar to the flash attention.
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Figure 1: Construction of the attention matrix. (Left): Two links separated by R. (Right): Gauge covariant
combination of two links separated by R.

the spin case might consider the two-point correlation of two links, as shown in the left panel of
Fig. 1. However, that combination is not gauge symmetric. Instead, one must employ a Wilson
loop, illustrated in the right panel of Fig. 1, which ensures gauge symmetry.

The definition of the CASK layer is as follows. To define the Transformer, we need to define
three kinds of vectors. Smeared gauge links U‘@), UX) and U, corresponding to the “query”,
“key” and “value” vectors, are defined as

, U () = U (s p' )

Ul(,Q)(n) = Ul(la)(n;p(“)) , ULK)(n) = U;la)(n;p(a))

a—Q

a—V

®)

a—K

These are defined by gauge covariant layer using single plaquette with independent weights p(%) in
this work.

For general links field U, the extended staples V) ,44.s({U}) as the functional of {U} are
defined as

s—

Vv,n+ﬁ;s({U}) = U/Tl (n+ a+ sV)

1
Uun+@—l—ﬂﬂ) 9)

s—1
IIUAn+ﬁ+ﬁ)
t=0 t=0

By using the staples, the attention matrix a, ;s is defined as

4
An,u,v,s = tan (N_an,u,v,s) s (10)

c

Gngiovs = R T | USL Vs s (UED)| = Re T [Up(nVormagis (UD] . (1D

where the second term of (11) is the input of the /-th CASK layer. To amplify the signal, we
introduce the tangent function. In principle, one could construct an all-to-all attention matrix, but
this work uses a sparse attention matrix [25, 31] to reduce numerical cost. Specifically, links are
connected within 1 x 1, 1 x 2 and 1 x 3 rectangular Wilson loops®. This attention matrix is gauge
invariant.

A relation between (I + 1)-th and /-th CASK layer is expressed as

I SOA (- l
UL (n) = Qe Dy D () (12)

3This part is related to the definition of R in later sentence.
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where
QA (o)) = (@ (1)~ (0 ()
- ST 05 (s )) = D0 (s ), (13)
and
QA {an puv.s}) = Co(n {an v s DU (), (14)

R
14 \4 ~ V)i ~
CAn {anpuws) = D\ an g s (U ()UY (n+ 9 UY (0 + )
vEU s=1

+ U (=) UY (n=9) UV (x =9 + ). (15)

Here R is the same variable in Figure 1.

Training is done with backprop as the gauge covariant neural network, which is an extension
of [27, 32].

2.4 Self-learning Hybrid Monte Carlo

To examine the expressibility of the Transformer, we perform self-learning Hybrid Monte
Carlo (SLHMC) [27, 33], which incorporates an approximated model. In SLHMC, two different
actions are involved: one is the exact action governing the target system, and the other is an
approximate action used to guide the evolution. The acceptance rate in SLHMC is given by
min (1, exp[—(H’ — H)]) where the primed quantities indicate the updated configuration. SLHMC
employs the approximate action in the molecular dynamics evolution, and, because the molecular
dynamics trajectory is invertible, one can still perform a conventional accept-reject step based on
the actual HMC Hamiltonian difference. As a result, we can get exact expectation values.

3. Lattice setup

In order to test the expressivity of CASK, we carry out simulations in SU(2) lattice gauge
theory with dynamical fermions with SLHMC. As a proof-of-principle study, we use a 4* lattice at
gauge coupling § = 2.7 and employ naive staggered fermions with mass m = 0.3. CASK is utilized
to represent the effective action in SLHMC. Both the exact gauge action and the fermion action
match those of the target system. However, during the molecular dynamics evolution, we replace the
fermion mass m = 0.3 by a different mass m®® = 0.4 in the effective action and use CASK links in
place of the thin links. CASK here relies solely on the plaquette kernel for smearing, but introduces
three neighboring rectangular Wilson loops in the attention block to capture extended correlations.
The intention is that CASK links absorb the difference arising from the modified Dirac operator.

All simulations are implemented using Gaugefields. jl and LatticeDiracOperators. jl
in JuliaQCD [34], which are written in the Julia language [35]. The network parameters in CASK
are trained via the Adam optimizer [36].
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Figure 2: Comparison of algorithms. (Left) History of acceptance rate. (Middle) History of estimated loss
function. (Right) Histogram of plaquette.

4. Results

We present our numerical findings in Fig. 2. In our setup, the SLHMC algorithm employs
a Metropolis Hamiltonian § = S, + S¢[U,m] for the accept-reject step, while the molecular
dynamics evolution uses an effective action § = S, + S¢[U off me°M]. Here, U°T is generated by a
gauge covariant Transformer, and m° differs from the target fermion mass. Each Monte Carlo step
corresponds to one epoch of training, during which the network parameters in the gauge covariant
Transformer are updated. Without any training, the acceptance rate in this self-learning scheme
is nearly zero, so any nonzero acceptance demonstrates that the network has sufficient expressive
power to approximate the difference between S¢[U, m] and S ¢ (U, mef].

The left panel of Fig. 2 shows the acceptance rate and the middle panel is the estimated loss
function as a function of the epoch by a formula in [28]. Different colors represent distinct setups.
CovNet indicates a result of the gauge covariant network and CASK#n is CASK with 7 attention
blocks. Over successive epochs, all networks learn to decrease the loss function. The gauge
covariant neural network eventually saturates and ceases to improve, whereas the gauge covariant
Transformer continues to learn at later epochs, achieving lower loss. This behavior highlights the
Transformer’s enhanced capability to capture non-local correlations and model the effective action
more flexibly.

The right panel of Fig. 2 illustrates that, even while the Transformer’s acceptance rate continues
to grow, key observables remain consistent with expected physical behavior. This consistency
confirms that the learned surrogate action does not distort essential physics, underscoring the
practicality and reliability of gauge covariant Transformers in SLHMC.

5. Summary

In this work, we introduced the gauge covariant Transformer architecture CASK and demon-
strated its utility in SLHMC simulations. By combining the essential features of gauge covariant
neural networks with Transformer-based attention, CASK effectively incorporates both gauge sym-
metry and non-local correlations. In our numerical experiments, the surrogate links generated
by CASK successfully absorbed the differences arising from the modified massive Dirac opera-
tor, resulting in an improved acceptance rate. The method consistently outperformed the gauge
covariant neural networks (“adaptive stout”) developed in our previous study, illustrating how the
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attention-based design can enhance expressivity. These findings suggest that the gauge covariant
Transformer approach is a promising route toward more efficient and flexible simulations in lattice
QCD. Future work will explore larger lattice volumes, extended loop structures in the attention
matrix, and further optimization of the training process to fully leverage the potential of CASK.
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