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Quantum fluctuations of quarks and gluons in nuclei Michael L. Wagman

1. Introduction

This talk reviews a lattice quantum chromodynamics (LQCD) calculation of the Collins-Soper
kernel governing the evolution of transverse-momentum dependent hadronic structure functions in
Sec. 2, the signal-to-noise problem facing LQCD studies of nuclear systems in Sec. 3, and a new
spectroscopy method based on the Lanczos algorithm and spurious eigenvalue filtering in Sec. 4.
The Lanczos method mitigates analysis challenges arising from the signal-to-noise problem by
providing algebraic energy estimators with asymptotically constant signal-to-noise that come with
rigorous two-sided error bounds, which apply even when excited-state effects are large.

These topics touch upon different aspects of quark and gluon quantum fluctuations in nuclei.
Quantum fluctuations are responsible for both the universal correlations of lightlike Wilson lines
in all hadronic and nuclear systems encoded by the Collins-Soper kernel, as well as complex phase
fluctuations between Monte Carlo samples of observables in different gluon field configurations
that give rise to the signal-to-noise problem. Optimistically, one may dream that advances in
our understanding of the physics of quantum fluctuations in QCD and our understanding of noise
reduction in LQCD simulations will inform one another and grow together.

2. The Collins-Soper Kernel

A wealth of information about the Standard Model and beyond is encoded in differential
cross sections that express how interaction rates depend on the kinematics of the hadrons in-
volved in a scattering process. For example, while the overall rates for the Drell-Yan process
𝑞𝑞 → ℓℓ𝑋 and its analog 𝑢𝑑 → 𝜈ℓ𝑋 depend on the 𝑍- and 𝑊-boson masses, respectively,
the event shape provides a more sensitive probe for determining 𝑀𝑍 or 𝑀𝑊 from fits to ex-
perimental data. In particular, the dependence of the cross section on the magnitude 𝑞𝑇 of the
relative lepton momentum in the plane transverse to the collision axis has been used to pro-
vide precise determinations of 𝑀𝑍 and 𝑀𝑊 from Tevatron [1–6] and LHC [7–14] experiments.

Figure 1: Tevatron event rates for muon pro-
duction, 𝑝𝑝 → 𝜇𝜈𝑋 / 𝑝𝑝 → 𝜇𝜈𝑋 , as a func-
tion of the muon transverse momentum. Re-
produced from Ref. [6].

Fig. 1 shows an example of a transverse-momentum
distribution used recently by the CDF Collaboration in
a precise determination of 𝑀𝑊 [6]. Interestingly, the
result shows a 7𝜎 tension with determinations of 𝑀𝑊

based on electroweak global fits, as well as a similar
tension with a more recent LHC determination by the
ATLAS Collaboration [15]. Theoretical systematic
uncertainties in 𝑀𝑊 determinations associated with
higher-order perturbative QCD effects have been inves-
tigated [16], but quantifying theoretical uncertainties
from nonperturbative QCD effects is challenging. This
motivates LQCD studies of transverse-momentum dis-
tributions, which are independently of great interest to
a variety of current and future experimental programs
worldwide, including the COMPASS [17–23] experiment at CERN, RHIC [24, 25] at BNL, the
12 GeV program [26–31] at the TJNAF, and the planned Electron-Ion Collider (EIC) [32–36].

2



P
o
S
(
L
A
T
T
I
C
E
2
0
2
4
)
0
2
2

Quantum fluctuations of quarks and gluons in nuclei Michael L. Wagman

Transverse-momentum-dependent scattering rates can be described in QCD using the formal-
ism originally proposed by Collins, Soper, and Sterman [37] to factorize cross sections into hard
scattering amplitudes, which can be accurately calculated in perturbative QCD for sufficiently
high-energy collisions, and transverse-momentum dependent parton distribution functions (TMD-
PDFs). For fixed center-of-mass energy

√
𝑠, rapidity 𝑦, and invariant mass 𝑄 of the lepton pair, this

factorization takes the form

𝑑𝜎

𝑑𝑞𝑇𝑑𝑄
2𝑑𝑦

= 𝐻 𝑗 𝑗 (𝑄, 𝜇)
∫

𝑑2𝒃𝑇 𝑒𝑖𝒒𝑇 ·𝒃𝑇 𝑓 𝑗 (𝑥+, 𝑏𝑇 , 𝜇, 𝑄2) 𝑓 𝑗 (𝑥−, 𝑏𝑇 , 𝜇, 𝑄
2) + . . . , (1)

where 𝑓 𝑗 (𝑥, 𝑏𝑇 , 𝜇, 𝜁) and 𝑓 𝑗 (𝑥, 𝑏𝑇 , 𝜇, 𝜁) are the TMDPDFs of the partons involved in the hard
scattering, 𝐻 𝑗 𝑗 (𝑄, 𝜇) is the hard scattering amplitude, and the ellipsis denotes power corrections
suppressed by 𝑞2

𝑇
/𝑄2 andΛ2

QCD/𝑄
2. The TMDPDFs depend on kinematic variables 𝑥± ≡ 𝑄𝑒±𝑞/

√
𝑠

and 𝑄2 , the usual ultraviolet renormalization scale 𝜇, and an additional “Collins-Soper” scale 𝜁

that must be introduced to renormalize “rapidity divergences” that arise in the derivation of TMD
factorization [38, 39]; see for example Refs. [40–45] and the recent review [46].

The dependence of the TMDPDFs on this pair of renormalization scales is given by [38, 39]

𝑓 𝑗 (𝑥, 𝑏𝑇 , 𝜇, 𝜁) = 𝑓 𝑗 (𝑥, 𝑏𝑇 , 𝜇0, 𝜁0) exp
[∫ 𝜇

𝜇0

𝑑𝜇′

𝜇′
𝛾
𝑗
𝜇 (𝜇′, 𝜁0)

]
exp

[
1
2
𝛾
𝑗

𝜁
(𝜇, 𝑏𝑇 ) ln

𝜁

𝜁0

]
. (2)

Knowledge of both the ultraviolet anomalous dimension 𝛾
𝑗
𝜇 (𝜇′, 𝜁0) as well as the “Collins-Soper

kernel,” also often called the “rapidity anomalous dimension,” 𝛾
𝑗

𝜁
(𝜇, 𝑏𝑇 ) is required in order to

relate the TMDPDFs at a fixed reference scale—which can either be related perturbatively to
(collinear) PDFs or treated as nonperturbative inputs to be fit to data—to those at other scales.
Commutation of 𝜇 and 𝜁 derivatives links the ultraviolet and rapidity anomalous dimensions as

