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The hybrid Monte Carlo (HMC) algorithm is arguably the most efficient sampling method for
general probability distributions of continuous variables. Together with exact Fourier acceleration
(EFA) the HMC becomes equivalent to direct sampling for quadratic actions 𝑆(𝑥) = 1

2𝑥
T𝑀𝑥 (i.e.

normal distributions 𝑥 ∼ e−𝑆 (𝑥 ) ), only perturbatively worse for perturbative deviations of the
action from the quadratic case, and it remains viable for arbitrary actions. In this work the most
recent improvements of the HMC including EFA and radial updates are collected into a numerical
recipe.
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1. Introduction

The hybrid Monte Carlo (HMC) algorithm [1] (often Hamiltonian Monte Carlo) allows to
sample continuous random variables in high dimensions efficiently. The aim of this work is to
explain the HMC in a maximally concise way, focusing on the practical application and referring
to existing literature, mainly Ref. [2], for all the derivations. The author hopes to provide a useful
guide not only to fellow physicist, but to everyone who wants to use the HMC without having to
navigate the galactic amount of related literature.

For this reason, a historical approach is avoided deliberately. Instead, progressively more
complicated probability distributions are considered. We start with the (multivariate) normal
distribution and add small perturbations to it in section 2. Strong deviations from the normal
distribution are pondered in section 3. Numerical examples are provided to highlight the importance
of specific features of the algorithm. Again, the background and technical details of the respective
physical problems are omitted. Lattice gauge theories are briefly commented on, but they are not
the main focus of this work.

2. Harmonically dominated action

Write the probability distribution we want to sample from as 𝑃(𝑥) ∝ e−𝑆 (𝑥 ) . Let us start with
the case that the action 𝑆(𝑥) can be written as

𝑆(𝑥) = 1
2
𝑥T𝑀𝑥 +𝑉 (𝑥) (1)

and the harmonic part is dominating over small anharmonic perturbations 𝑥T𝑀𝑥 ≫ |𝑉 (𝑥) |. In this
case we want a sampling algorithm that can sample directly from the normal distribution defined
by the harmonic part of the action, but that also takes the anharmonic part into account. The
HMC algorithm with exact Fourier acceleration EFA [2] summarised in algorithm 1 fulfils these
requirements. It guarantees reliable sampling of 𝑃(𝑥) with minimal autocorrelation and proceeds
as follows.

Start from some initial configuration 𝑥 that is to be updated in a so-called trajectory. Define
the Hamiltonian

H =
1
2
𝑝T𝑀−1𝑝 + 𝑆(𝑥) (2)

and set the trajectory length 𝑇 = 𝜋
2 . Now sample the canonical momenta 𝑝 ∼ e− 1

2 𝑝
T𝑀−1𝑝 and

numerically solve the equations of motion (EOM)

¤𝑥 =
𝜕H
𝜕𝑝

, (3)

¤𝑝 = −𝜕H
𝜕𝑥

(4)

using a symplectic integrator like leap-frog [3, 4], see alg. 2. The harmonic contributions to the EOM
can be solved exactly as described in algorithm 3. In physics, many problems are translationally
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Algorithm 1: Full HMC trajectory update with EFA (alg. 3) given an integrator (e.g.
leap-frog, alg. 2).

input : initial fields 𝑥i, molecular dynamics steps 𝑁MD, trajectory length 𝑇 = 𝜋
2

parameters: harmonic matrix 𝑀 = Ω · diag(𝜔2) · Ω†, anharmonic potential 𝑉
output : final fields 𝑥f

𝑥 ← 𝑥i;
sample 𝑟 ∼ N(0, 1)dim(𝑀 ) ; // standard normal distribution

𝑝 ← Ω · diag(𝜔) · Ω† · 𝑟 ; // any realisation of 𝑝 ←
√
𝑀 · 𝑟 can be used

H i ← 1
2𝑟

2 + 1
2𝑥

T𝑀𝑥 +𝑉 (𝑥) ; // use 𝑝T𝑀−1𝑝 = 𝑟2

for 𝜏 ← 1 . . . 𝑁MD do
(𝑥, 𝑝) ← integrator (𝑥, 𝑝, 𝑇/𝑁MD);

end
H f ← 1

2 𝑝
T𝑀−1𝑝 + 1

2𝑥
T𝑀𝑥 +𝑉 (𝑥);

