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1. Introduction

In recent years, tensor networks have found increasing applications in high-energy physics.
Perhaps the biggest motivation is the fact that tensor network algorithms are free from the sign
problem by construction, making it a promising complement to the Monte Carlo methods. The
tensor renormalization group (TRG) is a class of tensor network algorithms that employ a coarse-
graining procedure to directly evaluate partition functions. Although originally developed for
two-dimensional classical spin systems [1], these algorithms have since been generalized to various
systems, including scalar, gauge, and fermionic theories [2–13]. Efficient algorithms for higher-
dimensional systems have also been proposed [14–16]. In principle, we already have the necessary
ingredients and methodologies for lattice QCD; however, several practical challenges remain to be
addressed.

Lattice QCD is a well-established non-perturbative framework for studying strong interactions.
It describes a 3+1 dimensional theory with non-Abelian gauge symmetry and multiple fermion
flavors. Consequently, the local Hilbert space becomes prohibitively large for tensor network
approaches due to the theory’s rich symmetries. Furthermore, it is well known that the internal
symmetry within the tensor network of a non-Abelian gauge theory induces a non-local entanglement
structure, manifesting as a severe degeneracy in the singular value spectrum [6]. In this article,
we summarize two key concepts developed in the author’s recent work [17–19] to address these
challenges. The first is the multi-layer construction for multi-flavor gauge theories, and the second
is the armillary sphere formulation for non-Abelian gauge theories. We conclude by discussing the
potential generalizations of these approaches towards lattice QCD.

2. Tensor network representations for lattice gauge theory

In this section, we discuss how gauge theories are typically formulated as tensor networks.
Consider a gauge theory with gauge group 𝐺 and 𝑁 𝑓 flavors of Wilson fermions labeled by 𝛼 =

1, · · · , 𝑁 𝑓 . We assume that the fermion of flavor 𝛼 transforms under an irreducible representation
𝑟𝛼 of the gauge group. Let 𝑈𝑟𝑥,𝜇 denote the link variable located at site 𝑥 in the direction �̂�,
transforming in the representation 𝑟 . If 𝑟 is not explicitly specified, we assume the fundamental
representation, fund. We will consider the following partition function in this discussion:

𝑍 =

∫
𝑑𝑈𝑑�̄�𝑑𝜓 exp

−𝑆𝑔 [𝑈] −
∑︁
𝑥

𝑁 𝑓∑︁
𝛼=1

�̄�
(𝛼)
𝑥 𝐷/ (𝛼)𝜓 (𝛼)

𝑥

 ; (1)

𝑆𝑔 [𝑈] =
𝛽

𝑁

∑︁
1≤𝜇<𝜈≤𝐷

∑︁
𝑥

ReTr
{
1 −𝑈𝑥,𝜇𝑈𝑥+�̂�,𝜈𝑈†

𝑥+�̂�,𝜇𝑈
†
𝑥,𝜈

}
, (2)

𝐷/ (𝛼)𝜓 (𝛼)
𝑥 = −1

2

𝐷∑︁
𝜈=1

{
(1 − 𝛾𝜈)𝑒+�̃�𝛼 𝛿𝜈𝐷𝑈𝑟𝛼𝑥,𝜈𝜓

(𝛼)
𝑥+�̂� + (1 + 𝛾𝜈)𝑒− �̃�𝛼 𝛿𝜈𝐷 (𝑈𝑟𝛼𝑥−�̂�,𝜈)

†𝜓 (𝛼)
𝑥−�̂�

}
(3)

+ (�̃�𝛼 + 𝐷)𝜓 (𝛼)
𝑥 .