𝜇
𝑑

𝑑𝜇
2𝜁

𝑑

𝑑𝜁
𝑓 𝑗 (𝑥, 𝑏𝑇 , 𝜇, 𝜁) = 𝜇

𝑑

𝑑𝜇
𝛾
𝑗

𝜁
(𝜇, 𝑏𝑇 ) = 2𝜁

𝑑

𝑑𝜁
𝛾
𝑗
𝜇 (𝜇, 𝜁) ≡ −2Γ 𝑗

cusp(𝛼𝑠 (𝜇)), (3)

where Γcusp is the “cusp anomalous dimension” that governs the renormalization of Wilson loops
with corners [47]. It is a universal quantity relevant to e.g. back-to-back jets that are described
by Wilson lines at nearly opposite angles, as well as matrix elements of nonlocal quark operators
involving staple-shaped Wilson lines or other configurations with corners, and has now been
computed in perturbative QCD at two, three, and four loops [48–50]. A consequence of Eq. (3) is
that the ultraviolet anomalous dimension can be expressed as

𝛾𝑖𝜇 (𝜇, 𝜁) = ln(𝜇2/𝜁)Γ 𝑗
cusp(𝛼𝑠 (𝜇)) + 𝛾𝑖𝜇 (𝛼𝑠 (𝜇)). (4)

The key feature of this expansion is the 𝛼𝑠 (𝜇) is always evaluated at the ultraviolet renormalization
scale 𝜇, which should be of order 𝜇 ∼ 𝑄 to avoid large logarithms. Therefore, both the cusp and
non-cusp ultraviolet anomalous dimension can be accurately calculated using perturbative QCD as
long as 𝑄 ≫ ΛQCD; the non-cusp part has been computed at two loops [51]. On the other hand, the
Collins-Soper (CS) kernel can be expressed as

𝛾𝑖𝜁 (𝜇, 𝜁) = −2
∫ 𝜇

1/𝑏𝑇

𝑑𝜇′

𝜇′
Γ
𝑗
cusp(𝛼𝑠 (𝜇)) + 𝛾𝑖𝜁 (𝛼𝑠 (1/𝑏𝑇 )). (5)
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Both the cusp and non-cusp parts of the CS kernel involve 𝛼𝑠 evaluated at scales ≥ 1/𝑏𝑇 and can
be accurately calculated in perturbative QCD only if 1/𝑏𝑇 ≪ ΛQCD. The non-cusp part has been
computed at three and four loops [52, 53], the same accuracy as the cusp part.

The Fourier transform in Eq. (1) leads to integral contributions from 𝑏𝑇 ∼ 1/𝑞𝑇 dominating the
cross-section integral, Eq. (1). This means that even for 𝑄 ≫ ΛQCD, nonperturbative QCD effects
are important in the CS kernel whenever 𝑞𝑇/𝑄 is sufficiently small. Shapes of transverse-momentum
distributions, in particular the heights and widths of the “Sudakov peaks” where event rates are
largest (see Fig. 1), vary with𝑄2 in a way that is governed by the CS kernel. Nonperturbative effects
in the CS kernel have been studied phenomenologically through global fits to experimental data.
These fits are complicated by the fact that experimental data depend on transverse momenta 𝑞𝑇 ,
while the CS kernel is intrinsically a function of the impact parameter 𝑏𝑇 , and by the fact that the
fixed-scale TMDPDFs 𝑓 𝑗 (𝑥, 𝑏𝑇 , 𝜇0, 𝜁0) are nonperturbative inputs that must be fit simultaneously.
Despite these challenges, global fits to semi-inclusive deep inelastic scattering (SIDIS) and Drell-
Yan data have been performed by several groups [43, 54–58]. Results for the CS kernel from these
global fits are in good agreement for 𝑏𝑇 ≲ 0.2 fm; however, discrepancies between fits to different
CS kernel parameterizations appear for larger 𝑏𝑇 that indicate that the nonperturbative region is not
adequately constrained by current experimental data.

Another important feature of both TMDPDF anomalous dimensions is that they are independent
of the hadron state involved in the scattering process [37–39]. This can be seen from the matrix
element definition of TMDPDFs [37, 42, 59, 60],

𝑓 𝑗 (𝑥, 𝑏𝑇 , 𝜇, 𝜁) = lim
𝜖 ,𝜏→0

𝑍 (𝜇, 𝜁, 𝜖)𝐵 𝑗 (𝑥, 𝒃𝑇 , 𝜖 , 𝜏, 𝜁)Δ 𝑗 (𝑏𝑇 , 𝜖 , 𝜏), (6)

where the “beam function” 𝐵 𝑗 (𝑥, 𝒃𝑇 , 𝜖 , 𝜏, 𝜁) is defined as a matrix element of a nonlocal quark
bilinear operator involving a staple-shaped Wilson line, 𝜖 is the dimensional regularization cutoff,
𝜏 is the rapidity regulator, and Δ 𝑗 (𝑏𝑇 , 𝜖 , 𝜏) is a “soft factor” defined from a vacuum matrix element
of a Wilson-loop operator involving lightlike Wilson lines with both past and future orientations.
Cancellation of 1/𝜏 divergences is ensured by the factor that 𝐵 𝑗 (𝑥, 𝒃𝑇 , 𝜖 , 𝜏, 𝜁) only depends on the
combination 1/𝜏 − ln

√
𝜁 for small 𝜏 [42]. This fact relates 𝑑

𝑑𝜁
𝑓 𝑗 to 𝑑

𝑑𝜏
Δ 𝑗 , which only involves a

QCD vacuum matrix element. The CS kernel can thus be viewed as describing how the correlations
of nearly lightlike gluonic fluctuations of the QCD vacuum depend on their rapidity, and must be
independent of the hadron state used to define 𝑓 𝑗 .

Due to the hadron state independence of the CS kernel, the same nonperturbative QCD effects
govern the shapes of transverse-momentum distributions for collisions involving nucleons and
nuclei. These effects are independent of the atomic number or state of the nucleus and apply
to both hadron-hadron and lepton-hadron collisions. For example, current and future accelerator
neutrino experiments such as NOvA, T2K, MicroBooNE, ICARUS, SBND, DUNE, and Hyper-
Kamiokande, require the energy dependence of neutrino-nucleus cross sections as inputs in order to
determine neutrino oscillation parameters. Events involving pion production are common in current
experiments, and will be even more so at DUNE, and the transverse-momentum dependence of pion
production rates in low-energy analogs of SIDIS provide an important input needed to analyze these
events. The CS kernel governs the shapes of Sudakov peaks for transverse-momentum distributions
in e.g. charged-current-single-pion-production (CC1𝜋) events. This links the cross-section needs
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of neutrino experiments to quantities that can be accessed through hadron-hadron or lepton-hadron
colliders like the LHC and future EIC. Accurate nonperturbative determination of the CS kernel
from QCD therefore provide a universal ingredient for analyzing nuclear scattering processes in a
wide range of experiments. Such predictions allow global fits of nonperturbative hadron and nuclear
structure functions to focus on fixed-scale TMDPDFs without needing to also fit nonperturbative
evolution effects, a situation more analogous to global fits of collinear PDFs whose perturbative
evolution is known perturbatively.

