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The complex Langevin (CL) method shows significant potential in addressing the numerical sign
problem. Nonetheless, it often produces incorrect results when used without any stabilization
techniques. Leveraging insights from previous research that links Lefschetz thimbles and CL,
we explore a strategy to regularize the CL method to address this issue of incorrect convergence.
Specifically, we implement weight regularizations inspired by the associated Lefschetz thimble
structure and correct the bias to retrieve the correct results of the original theory. We demonstrate
the effectiveness of this approach by solving the SU(N) Polyakov chain model and various scalar
models, including the cosine model and the one-link model, across a broad range of couplings
where the CL method previously failed. We also discuss the potential application of these insights
to gauge theories in practical scenarios.
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1. Introduction

Lattice field theory provides a robust framework for non-perturbative studies in high-energy and
condensed-matter physics, with Monte Carlo (MC) simulations serving as its cornerstone. While
highly effective for systems in thermal equilibrium, where the path integral weight is positive-
definite, traditional MC methods fail when faced with complex or non-positive weight functions.
Such situations arise in systems at finite density or involving real-time dynamics, leading to the
well-known numerical sign problem. This longstanding computational challenge renders many
physically relevant systems inaccessible to direct lattice calculations.

Several alternative approaches have been proposed to circumvent the sign problem, including
the complex Langevin (CL) method [1]. In CL, the degrees of freedom are analytically continued
to the complex plane and the path integral is reformulated in terms of a complex stochastic process.
While computationally efficient and scalable, the method’s convergence properties often depend
on the underlying structure of the system and can fail under certain conditions. These failures are
frequently linked to the interplay between CL dynamics and the Lefschetz thimbles [2] — complex
integration contours defined by the critical points of the action [3].

In these proceedings, we investigate the connection between Lefschetz thimbles and the con-
vergence properties of CL, focusing on systems characterized by one dominant compact thimble.
For such systems, CL reliably reproduces correct results, which aligns with conjectures made in
the literature [4]. To probe this behavior, we employ additive weight regularization to achieve the
desired thimble structure and correct the resulting bias in a series of toy models, including the
complex cosine model and the Polyakov chain model for the SU(2) gauge group, as detailed in our
recent study [5].

Our results demonstrate that this combined approach stabilizes CL and enables the computation
of expectation values for theories where CL previously failed. These findings provide new insights
into the conditions under which CL converges correctly and point to pathways for addressing and
surpassing its limitations in more complex lattice field theories.

2. Complexification methods

In this section, we briefly summarize the two approaches to the numerical sign problem that
are applied in this work: complex Langevin and Lefschetz thimbles. The numerical sign problem
emerges in the numerical computation of expectation values

⟨O⟩ = 1
𝑍

∫
𝑑𝑥 𝜌(𝑥)O(𝑥), (1)

for observables O, whenever the weight function 𝜌(𝑥) = exp[−𝑆(𝑥)] is complex or not positive
definite as a consequence of complex actions 𝑆. These properties prohibit the direct application of
standard methods, such as Monte Carlo integration, as the weight function cannot be interpreted as
a probability density.

2.1 The complex Langevin (CL) method

The complex Langevin method can be considered an analytical continuation of real Langevin,
which, in the context of Euclidean simulations, is sometimes known as stochastic quantization.
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Instead of directly sampling from the path integral weight 𝜌, which is not applicable when it is
complex, we sample from a stochastic process that is described by the complex Langevin equation

𝜕𝜃 𝑧(𝜃) = 𝐾 (𝑧(𝜃)) + 𝜂(𝜃), 𝐾 (𝑧) = −𝜕𝑧𝑆(𝑧). (2)

The first term on the right-hand side is the drift term and is given by the complex derivative of the
analytically continued action to the complex plane. The noise term, defining the second term, is the
stochastic component of this equation and is characterized by

⟨𝜂(𝜃)⟩ = 0, ⟨𝜂(𝜃)𝜂(𝜃′)⟩ = 2𝛿(𝜃 − 𝜃′). (3)

The process is described by the real probability function 𝑃(𝑧; 𝜃). If the density of the drift magnitude

𝑝(𝑢; 𝜃) =
∫

𝑑𝑥𝑑𝑦 𝛿(𝑢 − 𝑢(𝑥 + 𝑖𝑦))𝑃(𝑥 + 𝑖𝑦; 𝜃), 𝑢(𝑧) = |𝐾 (𝑧) | (4)

decays at least exponentially, CL converges correctly. This statement is a criterion of correctness
for CL and was formulated by Nagata et al. in [6]. Another formulation for the criterion is stated by
Scherzer et al. in [7] and requires the absence of boundary terms.