The additional parameters are the inverse coupling 𝛽, the ‘group size’ 𝑁 := dim(fund), the
dimensionless chemical potential �̃�𝛼, and the dimensionless mass �̃�𝛼. The direction 𝜇 = 𝐷 is
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Figure 1: The transformation of site fermions 𝜓 into link fermions 𝜂. The gauge link variable 𝑈 is shown
for reference.

taken to be the imaginary time direction, and 𝛾𝜇 denotes the Gamma matrices. It is convenient to
separate the fermion bilinears into on-site terms and hopping terms.

�̄�
(𝛼)
𝑥 𝐷/ (𝛼)𝜓 (𝛼)

𝑥 = �̄�
(𝛼)
𝑥 𝑊

(𝛼)
𝑥 𝜓

(𝛼)
𝑥 +

∑︁
𝜈

{
�̄�
(𝛼)
𝑥 𝐻

(𝛼)
𝑥,𝜈 𝜓

(𝛼)
𝑥+�̂� + �̄�

(𝛼)
𝑥 𝐻

(𝛼)
𝑥,−𝜈𝜓

(𝛼)
𝑥−�̂�

}
; (4)

𝑊
(𝛼)
𝑥 := �̃�𝛼 + 2, (5)

𝐻
(𝛼)
𝑥,𝜈 = −1

2
(1 − 𝛾𝜈)𝑒+�̃�𝛼 𝛿𝜈𝐷𝑈𝑟𝛼𝑥,𝜈 , (6)

𝐻
(𝛼)
𝑥,−𝜈 = −1

2
(1 + 𝛾𝜈)𝑒− �̃�𝛼 𝛿𝜈𝐷 (𝑈𝑟𝛼𝑥−�̂�,𝜈)

†. (7)

To make this action suitable for the tensor network construction, we transform the site fermions
𝜓
(𝛼)
𝑥 into link fermions 𝜂 (𝛼)𝑥,𝜇 , as described in Ref. [20], resulting in the partition function [17]:

𝑍 =

∫
𝑑𝑈

∫
�̄�𝜂

𝑒−𝑆𝑔 [𝑈 ]
∏
𝑥

F𝑥; (8)

F𝑥 =
∏
𝛼

∫
𝑑�̄�

(𝛼)
𝑥 𝑑𝜓

(𝛼)
𝑥 𝑒

− �̄� (𝛼)
𝑥 𝑊

(𝛼)
𝑥 𝜓

(𝛼)
𝑥 −

∑︁
±,𝜈

{
�̄�

(𝛼)
𝑥 𝜂

(𝛼)
𝑥,±𝜈− �̄�

(𝛼)
𝑥∓�̂�,±𝜈𝐻

(𝛼)
𝑥∓�̂�,±𝜈𝜓

(𝛼)
𝑥

}
, (9)

The fermionic integral F𝑥 can be evaluated analytically, yielding a polynomial function of the link
variables𝑈 and 𝜂 with a finite number of terms. The symbol

∫
�̄�𝜂

is a shorthand notation for∫
�̄�𝜂

:=
∫ ∏

𝑥,𝜈,𝛼

𝑑𝜂
(𝛼)
𝑥,𝜈 𝑑𝜂

(𝛼)
𝑥,𝜈 𝑒

− �̄� (𝛼)
𝑥,𝜈 𝜂

(𝛼)
𝑥,𝜈 , (10)

which represents the measure for the fermionic tensor contraction. The site-link transformation is
illustrated in Figure 1.

Since the gauge fields are already placed on the links, we can use the Haar measure
∫
𝑑𝑈 for

the bosonic contraction. For the tensor networks, this can be implemented in various ways, such as
using quadrature [5, 17] or ensemble sampling [6, 8]. The resulting partition function as a tensor
network is

𝑍 =

∫
�̄�𝜂

∫
𝑑𝑈

∏
𝑥

(
F𝑥 ×

∏
𝜇<𝜈

𝑃𝑥,𝜇𝜈

)
; (11)