Direct calculation of the lightlike Wilson line operators involved in the definitions of TMDPDFs
and the CS kernel is obstructed by the fact that LQCD calculations are necessarily performed in
Euclidean spacetime. This obstacle can be circumvented using the large momentum effective theory
(LaMET) framework [61] as first proposed in the context of TMDPDFs by Xiangdong Ji [62]. The
main idea, as reviewed in Ref. [63], is that matrix elements of spacelike-separated quark bilinears
in highly boosted hadron states approach those of lightlike-separated operators up to logarithmic
corrections that can be accurately calculated in perturbation theory. For the CS kernel in particular,
additional obstacles arise from the pair of orthogonal lightlike directions appearing in the soft
function [64]. It has recently been shown how to explicitly determine the soft factor from highly
boosted form factors with asymptotically large momentum transfer [65], but for the purposes of
determining the CS kernel in particular it is convenient to form ratios of beam functions for which
the soft factor cancels between numerator and denominator. A formula for obtaining the quark
CS kernel from ratios of Euclidean matrix elements convolved with perturbative LaMET matching
factors was explicitly given by Ebert, Stewart, and Zhao [42]:

𝛾
𝑞

𝜁
(𝜇, 𝑏𝑇 ) =

1
ln(𝑃𝑧

1/𝑃
𝑧
2)

ln

[
𝐶 (𝜇, 𝑥𝑃𝑧

2)
∫
𝑑𝑏𝑧𝑒𝑖𝑥𝑏

𝑧𝑃𝑧
1 𝐵MS

𝑞 (𝒃𝑇 , 𝑏𝑧 , ℓ, 𝑃𝑧
1 , 𝜇)

𝐶 (𝜇, 𝑥𝑃𝑧
1)
∫
𝑑𝑏𝑧𝑒𝑖𝑥𝑏

𝑧𝑃𝑧
2 𝐵MS

𝑞 (𝒃𝑇 , 𝑏𝑧 , ℓ, 𝑃𝑧
2 , 𝜇)

]
, (7)

where the Euclidean quasi beam functions are defined by

𝐵MS
𝑞 (𝒃𝑇 , 𝑏𝑧 , ℓ, 𝑃𝑧

1 , 𝜇) =
∑︁
Γ′

𝑍MS
ΓΓ′ (𝜇, 𝑎)

〈
ℎ(𝑃𝑧)

���� 𝑞 (
𝑏𝑧

2
𝒆𝑧 + 𝒃𝑇

)
Γ′𝑊⊐ (𝑏𝑧 , 𝒃𝑇 , ℓ)𝑞

(
−𝑏𝑧

2
𝒆𝑧

) ����ℎ(𝑃𝑧)
〉

(8)
for a particular hadron state |ℎ(𝑃𝑧)⟩ with momentum 𝑷 = 𝑃𝑧𝒆𝑧; the Dirac matrix Γ can be chosen
to be any linear combination of 𝛾𝑧 and 𝛾𝑡 ; and the staple-shaped Wilson line is defined as

𝑊⊐ (𝑏𝑧 , 𝒃𝑇 , ℓ) = 𝑊

[
𝒃𝑇 +

(
𝑏𝑧

2

)
𝒆𝑧 ,

(
ℓ

2

)
𝒆𝑧

]
𝑊

[(
ℓ

2

)
𝒆𝑧 + 𝒃𝑇 ,

(
ℓ

2

)
𝒆𝑧

]
𝑊

[(
ℓ

2

)
𝒆𝑧 ,

(
−𝑏𝑧

2

)
𝒆𝑧

]
,

(9)
where 𝑊 [𝐴, 𝐵] is a Wilson line from 𝐴 to 𝐵 and 𝑍MS

ΓΓ′ (𝜇, 𝑎) are renormalization factors that
depend on the lattice spacing 𝑎. The renormalization of nonlocal quark bilinear operators is more
complicated than that of local operators and has been studied extensively in recent years [66–77].
I will not attempt to review this progress here and simply state one important result: interpreting
Wilson lines as propagators of auxiliary static quark fields provides an interpretation of nonlocal
quark bilinears as products of (possibly many) local operators [66, 67, 72]. For example, this
staple-shaped Wilson line can be expressed as a product of two static-light transition operators 𝑄𝑧𝑞

and 𝑞𝑄𝑧 , as well as two static-static transition operators𝑄⊥𝑄𝑧 and𝑄𝑧𝑄⊥, involving auxiliary fields
𝑄𝑧 and 𝑄⊥ propagating in the 𝑧 and transverse directions, respectively [72]. The renormalization
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Figure 2: Evolution of LQCD determinations of the CS kernel from 2020-2024. (Top-left) exploratory
quenched QCD results [78], (top-right) partially quenched results demonstrating the inadequacy of previously
used approximations [79], (bottom-left) physical-quark-mass results showing the importance of power-
suppressed matching effects at small 𝑏𝑇 [80], and (bottom-right) results at multiple lattice spacings [81].

factors for each of these local currents can be then computed in a variation of commonly used
nonperturbative momentum subtraction schemes. This “RI-xMOM” scheme [66, 67, 72] provides
a conceptually simple and robust way to approach renormalization of non-local operators.

Calculation of the CS kernel using LQCD is greatly facilitated by its hadron state independence.
Although nucleons and nuclei are the most experimentally relevant systems, any state can be used
to study the universal QCD vacuum fluctuations encoded in the CS kernel. Shortly after Eq. (7) was
presented, Phiala Shanahan, Yong Zhao, and I set out to compute the CS kernel using the simplest
hadron state in LQCD: the pion. We began in quenched QCD, where state independence implies
that the CS kernel can be determined using valence quark probes with any mass. Using 𝑚𝜋 ∼ 1
GeV allowed precise signals for the CS kernel at 𝑏𝑇 in the nonperturbative region to be obtained
using very modest computational resources. Our final results from this study [78] are shown in
Fig. 2; in comparison to more recent results it is clear that discretization effects are significant at
small 𝑏𝑇 , but the large-𝑏𝑇 behavior is surprisingly similar to state-of-the-art unquenched results.

Several challenges for determining the CS kernel more precisely were identified in Ref. [78].
Some were related to renormalization issues discussed above. Another is the need to fit a large
number of bare matrix elements for different staples, boosts, and Dirac structures—35,000 matrix
elements for this exploratory calculation—which required the introduction of robust automated
fitting methods. The other important challenge is accurately performing the Fourier transform in
Eq. (7). The matrix elements entering the quasi beam function decay exponentially for large 𝑏𝑧𝑃𝑧;
however, broadening of the beam function with increasing 𝑏𝑇 leads to requirements that larger
𝑏𝑧𝑃𝑧 must be achieved for large-𝑏𝑇 TMDPDF Fourier transforms than for analogous quasi PDF
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calculations. Large enough values of 𝑏𝑧𝑃𝑧 were not possible to achieve for the lattice volume used
in Ref. [78], and the Fourier transform was instead performed using a fitted model of the beam
function that is only consistent with tree-level light-cone matching in Eq. (7). Other early LQCD
calculations of the CS kernel by the LPC Collaboration [82], ETMC/PKU [83], and the Regensburg
group [84] also employed approximations only consistent with tree-level matching.