In this context, correct convergence for CL means that the stationary probability density
𝑃(𝑧) = 𝑃(𝑧; 𝜃 → ∞) characterizes the complex weight function 𝜌 of the considered system, i.e., if∫

𝑑𝑥𝑑𝑦 𝑃(𝑥 + 𝑖𝑦)O(𝑥 + 𝑖𝑦) = 1
𝑍

∫
𝑑𝑥 𝜌(𝑥)O(𝑥) = ⟨O⟩𝜌 (5)

for a sufficient class of holomorphic functions O. In other words, sampling from the complex
Langevin process leads to correct expectation values for the considered system.

2.2 The Lefschetz thimble (LT) method

For the LT approach, as for the CL method, we analytically continue the theory to the complex
plane to formulate the expectation values as complex line integrals

⟨O⟩ = 1
𝑍

∫
C=𝐷

𝑑𝑧 𝜌(𝑧)O(𝑧). (6)

Here the generally complex domain of integration C coincides with the real domain 𝐷, i.e.,
C = 𝐷 ⊆ R ⊆ C defines a curve in the complex plane. To circumvent the sign problem, this method
relies on Cauchy’s theorem, which allows us to continuously deform the integration contour while
retaining the same integral value. In particular, we define (Lefschetz) thimbles J𝜎 and anti-thimbles
K𝜎 as solutions of the (anti-)holomorphic flow equations in flow time 𝑡 𝑓 ,

𝜕𝑡 𝑓 𝑧(𝑡 𝑓 ) = ±𝜕𝑧𝑆(𝑧(𝑡 𝑓 )), 𝑧(∞) = 𝑧𝜎 . (7)

The curves represent the steepest ascent/descent paths for the continued action and asymptotically
start in the stationary/critical points 𝑧𝜎 indexed by 𝜎 with 𝜕𝑧𝑆(𝑧𝜎) = 0.

Crucially, along these paths, the imaginary part of the action stays constant. Hence, we can
rewrite the expectation value as sums of integrals over thimbles that are weighed by a different
phase factor

⟨O⟩ =
∑

𝜎 𝑛𝜎 exp [−𝑖𝑆𝐼 (𝑧𝜎)]
∫
J𝜎
𝑑𝑧 O(𝑧) exp [−𝑆𝑅 (𝑧)]∑

𝜎 𝑛𝜎 exp [−𝑖𝑆𝐼 (𝑧𝜎)]
∫
J𝜎
𝑑𝑧 exp [−𝑆𝑅 (𝑧)]

, (8)
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where 𝑛𝜎 counts intersections of K𝜎 with the original domain of integration 𝐷. Thimbles and their
associated stationary points are classified as relevant if the intersection number is non-zero, 𝑛𝜎 ≠ 0.
We emphasize that the determination of intersection numbers and critical points is non-trivial in
high-dimensional field theories. In principle, integrating real weight functions circumvents the sign
problem. However, a global sign problem arises if many critical points contribute with different
phase factors. Additionally, numerical integration over thimbles requires a generally complex
Jacobian, reintroducing a softer sign problem than the original.

2.3 Connecting LT and CL

In this work, we do not use the LT method to obtain numerical results. Instead, we employ it as
a diagnostic tool to identify cases of incorrect convergence in the CL method, thereby reinforcing
the connection between both approaches.

When a given theory exhibits exactly one relevant thimble J we find

⟨O⟩ =

∫
J 𝑑𝑧 O(𝑧) exp [−𝑆𝑅 (𝑧)]∫

J 𝑑𝑧 exp [−𝑆𝑅 (𝑧)]
, (9)

for Eq. (8), eliminating the need to compute intersection numbers and phase factors. If multiple
thimbles arise due to inherent structures in the complex plane, such as periodicity or point symmetry,
we treat them collectively as a single thimble as we can restrict the integration domain accordingly.