ΔH ← H f −H i;
if e−ΔH ≥ U[0,1] then // uniform distribution

𝑥f ← 𝑥;
else

𝑥f ← 𝑥i;
end

invariant and the matrix 𝑀 can therefore be diagonalised using a Fourier transformation, name-
giving for the Fourier acceleration (FA) [5]. The resulting configuration is accepted with the
probability

𝑝acc = min
(
1, e−ΔH

)
, (5)

where ΔH denotes the change of the Hamiltonian over the trajectory.
An exact solution of the EOM would preserve the Hamiltonian and thus lead to ΔH = 0

and 𝑝acc = 1. Therefore, when the perturbation 𝑉 (𝑥) is very small, the exact solution of the
harmonic part in the EFA allows to achieve very high acceptance rates with a single leap-frog
step. With increasing 𝑉 (𝑥) this approximation becomes less accurate and the acceptance rate
drops. If the acceptance drops below ca. 70%, the number of integration steps should be increased
without changing the trajectory length. An acceptance of 65% to 80% (higher for higher order
integrators [6]) is a good compromise between cheap trajectories and low autocorrelation [7].

2.1 Numerical example

The Su-Schrieffer-Heeger (SSH) model provides a realistic description of a multitude of semi-
conductors like the organic crystal Rubrenes [8]. These materials have a low density of charge
carriers that move in an environment of almost free phonons, well approximated by a harmonic
oscillator. Therefore simulations of the SSH model in this parameter regime fall exactly into the
harmonically dominated class discussed above. That is, the HMC with EFA is perfectly applicable.

Figure 1 demonstrates the efficiency of the HMC with EFA (alg. 1). The integrated auto-
correlation time 𝜏int ≥ 0.5 is shown as a figure of merit. It quantifies how many trajectories are
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Algorithm 2: Single update step with the leap-frog integrator and EFA (alg. 3).
input : initial fields 𝑥0, momenta 𝑝0, time step ℎ

parameters: anharmonic forces −∇𝑉
output : final fields 𝑥(ℎ) and momenta 𝑝(ℎ)
(𝑥, 𝑝) ← EFA

(
𝑥0, 𝑝0, ℎ/2

)
;

𝑝 ← 𝑝 − ℎ · ∇𝑉 (𝑥);
(𝑥(ℎ), 𝑝(ℎ)) ← EFA (𝑥, 𝑝, ℎ/2);

Algorithm 3: Single time step using exact Fourier acceleration (EFA).
input : initial fields 𝑥0, momenta 𝑝0, time step ℎ

parameters: harmonic matrix 𝑀 = Ω · diag(𝜔2) · Ω†
output : final fields 𝑥(ℎ) and momenta 𝑝(ℎ)
𝑦0 ← Ω† · 𝑥0 ; // Ω is often a Fourier trafo, thence the name EFA

𝑞0 ← Ω† · 𝑝0;
for 𝑖 ← 1 . . . dim(𝑀) do

𝑦𝑖 (ℎ) ← cos(ℎ) 𝑦0
𝑖
+ 1

𝜔2
𝑖

sin(ℎ) 𝑞0
𝑖
;

𝑞𝑖 (ℎ) ← cos(ℎ) 𝑞0
𝑖
− 𝜔2

𝑖
sin(ℎ) 𝑦0

𝑖
;

end
𝑥(ℎ) ← Ω · 𝑦(ℎ);
𝑝(ℎ) ← Ω · 𝑞(ℎ);

required to obtain a statistically independent measurement [9]. Since EFA allows almost uncorrel-
ated sampling, it reliably leads to minimal autocorrelations 𝜏int ≲ 0.7, even when the continuum
limit is approached. These simulations can be compared to the “classical” HMC algorithm without
FA, i.e. using H = 1

2 𝑝
2 + 𝑆(𝑥) instead of the optimal choice from equation (2). It becomes clear

immediately that simulations without FA lead to prohibitively long autocorrelation times, diverging
towards the continuum limit.