We studied these and other approximations in detail in Ref. [79], where higher-statistics studies
on a larger lattice volume enabled better-controlled Fourier transforms that could be combined
with one-loop matching. As shown in Fig. 2, one-loop matching effects [42, 64] are significant
and tree-level approximations are inadequate for a high-precision determination. Further progress
was made by the LPC Collaboration in Ref. [85], where it was realized that the CS kernel can be
extracted from quasi TMD wavefunctions related to pion-to-vacuum transition matrix elements of
the same staple-shaped operators discussed above. Such TMD wavefunctions can be determined
from two-point correlation functions that are less computationally expensive than the three-point
functions required to compute quasi beam functions. Using high-statistics calculations of quasi
TMD wavefunctions, Ref. [85] obtained results at larger 𝑏𝑧𝑃𝑧 with much smaller Fourier transform
truncation effects. TMD wavefunctions were adopted in subsequent calculations [80, 81, 86, 87].

The first LQCD calculation of the CS kernel employing approximately physical quark masses
and performing a continuum extrapolation using results at multiple lattice spacings was reported
in Refs. [80, 81]. Large enough boosts and staple extents were used that Fourier transform trun-
cation effects could be explicitly computed and verified to be negligible. Perturbative matching
was performed at two-loop level based on results from Refs. [88–91], and resummation of mo-
mentum logarithms is performed using results of Refs. [45, 92]. The dependence on perturbative
order is observed to be mild at large 𝑏𝑇 ; however, significant differences between different orders
are visible in Fig. 2 at small 𝑏𝑇 . To partially account for power-suppressed 1/(𝑃𝑧𝑏𝑇 ) effects
that are formally negligible but numerically significant at computationally accessible momenta
and lattice spacings, an unexpanded matching scheme was proposed in Ref. [80] that should re-
duce higher-order effects at finite 𝑃𝑧 and small 𝑏𝑇 . Differences between tree-level, (resummed)
one-loop, and (resummed) two-loop results are observed to be smaller in this scheme, and the
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Figure 3: Lattice QCD parameterization of
the CS kernel, phenomenological parameteriza-
tions [43, 54–58] of experimental data (BLNY,
SV19, Pavia19, MAP22, ART23, IFY23), and per-
turbative results from Refs. [40, 52, 93] (N3LL).
Reproduced from Ref. [81].

unexpanded next-to-next-to-leading-log (uNNLL)
scheme is used for final results in Refs. [80, 81].

Discretization effects were observed to be sig-
nificant at small 𝑏𝑇 in Ref. [81], which used three
lattice spacings 𝑎 ∈ {0.09, 0.12, 0.15} fm in a
mixed-action setup with clover valence fermions
and gauge-fields generated by the MILC collabo-
ration [94], see Fig. 2. These discretization effects
were fit along with a parameterization of the non-
perturbative part of the CS kernel,

𝛾
𝑞

𝜁
(𝑏𝑇 , 𝜇, 𝑎) = −2D(𝑏∗, 𝜇) − 2𝑐0𝑏𝑇𝑏

∗ + 𝑘1
𝑎

𝑏𝑇
,

(10)
where 𝑏∗ = 𝑏𝑇/

√︃
1 + 𝑏2

𝑇
/𝐵2

NP with 𝐵NP = 2 GeV
and D(𝑏∗, 𝜇) is the resummed four-loop perturba-
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tive expression for the CS kernel presented explicitly in Ref. [81]. This parameterization provides
a good description of LQCD results with 𝑏𝑇 ∈ [0.09, 0.9] fm and 𝑎 ∈ [0.09, 0.15] fm with best-fit
parameters 𝑐0 = 0.032(12) and 𝑘1 = 0.22(8) achieving 𝜒2/dof = 0.39. Additional terms, e.g. pro-
portional to ln(𝑏∗) and 𝑎2/𝑏2

𝑇
, do not significantly improve the fit quality. Other parameterizations

of the nonperturbative part, including the BLNY parameterization [95] and the hadron-structure-
oriented (HSO) parameterization introduced in Ref. [96], provide equally accurate descriptions for
𝑏𝑇 ≲ 1 fm after fitting to LQCD results. The continuum-extrapolated CS kernel parameterization
corresponding to Eq. (10) with 𝑐0 = 0.032(12) and 𝑘1 = 0 is the final result of these calculations
and provides the first nonperturbative QCD determination of the CS kernel with fully quantified un-
certainties. As seen in Fig. 3, LQCD results are consistent with the most recent global fit results and
are precise enough to exclude some older fits. LQCD results are more precise than state-of-the-art
global fits across the range 𝑏𝑇 ≲ 1 fm constrained by data. In future work, they will be incorporated
into global fits and cross-section predictions for Drell-Yan, SIDIS, and other processes.

3. From QCD to Nuclei

Most features of scattering cross sections are not as universal as the evolution effects governed
by the Collins-Soper kernel and must be computed for the particular hadrons and nuclei involved in
experiments. In particular, the study of nuclei has been a long-standing goal for LQCD calculations.
A major challenge for studying nuclei is the “signal-to-noise problem”: the signal-to-noise (SNR)
ratios of nucleon and nuclear correlation functions (correlators) decrease exponentially with increas-
ing Euclidean time. The physical reason for this SNR degradation was elucidated by Parisi [97]
and Lepage [98] by studying correlator variances as physical correlation functions themselves.
For a nucleon correlation function proportional to 𝑒−𝑀𝑁 𝑡 at large Euclidean times 𝑡, the variance
includes not only contributions from nucleon-antinucleon states ∝ 𝑒−2𝑀𝑁 𝑡 but also contributions
from three-pion states ∝ 𝑒−3𝑚𝜋 𝑡 with the same quantum numbers1 that decay exponentially slower.
This implies that the SNR for nucleon correlators, defined as the average correlator divided by the
square root of its variance, decays exponentially with Euclidean time with a rate of 𝑀𝑁 − 3𝑚𝜋/2.
This exponential SNR degradation becomes increasingly severe for multi-nucleon systems, where
systems of 𝐴 nucleons have variance correlators with 3𝐴-pion ground states. Since nuclear binding
energies per nucleon, ranging between 1-8 MeV, are less than a percent of the nucleon mass, the SNR
expectations for 𝐴 non-interacting nucleons provide a good approximation to the asymptotic scaling
expected for nuclear correlators, whose SNR exponentially decays at a rate of 𝐴(𝑀𝑁 −3𝑚𝜋/2) [99].