𝑃𝑥,𝜇𝜈 = exp
[
𝛽

𝑁
ReTr

{
𝑈𝑥,𝜇𝑈𝑥+�̂�,𝜈𝑈

†
𝑥+�̂�,𝜇𝑈

†
𝑥,𝜈 − 1

}]
. (12)
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Here, 𝑃𝑥,𝜇𝜈 is a tensor located on the plaquette, with four legs corresponding to the four link
variables in (12), while F𝑥 is a Grassmann tensor located on the site with 2𝐷 bosonic legs (the link
variables in (6) and (7)) and 2𝐷 fermionic legs of dimension 22𝑁 𝑓 (there are two link fermions for
each flavor; see Figure 1). The diagrammatic representation of (11) is shown in Figure 2-a).

In the case where 𝐺 is a non-Abelian gauge group, it is more informative to use the character
expansion on 𝑃𝑥,𝜇𝜈 and consider the representation sum as a tensor contraction, rather than as a
group integral [7, 18, 21]. Consider the character expansion:

𝑃𝑥,𝜇𝜈 =
∑︁

𝑟∈irreps
𝑓𝑟 (𝛽/𝑁) Tr

{
𝑈𝑟𝑥,𝜇𝑈

𝑟
𝑥+�̂�,𝜈

(
𝑈𝑟𝑥+�̂�,𝜇

)† (
𝑈𝑟𝑥,𝜈

)†}
, (13)

with the coefficient
𝑓𝑟 (𝛽/𝑁) =

∫
𝑑𝑈 Tr (𝑈𝑟 )† 𝑒

𝛽

𝑁
ReTr{𝑈−1} . (14)

We can also perform a series expansion on F𝑥:

F𝑥 =
∑︁

𝑟1,...,𝑠𝐷∈{trv,fund}

∑︁
{𝑖𝜇 , 𝑗𝜇 ,𝑘𝜇 ,𝑙𝜇 }

(S𝑥)𝑟1...𝑠𝐷𝑖1 𝑗1...𝑘𝐷ℓ𝐷

𝐷∏
𝜇=1

(
𝑈
𝑟𝜇

𝑥− �̂�,𝜇

)
𝑖𝜇 𝑗𝜇

(
𝑈
𝑠𝜇
𝑥,𝜇

)†
𝑘𝜇ℓ𝜇

. (15)

Here, the representations sum only over the trivial and fundamental representations because, for
each term in F𝑥 , a link variable either appears as a fundamental representation or does not appear at
all (equivalently as the trivial representation). The expansion coefficient S𝑥 is a Grassmann tensor
with the same fermionic legs as F𝑥 , but the bosonic legs now correspond to the representation and
matrix indices; (𝑟𝜇, 𝑖𝜇, 𝑗𝜇) and (𝑠𝜇, 𝑘𝜇, ℓ𝜇).

We can group the same bosonic link variables together and perform the integral directly:

𝐿𝑥,𝜇 =

∫
𝑑𝑈

∏
𝜈≠𝜇

(𝑈𝑟𝜈𝑥,𝜇)𝑖𝜈 𝑗𝜈 (𝑈𝑠𝜈𝑥,𝜇)
†
𝑘𝜈ℓ𝜈︸                          ︷︷                          ︸

from 𝑃𝑥,𝜇𝜈

× (𝑈𝑟𝑥,𝜇)𝑖𝜇 𝑗𝜇︸      ︷︷      ︸
from F𝑥+�̂�

× (𝑈𝑠𝑥,𝜇)†𝑘𝜇ℓ𝜇︸       ︷︷       ︸
from F𝑥

(16)

This gives the partition function:

𝑍 =

∫
�̄�𝜂

∑︁
{ (𝑟 ,𝑖,𝑠) }

∏
𝑥

(
S𝑥

∏
𝜇

𝐿𝑥,𝜇

∏
𝜇<𝜈

𝑅𝑥,𝜇𝜈

)
; (17)

𝑅𝑥,𝜇𝜈 = 𝑓𝑟1 (𝛽/𝑁)𝛿𝑟1,𝑟2,𝑟3,𝑟4𝛿 𝑗1𝑖2𝛿 𝑗2𝑖3𝛿 𝑗3𝑖4𝛿 𝑗4𝑖1 . (18)

The diagrammatic representation of (17) is shown in Figure 2-b).