3. Generic action

A major advantage of the HMC over most competitor algorithms is its applicability to any
sampling problem involving continuous variables. That said, there are several essential adjustments
that have to be introduced when the action is not harmonically dominated.

3.1 Necessary adjustments

3.1.1 Randomise the trajectory length

Once the eigenmodes of the HMC dynamics are not known, it is theoretically possible to choose
a trajectory length 𝑇 ≈ 0 (mod 2𝜋) for one of the modes. This mode would then decorrelate very
slowly. To avoid this, the trajectory length should be randomised [10, 11]. A realisation that
also takes care of maintaining a good trajectory length on average is the No-U-turn sampling [12],
though typically much simpler schemes yield comparable results.
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Figure 1: Integrated autocorrelation time 𝜏int of the phonon
〈
𝑛ph

〉
and electron ⟨𝑛el⟩ number expectation

values in the 2+1D SSH model using HMC simulations [8] on a 10 × 10 lattice with 𝑁𝑡 imaginary time
slices. With EFA 𝜏int for both observables coincides. The physical parameters are realistic for the organic
semiconductor Rubrene at room temperature 𝛽 = 40 eV−1 (see tab. I of the supl. mat. in [8] with 𝜇 =

−2
∑

𝛼 |𝐽𝛼 |). Left: different free phonon frequencies 𝜔0 at constant 𝑁𝑡 = 48 (𝜔0 ≈ 6 meV is the physical
value); Right: different 𝑁𝑡 at fixed 𝜔0 = 1 eV. All simulations have similar acceptance (≳ 80%) and compute
time per measurement. The dashed line shows the proportionality prediction for 𝜏int from corollary 1 in
Ref. [2].

3.1.2 Use long trajectories

Crucially, the (average) trajectory length has to be chosen sufficiently long even if the action
is not harmonically dominated [11]. Here, sufficiently long means that the autocorrelation time
cannot be reduced significantly by further increasing the trajectory length. Short trajectories result
in a highly inefficient diffusive regime. The importance of an appropriate trajectory length is
demonstrated in figure 2. Over the entire parameter range of the simulated Ising model spanning
from almost harmonic for couplings 𝐽 ≲ 0.1 to strongly anharmonic for 𝐽 ≳ 0.5 we find that
too short trajectories increase the integrated autocorrelation time 𝜏int and thus reduce sampling
efficiency.

At the same time, figure 2 vividly demonstrates a limitation of the HMC, be it with EFA
or without. HMC simulations of the Ising model experience critical slowing down, that is the
autocorrelation time diverges with the volume at the point of the phase transition 𝐽 ≈ 0.44. This is
caused by potential barriers in the phase space that cannot be overcome efficiently by a continuous
evolution.

3.1.3 Include radial updates on non-compact spaces

On non-compact spaces (including all cases discussed so far) the HMC is not guaranteed
to converge exponentially quickly to the desired probability distribution. A simple fix to this
problem is the introduction of so-called radial updates at regular intervals [15, 16], e.g. after every
HMC trajectory. In some cases radial updates can also restore ergodicity to simulations involving
actions with potential barriers [17, 18]. For polynomial actions the radial update is summarised in
algorithm 4. It amounts to a multiplicative update of the current state followed by an accept/reject
step. An efficient generalisation for arbitrary actions is provided in Ref. [16].

5
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Figure 2: Integrated autocorrelation time 𝜏int of the absolute value of the magnetisation |𝑚 | in the 2D Ising
model using HMC simulations [13] on a 15 × 15 lattice. Left: different coupling strengths (𝐽 ≈ 0.44 is the
critical coupling [14]); Right: weak coupling 𝐽 = 0.2 and different trajectory lengths 𝑇 . All simulations
used EFA and have similar acceptance ≳ 80%. The measurement frequency has been adjusted so that
the HMC time between measurements is always the same. The dashed line shows the prediction for
𝜏int (𝑇) = 𝜏int (𝑇 = 𝜋/2) ·

(
1 − cos(𝑇) 𝜋/2𝑇

)−1 from corollary 2 in Ref. [2].