At the same time, stationary points play a critical role in the CL process, as they correspond
to the points where the CL drift vanishes. Consequently, CL can be regarded as an importance-
sampling method around the thimbles.

Our findings indicate that CL converges correctly when the system under consideration has
exactly one relevant, compact thimble, in agreement with the conjecture proposed in [4]. Although
a formal proof is lacking, we test this hypothesis through numerical simulations on various toy
models. These models are manually regularized to allow precise control over the thimble structure.

2.4 Weight regularizations

To test the connection between LT and CL in settings where multiple thimbles are relevant to
the path integral, we introduce an artificial additive regularization term 𝑅 for the weight function

�̃�(𝑧) = 𝜌(𝑧) + 𝑅(𝑧; 𝑟), (10)

where 𝑟 ∈ C controls how dominant the regularization becomes for the considered integrals. To
differentiate with respect to which weight function 𝑤 a certain expectation value is meant, we denote
the weight function as a subscript ⟨·⟩𝑤 .

We design regularizations such that the resulting effective action,

𝑆(𝑧) = − ln [𝜌(𝑧) + 𝑅(𝑧; 𝑟)] = 𝑆(𝑧) − ln
[
1 + 𝑅(𝑧; 𝑟)𝑒𝑆 (𝑧)

]
, (11)

exhibit only one relevant compact thimble for which we observe CL to yield correct results. In
sections 3 and 4, we will elaborate on the appropriate construction of regularization terms for
different models.
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Figure 1: Density 𝑝(𝑢; 𝜃 → ∞) of
the drift magnitude 𝑢 [Eq. (4)] for the
original (blue) and regularized (red)
cosine models at 𝛽 = 0.5, 𝑟 = 0.5.
The original model exhibits power-law
decay (green dashed line), violating
the convergence criterion, while the
regularized model shows exponential
decay, ensuring correct CL method
convergence.

In general, the introduction of 𝑅 changes the expectation values, and hence, we need to correct
for the resulting bias to obtain results for the system we are interested in. An expectation value of the
original theory can be expressed in terms of the expectation values with respect to the regularized
weight function and the regularization term

⟨O⟩𝜌 = ⟨O⟩�̃� + BiasO [𝑅] = ⟨O⟩�̃� + (⟨O⟩�̃� − ⟨O⟩𝑅)𝑄, (12)

where we introduced the ratio of the partition functions 𝑄 = 𝑍𝑅/𝑍𝜌. Note that 𝑟 and 𝑅 are chosen
such that ⟨O⟩�̃� and ⟨O⟩𝑅 can be evaluated using complex Langevin. Therefore, the crucial part is
the evaluation of𝑄, as the partition functions are not directly accessible. To determine𝑄, we utilize
that it is independent of observables. For an observable O∗ for which ⟨O⟩𝜌 = 0, Eq. (12) yields

𝑄 = ⟨O∗⟩�̃�
/ (

⟨O∗⟩𝑅 − ⟨O∗⟩�̃�
)
. (13)

Using the Dyson-Schwinger equation for the unregularized system, we can always construct such
observables. We showcase the numerical robustness of this approach for the bias correction in [5].

3. Complex cosine model: well-understood failure of CL

We first study the weight regularization approach at the complex cosine model. It is defined
by the weight function

𝜌(𝑥) = exp [−𝑖𝛽 cos(𝑥)] , 𝑥 ∈ [−𝜋, 𝜋] . (14)

The complex coupling 𝛽 ∈ C leads to the sign problem when we consider the numerical evaluation
of expectation values in Eq. (1).

The complex cosine model is intriguing as complex Langevin is known to fail while the
expectation values and the stationary probability density 𝑃(𝑥 + 𝑖𝑦; 𝜃 → ∞) = (4𝜋 cosh2(𝑦))−1

of the Langevin process are analytically attainable [4]. Moreover, CL is known to yield wrong
results for this model and it therefore serves as a perfect testing ground for the weight regularization
technique.