3. Multi-layer construction for multi-flavor gauge theories

As described in the previous section, both F𝑥 and S𝑥 have 2𝐷 fermionic legs, each with
dimension 22𝑁 𝑓 . This causes the total number of components for both tensors to grow exponentially
with the number of flavors. Such a prohibitive cost can be avoided by either using flavor staggering
[22–24] or extending the flavors to extra dimensions [25]. We consider the second option since we
can directly apply it to our Wilson fermions without additional considerations.

4
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Figure 2: The tensor connections in a unit cell on site 𝑥; a) with the direct group integral, b) with the
character expansion, and c) the multi-layer construction of a). Single lines without arrows correspond to
bosonic link𝑈, single lines with arrows correspond to fermionic links 𝜂, and double lines correspond to the
representation links (𝑟, 𝑖, 𝑗). The black nodes are delta functions ensuring that all incoming links take the
same value. This diagram applies for any 𝜇−𝜈 plane in 𝐷 dimensions.

For demonstrative purposes, we consider the 2D Z𝐾 gauge theory with 𝑁 𝑓 flavors of Wilson
fermions. The representation 𝑟𝛼 in (3) is now replaced by the charge 𝑞𝛼 ∈ Z of flavor 𝛼. To extend
the flavors into the extra dimension, we consider auxiliary copies of the gauge link variables𝑈 (𝛼)

𝑥,𝜇𝜈

and define an action local to flavor 𝛼:

𝑆 (𝛼) =
1
𝑁 𝑓

𝑆𝑔 [𝑈 (𝛼) ] +
∑︁
𝑥

�̄�
(𝛼)
𝑥 𝐷/ (𝛼)𝜓 (𝛼)

𝑥 . (19)

The partition function now becomes

𝑍 =

∫
𝑑𝑈

𝑁 𝑓∏
𝛼=1

∫
𝑑𝑈 (𝛼)𝑑�̄� (𝛼)𝑑𝜓 (𝛼)𝛿(𝑈 (𝛼) −𝑈)𝑒−𝑆 (𝛼)

(20)

We can then proceed to construct the tensor network for each layer 𝛼 and arrive at (11). The only
differences are that the black nodes in Figure 2-a), corresponding to the Kronecker deltas, now have
an extra leg extending to the extra dimension, and both F𝑥 and 𝑃𝑥,𝜇𝜈 are now flavor-specific. The
tensor network in a unit cell is shown in Figure 2-c).

Next, we present selected results from Ref. [17]. In our calculation, we first perform the
compression of the tensors in a unit cell into a single tensor using higher-order SVD (HOSVD)
[26]. Due to the sparseness of the Grassmann tensor, we were able to perform the compression with
a compression ratio between 10−4 and 10−9. It should be noted that the interactions between layers
are still considered all-to-all (because all flavors experience the same gauge field), even though the
tensor network is written in a local form. This makes the entanglement along the flavor direction
very strong. As such, we first perform the coarse-graining procedure in the flavor direction using
higher-order TRG (HOTRG) [14], and then perform the coarse-graining procedure in the space-time
plane using the Levin-Nave TRG [1]. All of the Grassmann tensor network computation are done
using a Python package GrassmannTN [27]. In the finite-density results shown in Figure 3, we use
𝜒HOTRG = 64 for 𝑁 𝑓 = 1, 2, 𝜒HOTRG = 32 for 𝑁 𝑓 = 4, and 𝜒TRG = 64 for all 𝑁 𝑓 . The computations
are done with a volume of 𝑉 = 1282. The Silver Blaze phenomenon, a feature that is difficult to
obtain in typical Monte Carlo methods due to the sign problem, can be clearly seen.

