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Periodically driven quantum systems defined in continuous time, also known as Floquet systems,
share intriguing similarities with static/undriven lattice field theories defined in discrete time. E.g.
in the former, periodic driving leads to Brillouin zone in quasi-energy space which is reminiscent
of frequency Brillouin zones in the latter. These similarities lead to a natural question, is there
a concrete correspondence between the two systems? In this work I address this question and
demonstrate that there indeed exists a concrete mathematical correspondence between a certain
1 + 1 dimensional non-interacting Floquet system and a 1 + 1 dimensional lattice Dirac fermion
defined on naively discretized time lattice. I also comment on the possibility of extending this
type of correspondence to higher dimensional theories.
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1. Introduction

In the action formulation of lattice quantum field theory, it is natural to discretize space and time
which lead to Brilliouin zones in momenta and frequency. This means that frequency and momenta
are conserved on the lattice modulo 2𝜋 divided by the spatial and temporal lattice spacing. In the
real world, one can find analogous Brilloun zones in momenta in materials with crystal structure.
In fact, the presence of momenta Brilliouin zones in both systems sometimes allows the spectra of
one being mimicked by the other.

However, the story is somewhat different when it comes to time discretization. In the real world
time is never discrete. This leads one to believe that it is impossible to replicate the spectra of a
discrete time lattice field theory in the real world where time is continuous. There is an exception to
this wisdom. It turns out that, periodically driven quantum systems, can exhibit Brilluoin zones in
a quantity known as the quasi-energy. Quasi-energy is analogous to energy and conserved modulo
2𝜋 divided by the inverse drive time 𝑇 . The presence of this Brilloiun zone opens up the question of
whether the spectra of a discrete time static lattice theory can be replicated using periodic driving
in continuous real time or vice versa. In this note, I show that this is indeed possible in 1 + 1
space-time dimension. In detail, I build a concrete mathematical correspondence between the two
by constructing a one to one map between the spectra of a Floquet system in 1 + 1 dimension and
a discrete time lattice Dirac fermion theory, also in 1 + 1 dimensions. The mapping requires one
to identify the time lattice spacing of the lattice Dirac fermion theory with the drive time of the
Floquet system.

2. Fermion doubling

Before I can present the correspondence between the Floquet system and the discrete time
setup, I have to discuss the concept of fermion doubling in lattice field theory, Consider the Dirac
equation (𝑖𝛾𝜇𝜕𝜇 −𝑚)𝜙 = 0. We rewrite this in a form that resembles a Schroedinger equation with
a Dirac Hamiltonian 𝐻𝐷 ,

(𝑖𝜕0 − 𝐻𝐷)𝜙 = 0. (1)

Let’s now discretize the time direction by replacing 𝜕0 by the symmetric finite difference operator
∇𝑡 ,𝑡 ′ =

𝛿𝑡,𝑡′−1−𝛿𝑡,𝑡′+1
2𝑇 where we have deliberately chosen the time lattice spacing to be 𝑇 . Now one

can Fourier transform Eq. 1 with this naively discretized time derivative, leading to

sin(𝑝0𝑇)𝜙(𝑝) − 𝐻𝐷𝜙(𝑝) = 0. (2)

Diagonalizing 𝐻𝐷 we see that, if 𝜙𝑒 is a specific eigenstate of 𝐻𝐷 with eigenvalue 𝜖𝐷 , the
corresponding time evolution : 𝑒𝑖 sin−1 (𝜖𝐷𝑇 ) 𝑡

𝑇 𝜙𝑒, solves the above equation 2. At the same time,

there is another solution to Eq. 2 which goes as 𝑒
𝑖

(
𝜋
𝑇
− sin−1 (𝜖𝐷𝑇 )

𝑇

)
𝑡

𝜙𝑒. This second solution is called a
doubler and the phenomenon goes by the name of fermion doubling. The main point to remember
here is that for every frequency solution to the above equation that goes as one of the eigenvalues
of 𝐻𝐷 , i.e. 𝜖𝐷 , there is another one which goes as 𝜋/𝑇 − 𝜖𝐷 .
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3. The Floquet insulator model