To address incorrect convergence in this model, we introduce the regularization term

𝑅(𝑧) = 𝑟 (𝑧2 − 𝜋2) − 𝑒𝑖𝛽, (15)

5
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Figure 2: Complex Langevin histograms for complex cosine model at the coupling 𝛽 = 0.5 (left) and
including the regularization term with 𝑟 = 0.5 (right). The red-solid and blue-dashed lines represent
thimbles and anti-thimbles of critical points (triangles) and connect to singular points of the action (squares).
The arrows show the normalized CL drift term for each model. For the non-regularized model, the histogram
exhibits a broad structure that is independent of the real part where multiple thimbles are relevant and extend
asymptotically to complex infinity. The regularization term in the right panel leads to a sharply defined
histogram that indicates a better-conditioned convergence of the CL process.

adding −𝑒𝑖𝛽 to impose �̃�(±𝜋) = 0 at the integration boundaries. For |𝑟 | → ∞, the regularization
pulls the CL process towards the real line, forcing the relevant thimble to connect to these zeros,
resulting in a single compact thimble in 𝑧 ∈ [0, 𝜋]. Due to point symmetry, the same structure
occurs for 𝑧 ∈ [−𝜋, 0]. While the regularization breaks periodicity, this is restored by artificially
continuing 𝑅(𝑥 + 𝑖𝑦) = 𝑅(𝑥 + 2𝜋 + 𝑖𝑦). The resulting non-holomorphic points at 𝑥 = ±𝜋 do not
affect the CL algorithm, as detailed in [5].

In Fig.1, we explicitly examine the criterion of correctness by analyzing the decay of the drift
magnitude, as described in Eq. (4), for the late-time solution of the complex Langevin equation.1

The blue curve demonstrates that, although the probability density of the original model at the
coupling 𝛽 = 0.5 decays exponentially in the imaginary direction, the drift magnitude exhibits
only a power-law decay (blue line). This violates the criterion of correctness. In contrast, for the
regularized model at the same coupling, with a regularization force of 𝑟 = 0.5, we observe that
𝑝(𝑢; 𝜃 → ∞) decays exponentially (red line), satisfying the correctness criterion.

The impact of the regularization term is evident in the normalized histograms of the complex
Langevin process shown in Fig. 2. The left panel shows the wide histogram for the non-regularized
cosine model at 𝛽 = 0.5, reflecting poor convergence. Red solid lines indicate relevant thimbles
linked to action stationary points (red triangles), while dashed blue lines show anti-thimbles. With
regularization (𝑟 = 0.5), the right panel shows a sharply localized histogram. A single compact
thimble contributes, spanning between the action’s singular points (red squares), greatly improving
convergence. Details, including bias correction checks, are in [5].

1To verify the criterion of correctness independently, we numerically solved the Fokker-Planck equation, which
governs the evolution of the probability distribution for the complex Langevin process. The density of the drift magnitude
is computed based on this solution.
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Figure 3: Density 𝑝(𝑢; 𝜃 → ∞) of
the drift magnitude 𝑢 for the reduced
SU(2) model with 𝛽1 = (1 +

√
3𝑖)/4

(teal), 𝛽2 = (1 +
√

3𝑖)/2 (blue), and
the regularized model with 𝛽2 and 𝑟 =
−5. Exponential decay is observed
for 𝛽1 and regularized 𝛽2, while 𝛽2
without regularization exhibits power-
law decay (green dashed), satisfying
the correctness criterion.

4. Regularization for the SU(2) Polyakov chain model

The second model we discuss in this work is the one-dimensional SU(2) Polyakov chain
model, which is described by the action 𝑆[𝑈] = −𝛽 Tr [𝑃], with complex coupling 𝛽 ∈ C and
where the Polyakov chain 𝑃 = 𝑈1𝑈2 · · ·𝑈𝑁chain is given by the product of 𝑁chain links 𝑈𝑖 ∈ SU(2),
𝑖 ∈ {1, 2, . . . , 𝑁chain}.