Quark operators are charged under the 𝑈 (1)𝐵 baryon-number symmetry of QCD and quark
propagators have complex phases that shift under 𝑈 (1)𝐵 transformations, see e.g. Ref. [100].
These phases depend on the gauge-field background and encode physical information analogous
to Aharonov-Bohm phases. This means that the phases of baryon correlators, as well as the signs
of meson correlators besides the pion, have gauge-field-dependent phase fluctuations that lead to
“sign problems” for correlators [101, 102]. The average phase factor ⟨𝐶𝑁 (𝑡)/|𝐶𝑁 (𝑡) |⟩ for a nucleon
correlator 𝐶𝑁 (𝑡) ≡

〈
𝑁 (𝑡)𝑁 (0)

〉
is empirically observed to be proportional to 𝑒−(𝑀𝑁−3𝑚𝜋/2)𝑡 for

1Because quark-field integrals are performed analytically, the variance correlator should formally be defined in a
partially quenched theory where valence quark and antiquark numbers are separately conserved. This excludes single-
pion states with the same physical quantum numbers from the nucleon variance correlator.
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large Euclidean times, demonstrating that this sign problem can also be viewed as responsible for the
nucleon SNR problem [101]. Similar features appear for meson and nuclear correlators [102, 103].

This observation has led to the application of new methods for improving correlator SNR
based on applying methods to correlators [104–107] that had been previously applied to sign
problems associated with finite-density systems [108–116]. Techniques based on path integral
contour deformations can provide orders-of-magnitude improvements to correlator SNR in two-
dimensional gauge theories [105, 106] but achieving large SNR gains in systems with three or more
dimensions has proven more challenging [107]. Understanding of the statistical distributions of
correlator phases has also improved through the recognition that large-time distributions of (real
and imaginary parts of) nucleon and nuclear correlators are qualitatively described by complex log-
normal distributions [101, 103, 117] in a similar way that the early-time distributions of correlator
real parts is ubiquitously log-normal [118–120]. Recent calculations of the exact distributions of
correlator fluctuations in scalar field theories [121, 122] demonstrate that precise knowledge of this
distribution can assist in the construction of more precise estimators than the sample mean, which

Figure 4: Effective masses for light nuclei with
𝐴 ∈ {1, 2, 3, 4} from LQCD calculations with
𝑚𝜋 ∼ 450 MeV; data from Refs. [123, 124].

might also exist for correlators in LQCD.
The same rate of SNR degradation applying to

nuclear correlators is inherited by standard ground-
state energy estimators such as the effective mass

𝐸 (𝑡) = −1
𝑎
[ln𝐶 (𝑡) − ln𝐶 (𝑡 − 𝑎)] = 𝐸0 +𝑂 (𝑒−𝛿𝑡 ),

(11)
which asymptotically approaches the ground-state en-
ergy plus exponentially-suppressed corrections. This
increasing rate of SNR degradation with 𝐴 is ex-
hibited in calculations of nuclear correlators with
𝐴 ∈ {1, 2, 3, 4} computed by the NPLQCD Collab-
oration displayed in Fig. 4. This SNR degradation rate is especially problematic for nuclei, where
the excitation gap 𝛿 controlling the size of excited-state effects is on the few MeV scale of binding
energies rather than the hundreds of MeV scales associated with hadron resonance excitation ener-
gies or energy gaps to states containing extra pions. This means that imaginary times of hundreds
of fm would be required to achieve 𝛿𝑡 ≫ 1 and thus meaningfully suppress excited-state effects in
nuclear correlators; however SNR degradation limits the range of times where reliable signals can be
extracted in calculations feasible with current resources to imaginary times of a few fm. Interpreting
effective energies, or multi-state fits to correlators with 𝑡 ≪ 100 fm, as reliable determinations of
nuclear ground-state energies therefore requires physical arguments that ground-state overlaps in a
particular correlator are larger than all excited-state overlaps.

Exploratory LQCD calculations of nuclei have mostly used unphysically heavy quark masses to
reduce the severity of the SNR problem. The empirical formula 𝑀𝑁 ∼ 800 MeV +𝑚𝜋 [125] shows
that SNR degradation scales as 𝑀𝑁 − 3𝑚𝜋

2 ∼ 800 MeV − 𝑚𝜋

2 and is half as severe for 𝑚𝜋 ∼ 800
MeV as for the chiral limit. However, a downside of beginning with calculations using unphysically
heavy quark masses is that the physical spectrum is not known a priori and is a genuine prediction.

The first generation of LQCD calculations of nuclear correlators [123, 127–134] was made
possible by efficient algorithms [135, 136] for computing correlators, in particular where all quark

9
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Figure 5: Two-neutron effective FV energy shifts with 𝑚𝜋 ∼ 800 MeV, defined as differences between
dineutron effective masses and twice the neutron effective mass. Data are from Ref. [126].

fields were placed at the same point at the source. This source does not resemble the eigenstates
of non-interacting nucleons in a finite-volume (FV), which in the rest frame are products of single
nucleon fields of the form 𝑁 ( 𝒑)𝑁 (− 𝒑) with FV momenta 𝒑 = (2𝜋/𝐿)𝒏 quantized in terms
of integers 𝒏 ∈ Z3 and energies 2

√︃
𝑀2

𝑁
+ (2𝜋𝒏/𝐿)2. By constructing asymmetric correlators

where the sink fields were projected into products of plane-wave baryon interpolators analogous
to 𝑁 ( 𝒑)𝑁 (− 𝒑), it was hoped that the overlap to other FV eigenstates resembling two nucleons
with relative momentum 𝒌 ≠ 𝒑 would be suppressed by factors proportional to the inverse spatial
volume that would effectively suppress excited-state effects even for computationally achievable
𝑡 ≪ 𝛿−1. The degree of overlap-factor suppression achieved is difficult to estimate a priori, and
therefore early calculations performed a number of a posteriori checks on ground-state saturation.
One necessary condition is that different interpolating operators reach the same effective-mass
“plateau,” which is observed when comparing asymmetric correlators with Gaussian-smeared vs
point-like sources, see Fig. 5. Another necessary condition is consistency between results using
different physical volumes, for which the FV spectra of excited states will be very different. This
consistency was also observed in early calculations, where the appearance of an approximately
volume-independent plateau below the two-nucleon threshold for 𝑁 (0)𝑁 (0) sinks is consistent
with physical expectations for a two-nucleon bound state, and the appearance of clear volume
dependence in a plateau for 𝑁 (1 2𝜋/𝐿)𝑁 (−1 2𝜋/𝐿) sinks is consistent with physical expectations
for an unbound scattering state [123, 131]. Further checks were performed by investigating the
scattering amplitudes [124, 126, 137] associated with the FV spectrum through generalizations of
Lüscher’s FV quantization condition [138–140]. Pionless effective field theory (EFT) was tuned
to match early LQCD results for two- and three-nucleon energy spectra and then postdicted four-
nucleon binding energies that were consistent with direct LQCD calculations [141]; providing
another validation of both methods. Nuclear matrix elements of vector [142–146], axial [147–151],
scalar [152], and tensor [152] currents, as well as moments of nuclear PDFs [153, 154], were
subsequently computed using this asymmetric correlator setup and provide results in qualitative
agreement with phenomenological expectations [142, 143, 150].