5
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Figure 3: The number density 𝜌 = 1
𝑉
𝑑
𝑑�̃�

log 𝑍 per flavor as a function of �̃�, with 𝑁 𝑓 = 1, 2, and 4 for (left)
free electron gas and (right) Z2 gauge theory.

4. The armillary sphere formulation for non-Abelian gauge theories

It was shown in Ref. [6] that pure Yang-Mills theory suffers from a severe degeneracy of
singular values due to non-local entanglement structures in the tensor network. In two dimensions,
using character expansion, this can be easily identified as the matrix index loop around each site.
Once these loops are contracted, the TRG analysis can be performed with significantly higher
accuracy for the same bond dimensions [7]. In higher dimensions, the degeneracy is expected to
become more severe. Fortunately, it is also possible to eliminate these non-local entanglement
structures using the armillary sphere formalism [18], which will be discussed below.

For simplicity, we will consider a pure SU(𝑁) Yang-Mills theory. In this case, the link tensor
in (17) only includes the contributions from the adjacent plaquettes:

𝐿𝑥,𝜇 =

∫
𝑑𝑈

∏
𝜈≠𝜇

(𝑈𝑟𝜈𝑥,𝜇)𝑖𝜈 𝑗𝜈 (𝑈𝑠𝜈𝑥,𝜇)
†
𝑘𝜈ℓ𝜈

. (21)

Using the Clebsch-Gordan decomposition and the grand orthogonality relation, the integral can be
computed analytically [18, 19]:

𝐿𝑥,𝜇 =
∑︁
𝛼,𝛽

𝐾
𝛼𝛽

{𝑟𝜈 }{𝑠𝜈 }𝑉
𝛼
{𝑖𝜈 }{ℓ𝜈 }𝑉

𝛽

{ 𝑗𝜈 }{𝑘𝜈 } , (22)

where𝑉 is a ‘vertex tensor’ composed of Clebsch-Gordan coefficients, and𝐾 is the ‘link-conditional
tensor’ ensuring consistency among the representation indices. The indices 𝛼 and 𝛽 are the
‘multi-representation’ indices, which encode how the irreps are coupled. A full description of the
formulation is given in Ref. [18]. The three-dimensional example of 𝐿𝑥,𝜇 is shown diagrammatically
in Figure 4-a). After performing the integral for every link, the vertex tensors form a closed structure
around each site, which we call the ‘armillary sphere’, named after an ancient astronomical device
used to represent the great circles of the heavens. The three-dimensional example of the unit cell
tensor network in terms of 𝑉 and 𝐾 is shown in Figure 4-b). In this form, the matrix indices,
which carry the non-local entanglement structures, can be traced out analytically, leaving only the
harmless representation indices.

Note that we originally have 𝑅𝑥,𝜇𝜈 (18) on the plaquette center. However, since the matrix
indices are grouped together in the armillary sphere, we are only left with the expansion coefficients

6



P
o
S
(
L
A
T
T
I
C
E
2
0
2
4
)
0
2
9

Toward tensor renormalization group study of lattice QCD Atis Yosprakob

Lx,µ =

V

V

K

(r1i1j1)

(r2i2j2)

(s1k1ℓ1)

(s2k2ℓ2)

i1

i2

ℓ1

ℓ2

j1

j2

k1

k2

r1

r2

s1

s2

α

β

a)

K

V

VV

V

V

V

K

K

fr

fr

fr

b)

Figure 4: a) The link tensor 𝐿𝑥,𝜇 expressed in terms of vertex tensors 𝑉 and a link-conditioned tensor 𝐾 . b)
A three-dimensional example of a tensor network for a pure gauge theory, represented in terms of 𝑉 and 𝐾 .
An armillary sphere is shown around the lattice site, with 𝑉 as its vertices.
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Figure 5: The singular value spectra of SU(2) and SU(3) gauge theories obtained from the HOSVD of
the initial tensor without truncation. No severe degeneracy of singular values associated with the internal
symmetry is observed here.