Algorithm 4: Radial update from Ref. [16] sampling 𝑥 ∈ R𝑑 from the probability
distribution 𝑝(𝑥) ∝ e−𝑆 (𝑥 ) generated by a polynomial action 𝑆.

parameters: dimension 𝑑, action 𝑆 with 𝑆(𝑥) ≈ 𝑐 |𝑥 |𝑎 for large |𝑥 |
input : initial vector 𝑥i ∈ 𝑋 , standard deviation 𝜎 (default 𝜎 =

√︃
2
𝑎𝑑

)
output : final vector 𝑥f ∈ 𝑋

sample 𝛾 ∼ N(0, 𝜎2) ; // normal distribution

𝑥 ← 𝑥i · e𝛾;
Δ𝑆 ← 𝑆(𝑥) − 𝑆(𝑥i);
if e−Δ𝑆+𝑑𝛾 ≥ U[0,1] then // uniform distribution

𝑥f ← 𝑥;
else

𝑥f ← 𝑥i;
end

3.1.4 Regularise the kinetic term

In the strongly anharmonic case |𝑉 (𝑥) | ≫ |𝑥T𝑀𝑥 | there is no guarantee for 𝑀 to be positive
definite, much less a good approximation of the action. Therefore the first term of the Hamiltonian in
equation (2) (the ‘kinetic energy’) might not be well-defined or simply a bad choice. Regularisations
that restore correctness to the algorithm are readily available. For instance the Hamiltonian

H =
1
2
𝑝T (𝑀 + 𝜇)−1 𝑝 + 𝑆(𝑥) (6)

is a valid choice for any regulator 𝜇 ≥ 0 large enough so that 𝑀 + 𝜇 is strictly positive definite.
Unfortunately, it is impossible to derive the optimal kinetic term without further knowledge of the
anharmonic potential 𝑉 (𝑥).

6
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Figure 3: Integrated autocorrelation time 𝜏int of the plaquette expectation value ⟨𝑃(𝛽)⟩ in pure gauge theory
HMC simulations. Left: 2D, U(1) weak coupling 𝛽 = 10 and different lattice sizes 𝐿; Right: 4D, 𝐿 = 10
lattice, SU(3) and different coupling strengths 𝛽. All simulations required the same compute time per
trajectory and volume. Measurements were performed every trajectory. Trajectory lengths without FA were
chosen as follows. Left: 𝑇 = 0.6 tuned (by hand) to minimise 𝜏int on the 15×15 lattice; Right: 𝑇 = 1 because
it is the ‘canonical’ choice and 𝑇 = 1/√𝛽 because of its correct scaling [2].

3.2 Lattice gauge theory

Lattice gauge theories [19, 20] typically encountered in physics are formulated on compact
groups are therefore intrinsically highly anharmonic. Apart from the regime of very weak coupling
(large 𝛽), the HMC with EFA is therefore not expected to be very efficient. A gauge-invariant
version of the HMC with FA has been proposed in Ref. [21]. An alternative is to expand the pure
gauge action to quadratic order in the fields and apply classical FA [2, 5]. The latter approach
guarantees optimal sampling in the weak coupling limit, but beyond this limit numerical tests (see
fig. 3) remain inconclusive.

4. Summary

“The Physicist’s Guide to the HMC” contains a hands-on instruction manual for the correct and
efficient use of the HMC [1]. For near-normal probability distributions exact Fourier acceleration
(EFA) [2] leads to optimal sampling as described in section 2 and summarised in algorithms 1 to 3.
The HMC is applicable to any probability distribution of continuous variables and the general case
is discussed in section 3. Efficient sampling using the HMC is guaranteed as long as the trajectory
length is randomised and chosen long enough on average [11]. In addition, on non-compact spaces
the HMC needs to be combined with radial updates [15, 16] as described in algorithm 4.

Code and Data

All the codes used for this work have been published under open access, see Ref. [2]. The
analysis used the light-weight tool comp-avg [22]. Most of the simulations in this work can be
reproduced very quickly, nonetheless the resulting data will gladly be provided upon request.

7
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