It was pointed out early on [155] that the spectral representation for asymmetric correlators,
⟨𝜒𝐴(𝑡)𝜒𝐵 (0)⟩ =

∑
𝑛 𝑍

𝐴
𝑛 [𝑍𝐵

𝑛 ]∗𝑒−𝐸𝑛𝑡 , can include excited-state contributions with opposite sign
to the ground state when 𝐴 ≠ 𝐵. In principle, these cancellations can lead to flat imaginary-
time dependence at small 𝑡 that very slowly converges to a significantly different value at large 𝑡.
Evidence that this could be a practical concern grew dramatically when the Mainz group [156,

10
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157], the sLapHnn Collaboration [158], and the NPLQCD Collaboration [159, 160] performed
variational studies of two-baryon systems involving symmetric correlation functions with sources
and sinks both of the form 𝑁 ( 𝒑)𝑁 (− 𝒑). All three groups found that the energy spectra extracted
by variational methods under ground-state dominance assumptions differed significantly from the
spectrum obtained from asymmetric correlators under the same assumptions. While asymmetric
correlator results suggest 𝑚𝜋 ∼ 800 MeV leads to a bound dineutron and a deuteron somewhat
more deeply bound than in nature, results from variational methods do not provide evidence for
bound states in either channel.
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▯
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0.03

Figure 6: Comparison of asymmetric correla-
tor estimates [126, 130, 134] with variational
bounds [159] for dineutron FV energy shifts. All
results used the same ensemble of gauge fields.
Reproduced from Ref. [159].

Variational methods employing ground-state
energy estimators based on solving a generalized
eigenvalue problem (GEVP) [161, 162] provide rig-
orous upper bounds on the true ground-state energy,
even for small imaginary times. The 𝑛-th excited-
state energy estimator provided by GEVP meth-
ods similarly provides an upper bound on the 𝑛-th
excited-state energy of the true spectrum [160, 163].
This means that variational results provide a quali-
tative improvement over asymmetric correlator re-
sults: rigorous one-sided bounds on the true spec-
trum. However, these rigorous variational bounds
do not exclude the earlier results from asymmetric correlators, see Fig. 6. The GEVP results
directly provide a model of the spectrum in which the asymmetric correlator results arise via
opposite-sign cancellations of ground- and excited-state contributions [159]; however, it is also
possible to construct a model of the spectrum in which the effective mass from an asymmetric
correlator converges to the true ground-state energy much faster than GEVP results obtained from a
correlator matrix involving the same asymmetric correlator as an off-diagonal entry [159]. Further
explorations involving different interpolating operators [160], including a complete basis of local
six-quark operators, have not significantly improved the lower bounds provided by those involving
only 𝑁 ( 𝒑)𝑁 (− 𝒑) operators.

However, Hilbert space in LQCD is infinitely large [164] and cannot be searched exhaustively.
Although further explorations could provide increased confidence in some sense that ground-state
saturation has been achieved in variational results, is not clear how variational methods can be used
to rigorously exclude the hypothesis that the earlier asymmetric correlator results are correct.

4. Lanczos Algorithm for LQCD Spectroscopy

The effective mass defined in Eq. (11) can be alternately viewed as the estimator associated with
applying the power-iteration algorithm to find the largest eigenvalue of the transfer matrix [165].
To see this, note that applying the power-iteration method [166] to find the largest eigenvalue of a
Hilbert-space operator 𝑇 using an initial vector |𝜓⟩ corresponds to iteratively defining a ground-
state eigenvector approximation |𝑏𝑘⟩ ∝ 𝑇 |𝑏𝑘−1⟩ normalized such that ⟨𝑏𝑘 | 𝑏𝑘⟩ = 1 with the base
case |𝑏1⟩ = |𝜓⟩. The matrix element ⟨𝑏𝑘 | 𝑇 |𝑏𝑘⟩ then provides an iterative approximation that
converges to the largest eigenvalue of 𝑇 . The transfer matrix, defined as the generator of Euclidean
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time translations by one lattice site, satisfies 𝐶𝜓 (𝑡) =
〈
𝜓
��𝑇 𝑡/𝑎 ��𝜓〉. Inserting a complete set of

transfer-matrix eigenstates |𝑛⟩ gives

𝐶𝜓 (𝑡) =
∑︁
𝑛

⟨𝜓 |𝑛⟩
〈
𝑛

���𝑇 𝑡/𝑎
���𝑛〉 ⟨𝜓 |𝑛⟩ = ∑︁

𝑛

|𝑍𝜓
𝑛 |2𝜆𝑡/𝑎𝑛 , (12)

where 𝑍
𝜓
𝑛 ≡ ⟨𝜓 |𝑛⟩. The spectrum of physical energies is defined by the transfer-matrix eigenvalues

as 𝐸𝑛 = −(1/𝑎) ln𝜆𝑛. The ground-state energy estimator associated with the power-iteration
method is therefore −1/𝑎 times the log of the eigenvalue estimate ⟨𝑏𝑘 | 𝑇 |𝑏𝑘⟩,

−1
𝑎

ln ⟨𝑏𝑘 | 𝑇 |𝑏𝑘⟩ = −1
𝑎

ln

[ 〈
𝜓
��𝑇2𝑘+1

��𝜓〉〈
𝜓
��𝑇2𝑘

��𝜓〉
]
= −1

𝑎
ln

[
𝐶𝜓 (𝑡/𝑎 = 2𝑘 + 1)
𝐶𝜓 (𝑡/𝑎 = 2𝑘)

]
= 𝐸 (𝑡/𝑎 = 2𝑘), (13)

which establishes the equivalence of the effective mass and the power-iteration method. The
𝑂 (𝑒−𝛿𝑡 ) convergence of the effective mass corresponds to the standard𝑂 (𝑒−2𝑘𝑎𝛿) = 𝑂 ( [𝜆1/𝜆0]2𝑘)
convergence of the power-iteration method [167].

From this perspective, it is natural to ask whether more sophisticated algorithms from linear
algebra could be used to determine transfer-matrix eigenvalues, and therefore the physical energy
spectrum, more efficiently. Methods such as the QR algorithm require an explicit representation
of a matrix and cannot be straightforwardly applied to 𝑇 because it is an infinite-dimensional
operator [164, 168]. However, the Lanczos algorithm [169] is an appealing candidate because it
involves iteratively constructing and explicitly diagonalizing low-rank approximations to a matrix.
The rank of the approximation is equal to the number of Lanczos iterations applied. In computational
linear algebra applications, only tens of iterations are often required to accurately approximate some
eigenvalues of very large matrices, and convergence is observed to be fast for isolated eigenvalues,
even when parts of the spectrum become dense [167, 170–173]. This suggests that Lanczos
applied to an infinite-dimensional transfer matrix might provide rapidly convergent estimates for
ground-state energies despite 𝑇 having an (infinitely) dense spectrum for energies of order 1/𝑎.