This model is particularly interesting for our study of weight regularization as the correct and
wrong convergence of CL depends on the magnitude of the coupling. Furthermore, we can explicitly
study the thimble structure for the model as it allows us to reduce the Haar measure, resulting in a
one-parameter model. The reduction leads to the mapping

Tr[𝑃] → 2 cos(𝜙) (16)

𝐷𝑈 exp {−𝑆[𝑈]} → 𝑑𝜙 sin2(𝜙) exp {2𝛽 cos(𝜙)} =: 𝑑𝜙 𝐽 (𝜙) 𝜌(𝜙), (17)

where 𝐷𝑈 denotes the SU(2) Haar measure, 𝐽 (𝜙) = sin2(𝜙) denotes the Jacobian term for the
chosen coordinates and 𝜙 is integrated over [−𝜋, 𝜋]. This enables a direct study of the criterion of
correctness and its connection with Lefschetz thimbles for an SU(2) theory.

To achieve correct convergence of CL for this model, we introduce the regularization term 𝑅,

�̃�(𝜙) = 𝜌(𝜙) + 𝑅(𝜙; 𝑟) = 𝑒2𝛽 cos(𝜙) + 𝑟 (cos(𝜙) + 1). (18)

It acts in a similar manner as the regularization term for the complex cosine model. It pulls towards
the real line and forces the Lefschetz thimbles to connect to the singularities at the boundary leading
to a single relevant thimble structure up to symmetries. Details on the design are discussed in [5].

In Fig. 3 we show the drift magnitude at late Langevin times 𝑝(𝑢; 𝜃 → ∞) for the reduced
SU(2) Polyakov loop model for two different couplings 𝛽1 = (1+

√
3𝑖)/4 and 𝛽2 = (1+

√
3𝑖)/2. For

𝛽1, the CL process converges correctly as the density of the drift magnitude decays exponentially
(teal line). In contrast, the criterion of correctness is not satisfied for 𝛽2, as indicated by the power-
law behavior (blue line). When the regularization term is switched on using 𝑟 = −5, we find that
𝑝(𝑢; 𝜃 → ∞) decays exponentially, and hence, CL yields correct results. The numerical evaluation
of expectation values and CL histograms are presented in [5].

We directly run CL simulation for the SU(2) link model and obtain CL histograms for both
coupling 𝛽1,2 and the regularized case 𝛽2, 𝑟 = −5. Besides imposing the regularization term, we

7
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Figure 4: Complex Langevin histograms for the SU(2) Polyakov chain model at the coupling 𝛽 = (1+
√

3𝑖)/4
(left), 𝛽 = (1 +

√
3𝑖)/2 (center) and for the latter coupling but including the regularization term with 𝑟 = −5

(right). The same conventions as in Fig. 2 are used.

utilize the gauge cooling technique [8] to additionally stabilize all our simulations. In Fig. 4, we
show the CL histograms of the trace of the Polyakov loop. For 𝛽1 (left), the histogram decays rapidly,
while for 𝛽2 (center), it decays slowly, indicating that the CL process undergoes deep excursions
into the complex manifold. When the regularization term is employed with 𝑟 = −5, we find a sharp
histogram (right). This confirms the notion that the regularization improves the convergence of CL.
The numerical evaluation of expectation values and their successful bias correction is discussed in
detail in [5], where we also extend the study further to SU(3).

5. Conclusion

We investigated the correct convergence of complex Langevin (CL) in relation to Lefschetz
thimble structures for the complex cosine model and Polyakov chain models with complex couplings
for SU(2). Using weight regularization, we showed that CL converges correctly when a single
compact thimble contributes to the path integral up to model symmetries. This approach restores
convergence and yields accurate expectation values after a bias correction.

The regularization terms were designed to enforce a compact single-thimble structure, and we
introduced a method to systematically correct the bias from such regularizations. While additive
regularization is effective in lower dimensions, its extension to higher-dimensional theories faces
challenges, such as compatibility with lattice models and bias correction tractability. Building on
these insights, future work aims to develop kernel transformations that avoid bias correction, as
demonstrated in recent studies [9–11].

Our findings emphasize the importance of the thimble structure for CL’s success and motivate
further development of stabilization techniques and kernel design, especially for SU(N) field the-
ories, real-time Yang-Mills theory, and finite-density QCD. This work highlights the potential of
thimble-guided approaches to overcome longstanding CL failures.
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