𝑓𝑟 and the diagonal Kronecker deltas (black nodes). Singular value spectra of SU(2) and SU(3)
gauge theories with 𝛽 = 1 and 3 are shown in Figure 5. We do not observe the degeneracy
associated with the internal symmetry, i.e., the non-local entanglement structures, which tend to
become increasingly severe toward the tail of the spectrum.

In the following, we present the results for the finite-temperature three-dimensional SU(2) and
SU(3) gauge theories with a Polyakov loop source term:

𝑆𝐿 [𝑈] =
𝜅

𝑁

∑︁
𝑥2∈Λ2

ReTr

(
1 −

𝑁𝜏∏
𝜏=1

𝑈𝑥2+𝜏3̂,3

)
. (23)

To access a sufficiently high temperature with a small 𝛽, we consider only one temporal time slice1.
The Polyakov loop susceptibility is computed using the second numerical derivative with respect to
𝜅 at 𝜅 = 0.01 andΔ𝜅 = 0.01. The computation performed at 𝜅 > 0 ensures the spontaneous breaking
of the Z𝑁 center symmetry in the deconfined phase. The coarse-graining procedure on the 𝑥𝑦 plane
is carried out using the Levin-Nave TRG with 𝐷cut = 96. The results are shown in Figure 6. The

1For 𝑁𝜏 ≥ 2, we need to use larger 𝛽 values to reach the deconfined phase. This is challenging in the current setup,
as the character expansion becomes less accurate at large 𝛽.
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Figure 6: Polyakov susceptibility as a function of temperature 𝑇/𝑔2 = 𝛽/2𝑁𝑁𝜏 for SU(2) (left) and SU(3)
(right) gauge theories. Different symbols represent the data with different numbers of terms in the character
expansions: 𝑟plaq corresponds to the representations from the plaquette action, and 𝑟𝐿 corresponds to the
representations from the Polyakov loop term. For SU(2), we take 𝑟𝐿 ∈ {1, 2}. The dashed line indicates the
transition temperature obtained from the Monte Carlo simulation.

deconfinement transition is observed for both theories. The deconfinement temperature for SU(2)
is consistent with the Monte Carlo result [28], confirming that the armillary sphere formulation can
capture essential topological features of the gauge theory with as few as three expansion terms.

5. Summary and outlooks

We discuss two improvements to the tensor network formulations of lattice gauge theories for
their application to lattice QCD. These are the multi-layer construction and the armillary sphere
formulation, which are used to respectively reduce the size of the initial tensor for multi-flavor gauge
theories and non-Abelian gauge theories. Additionally, the armillary sphere formulation can be used
to eliminate non-local entanglement structures in the tensor network, which is a significant obstacle
in numerical simulations. We demonstrate the two techniques with two-dimensional 𝑁 𝑓 -flavor Z𝑁
gauge theories at finite density, as well as three-dimensional SU(2) and SU(3) pure gauge theories.

The armillary sphere formulation can be generalized straightforwardly to any pure gauge action,
provided that the gauge is not fixed. (If the gauge is fixed, as is typically done in gauge-Higgs
models, the action is no longer a class function of the gauge group, and the character expansion
is no longer available.) This includes more complicated terms such as the improved action or
the theta term. In such cases, one only needs to perform the character expansion for each term
separately. By including fermions, the armillary tensor can still be constructed, but some matrix
indices will remain connecting the armillary tensor and the fermionic tensor S𝑥 . This should not
pose a problem, as we can also perform the contraction of this bond analytically. In principle, the
multi-layer construction can be incorporated with the armillary sphere formulation, as long as an
efficient representation of the Kronecker delta (black nodes in Figure 2) is provided.
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