An algorithm for applying 𝑚 steps of Lanczos to an infinite-dimensional transfer-matrix 𝑇 with
initial vector |𝜓⟩ that only requires {𝐶𝜓 (0), 𝐶𝜓 (𝑎), . . . , 𝐶𝜓 ((2𝑚 − 1)𝑎)} as inputs is presented in
Ref. [165]. The starting point is that Lanczos eigenvalue approximations, called Ritz values, are
obtained by diagonalizing a rank-𝑚 matrix 𝑇

(𝑚)
𝑖 𝑗

with 𝑖, 𝑗 ∈ {1, . . . , 𝑚} that for Hermitian 𝑇 takes
the tridiagonal form𝑇

(𝑚)
𝑖 𝑗

= 𝛼 𝑗𝛿𝑖 𝑗 +𝛽 𝑗 [𝛿𝑖 ( 𝑗−1) +𝛿𝑖 ( 𝑗+1) ]. Constructing𝑇 (𝑚)
𝑖 𝑗

only explicitly requires
the 2𝑚 scalars {𝛼1, 𝛽1, . . . , 𝛼𝑚, 𝛽𝑚} and not of any infinite-dimensional vectors or operators. The
usual three-term recurrence that defines Lanczos vectors, 𝑇

��𝑣 𝑗

〉
= 𝛼 𝑗

��𝑣 𝑗

〉
+ 𝛽 𝑗

��𝑣 𝑗−1
〉
+ 𝛽 𝑗+1

��𝑣 𝑗+1
〉
,

can be used to define recursion relations for 𝛼 𝑗+1 and 𝛽 𝑗+1 in terms of matrix elements computable
at step 𝑗 . Defining 𝐴

𝑝

𝑗
≡
〈
𝑣 𝑗

��𝑇 𝑝
��𝑣 𝑗

〉
and 𝐵

𝑝

𝑗
≡
〈
𝑣 𝑗

��𝑇 𝑝
��𝑣 𝑗−1

〉
, the required recursions are

𝐴
𝑝

𝑗+1 =
1

𝛽2
𝑗+1

[
𝐴
𝑝+2
𝑗

+ 𝛼2
𝑗𝐴

𝑝

𝑗
+ 𝛽2

𝑗𝐴
𝑝

𝑗−1 − 2𝛼 𝑗𝐴
𝑝+1
𝑗

+ 2𝛼 𝑗 𝛽 𝑗𝐵
𝑝

𝑗
− 2𝛽 𝑗𝐵

𝑝+1
𝑗

]
, (14)

and 𝐵
𝑝

𝑗+1 = 1
𝛽 𝑗+1

[
𝐴
𝑝+1
𝑗

− 𝛼 𝑗𝐴
𝑝

𝑗
− 𝛽 𝑗𝐵

𝑝

𝑗

]
, where 𝛼 𝑗 = 𝐴1

𝑗
, 𝛽 𝑗+1 =

√︃
𝐴2
𝑗
− 𝛼2

𝑗
− 𝛽2

𝑗
, 𝛽1 = 𝐵

𝑝

1 = 0,
and 𝑝 ∈ {1, . . . 2(𝑚 − 𝑗) + 1}. Similar recursions are discussed in Ref. [174].

This version of the Lanczos algorithm is inadequate for analyzing the noisy Monte Carlo
estimators of correlators arising in LQCD. In particular, 𝛽 𝑗+1 =

√︃
𝐴2
𝑗
− 𝛼2

𝑗
− 𝛽2

𝑗
only results in
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𝛽 𝑗+1 ∈ R if the data can be exactly described by a spectral representation with positive energies,
which is violated by noise. Allowing for 𝛽 𝑗+1 ∈ C instead provides a realization of the oblique
Lanczos algorithm suitable for approximating eigenvalues of non-Hermitian matrices [175]. In
this case, 𝑇 (𝑚)

𝑖 𝑗
can have complex eigenvalues. Defining energies from logarithms of eigenvalues,

and even identifying the largest eigenvalue, can therefore have ambiguities when applied to noisy
correlators discussed further below. Different oblique Lanczos conventions can be employed that for
example make𝑇 (𝑚)

𝑖 𝑗
real with antisymmetric off-diagonal entries instead of complex and symmetric,

but the Ritz values obtained as eigenvalues of 𝑇 (𝑚)
𝑖 𝑗

are convention-independent.
The Ritz values obtained by applying oblique Lanczos to noisy correlators turn out to be nu-

merically identical to the polynomial roots obtained by applying Prony’s method [176]—previously
applied to LQCD correlators in Refs. [177–181]—to the same data. I didn’t know this at the time of
Lattice 2024, where I presented a figure showing Lanczos results apparently converging faster than
results from Prony’s method. A few weeks later, George Fleming, Daniel Hackett, and I realized that
there must be an error in my implementation of Prony’s method due to apparent non-monotonicity.
Upon fixing the error, we learned that Prony roots are numerically identical to the Ritz values from
Lanczos. In August, v2 of Ref. [165] noted the coincidence between Lanczos and Prony results
and referenced ongoing work to understand it more fully. In November, the Bonn group posted
Ref. [182], which extends the observations made in v2 of Ref. [165] by providing an analytic proof
of the correspondence between Ritz values and Prony roots. A few days later, the Tata group posted
a proof of the same correspondence [183].

The main utility of the Lanczos framework is that it provides useful formal technology in
addition to a way to calculate the Ritz values (= Prony roots). In particular, it provides at least three
novel features that are not apparent from the perspective of Prony’s method: 1) theoretical bounds
on convergence, 2) mathematically well-understood methods for identifying and removing spurious
eigenvalues, and 3) directly calculable two-side error bounds.

Convergence of Lanczos is quantified by the Kaniel-Paige-Saad (KPS) bound [184–186] on the
difference between the true ground-state 𝑇 eigenvalue 𝜆0 and the Ritz value 𝜆 (𝑚)

0 after 𝑚 iterations,

𝜆0 − 𝜆
(𝑚)
0

𝜆0
≤

[
tan arccos 𝑍0

𝑇𝑚−1(2𝑒𝑎𝛿 − 1)

]2
≈

4(1 − 𝑍2
0 )

𝑍2
0

×
{
𝑒−2(𝑚−1)𝑎𝛿 𝑎𝛿 ≫ 1

𝑒−4(𝑚−1)
√
𝑎𝛿 𝑎𝛿 ≪ 1

. (15)

For large gaps, Lanczos therefore has similar 𝑒−2𝑚𝑎𝛿 convergence as the power-iteration method.
For small gaps, which arise generically near the continuum limit and especially for systems with
relatively dense spectra where power-iteration convergence is slow, Lanczos achieves exponentially
faster convergence proportional to 𝑒−4𝑚

√
𝑎𝛿 . Analogous, although more complicated, bounds prove

that 𝜆 (𝑚)
1 and other Ritz values provide estimators for excited-state energies that converge at similar

rates. However, the KPS bound does not apply to oblique Lanczos and is only applicable to LQCD
correlators in the infinite-statistics limit. Further, since it involves the exact excitation gap and
ground-state overlap the right-hand-side of the KPS bound is not directly calculable in practice.

In linear algebra applications to finite matrices, it has been shown that roundoff errors lead
to the appearance of spurious eigenvalues that do not converge while not spoiling the convergence
of non-spurious Ritz values [167, 185, 187–190]. The appearance of these spurious eigenval-
ues can be traced to numerical loss of orthogonality between Ritz vectors after multiple Lanczos
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Figure 7: Lanczos energy estimators for the nucleon mass using the basic sample-mean definition, left,
and a bootstrap-median definition, right, are compared with the effective mass and multi-state fit results.
Reproduced from Ref. [165] v1, left, and v3, right. Outer error bars, left, show residual-bound windows.

iterations [167, 185]. Similar phenomena appear in applications to noisy correlator data [165].
Although state-of-the-art methods for avoiding spurious eigenvalues using selective reorthogonal-
ization [191] cannot be straightforwardly applied to LQCD correlator analysis, there is a method
for identifying and filtering out spurious eigenvalues in a post-processing step developed by Cul-
lum and Willoughby [187, 188]. Applying a bootstrap generalization of the Cullum-Willoughby
(CW) test is sufficient to remove not only most complex eigenvalues (which can be identified as
spurious simply by having significantly non-zero imaginary parts) but also real eigenvalues that
would underestimate exact ground-state energies in solvable systems or predict violations of QCD
inequalities like 𝑀𝑁 ≥ 𝑚𝜋 [192, 193]. The same spurious eigenvalues manifest as unphysical
Prony roots in applications of Prony’s method and have limited its practical application to LQCD
correlators to 𝑚 ≤ 4 [178–181]. After applying the CW test, it is feasible to obtain accurate energy
estimates from oblique Lanczos even after 𝑚 ∼ 50 iterations. Further, the SNR for Lanczos energy
estimators does not inherit the same exponential SNR degradation as 𝐶 (𝑡) or 𝐸 (𝑡) if the CW test is
applied and instead approaches an asymptotically constant value for large iteration counts.

The appearance of asymptotically constant SNR can be associated with the appearance of
correlations between energy estimators 𝐸

(𝑚)
𝑘

that grow with 𝑚 and suggest that Lanczos results
are more analogous to multi-state fit results to the whole correlator {𝐶 (0), . . . , 𝐶 ((2𝑚 − 1)𝑎)}
rather than a temporally localized estimator that would be particularly sensitive to 𝐶 ((2𝑚 − 1)𝑎).
These correlations are not manifestly visible using Lanczos energy estimators derived simply from
sample-mean correlators. Employing outlier-robust estimators defined as medians over bootstrap
resampled Ritz values provides a more precise and more accurate estimator because the outliers
are primarily misidentified noise artifacts rather than part of the physical distribution [165, 194].
Using a bootstrap median definition, the iteration-by-iteration variance decreases significantly and
correlations growing with 𝑚 can be clearly observed [165, 182, 183, 194]. This gives bootstrap-
median Lanczos energy estimators the appealing feature that there is no need to perform a fit in order
to extract all available information; simply picking a single iteration in the highly-correlated large 𝑚
region is sufficient to obtain precision that is similar to that achieved by either standard multi-state
correlator fits or by fitting the full range of converged sample-mean Lanczos results, as shown for
a LQCD nucleon correlator in Fig. 7. In particular, this circumvents standard worries about both
covariance matrix estimation and sensitivity to a variety of fitting choices and hyperparameters.
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Although the CW test implemented in Ref. [165] does introduce its own set of hyperparameters,
their variation tends to be negligible unless it leads to obvious failures associated with classifying a
physical eigenvalue as spurious, e.g. disappearance of a Ritz value that is precisely determined with
other hyperparameters. Significant further progress in understanding spurious-eigenvalue filtering
was made in the months after Lattice 2024 through the introduction of the “ZCW test” in Ref. [194].
The ZCW shares the essential formal properties of the CW test, while providing a physical picture
in which noise leads to the appearance of “spurious states” that are approximately orthogonal to
the initial state but mix with Ritz vectors due to noise. Spurious states are defined as states with
initial-state overlaps smaller than a threshold 𝜀ZCW, set e.g. by taking the minimum overlap 𝑍2

min
appearing in the first few iterations before spurious states emerge and setting 𝜀ZCW = 𝑍2

min/𝐹ZCW.
The only hyperparameter 𝐹ZCW enters in specifying how much lower the noise threshold should be
than the minimum obviously physical overlap; 𝐹ZCW ∼ 10 is suitable for many examples.

Perhaps the most important Lanczos feature is that there is a residual bound guaranteeing that
at least one true eigenvalue exists within a two-sided window around each Ritz value whose size
can be directly calculated. For symmetric Lanczos, this bound takes the form [167]

min
𝜆∈{𝜆𝑛 }

|𝜆 (𝑚)
𝑘

− 𝜆 |2 ≤ 𝐵
(𝑚)
𝑘

≡ |𝛽𝑚+1 |2 |𝜔 (𝑚)
𝑚𝑘

|2, (16)

where 𝜔 (𝑚)
𝑘

is the 𝑘-th eigenvector of 𝑇 (𝑚)
𝑖 𝑗

. The oblique case for noisy correlators is only modified
by the appearance of an additional calculable ratio of Ritz- and Lanczos-vector norms on the right-

hand-side [165]. Note that this bound does not guarantee that 𝜆 (𝑚)
0 has converged to within

√︃
𝐵
(𝑚)
0

of the true ground-state 𝜆0; however, it does guarantee that some true eigenvalue 𝜆𝑛 is within[
𝜆
(𝑚)
0 −

√︃
𝐵
(𝑚)
0 , 𝜆

(𝑚)
0 +

√︃
𝐵
(𝑚)
0

]
. This provides a qualitative advance over variational methods that

can only rigorously provide one-sided bounds. Further, residual bounds are computable for both
symmetric and asymmetric correlators. This could be critically usefully in particular for testing
the validity of ground-state saturation assumptions in the analyses of nuclear correlation functions
discussed in Sec. 3. More generally, residual bounds provide rigorous information about LQCD
spectra without requiring any assumptions about how well ground-state convergence has been
achieved at finite imaginary times or how well interpolating operators overlap with particular states.
This provides a new (two-sided) window on QCD whose exploration is just beginning.
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