Now, consider the following 1 + 1 dimensional lattice model defined on 2𝑁 spatial lattice sites
where the time evolution operator is given by

𝑈 (𝑡) =
{
𝑒−𝑖𝐻0𝑡 for 0 < 𝑡 < 𝑡0

𝑒−𝑖𝐻1 (𝑡−𝑡0 )𝑒−𝑖𝐻0𝑡0 for 𝑡0 ≤ 𝑡 < 𝑡0 + 𝑡1
, (3)

with

𝐻0 = 2
𝑁−1∑︁
𝑗=0

(𝑎†2 𝑗𝑎2 𝑗+1 + H.c.)

𝐻1 = 2
𝑁−1∑︁
𝑗=0

(𝑎†2 𝑗+1𝑎2 𝑗+2 + H.c.),
(4)

where 𝑎𝑖 is a fermion annihilation operator on site 𝑖 = 0, . . . , 2𝑁 − 1. Clearly the time evolution
operator here is describing a model with periodic driving. One could consider this model with both
periodic or open boundary condition.

The individual Hamiltonian 𝐻0 and 𝐻1 shown in Eq . (3), (4) correspond to two different
parameter regimes of a class of models known as the SSH model [1], [2],. The Hamiltonian of a
generic SSH model is given by

𝐻SSH =
𝑢

2
𝐻1 +

𝑣

2
𝐻0 (5)

where 𝑢 and 𝑣 are some arbitrary constants. Under periodic boundary condition the model has
spectra given by

𝐸SSH(𝑘) = ±
√︁
𝑢2 + 𝑣2 + 2𝑢𝑣 cos(2𝑘), (6)

where 0 ≤ 𝑘 < 𝜋 is the crystal momentum and spatial lattice spacing has been set to 1. The disper-
sion relation of the SSH model describes a lattice Dirac fermion with mass 𝑢 − 𝑣 when expanded
above 𝑘 = 𝜋/2. Interestingly, massive Dirac fermion in any number of space-time dimension can be
in a topological phase depending the sign of the mass. According to the convention we pick here,
the SSH model is in a topological phase when 𝑚 > 0 and is in a trivial phase when 𝑚 < 0. Thus,
𝐻0 represents a trivial phase and 𝐻1 a topological phase. Interestingly, with periodic boundary
condition spectra there is no way to tell the difference between 𝑚 = |𝑚0 | and 𝑚 = −|𝑚0 |. However,
with open boundary condition (OBC), the 𝑚 > 0 regime or the topological regime hosts massless
(zero energy) edge states whereas the 𝑚 < 0 regime hosts nonce. So, the edge spectra of the two
phases differ under OBC.

The Floquet spectra is extracted from the time evolution operator of the driven system sampled
at integer multiples of the drive time. In this case the Floquet evolution operator is given by

𝑈F = 𝑈 (𝑇) = 𝑒−𝑖𝐻1𝑡1𝑒−𝑖𝐻0𝑡0 ≡ 𝑒−𝑖𝐻F𝑇 , (7)
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Figure 1: Phase diagram of the Floquet model (7). The phases are labeled by the presence or absence of
zero and 𝜋 modes localized to boundaries. This work focuses on the vertical dashed line at 𝑡0 = 𝜋

4 , which
passes through the trivial and 0𝜋 phases.

where 𝑇 = 𝑡0 + 𝑡1 is the driving period and 𝐻F = 𝑖
𝑇

ln𝑈F. 𝐻F is the Floquet or stroboscopic
Hamiltonian. The eigenvalues of the stroboscopic Hamiltonian are known as the quasi-energy and
denoted as 𝜖 . They are conserved modulo 2𝜋/𝑇 . The Floquet quasi-energy exhibits periodicity set
by 2𝜋/𝑇 which is indicative of the presence of a Brillouin zone in quasi-energy. The quasi-energy
spectra of this model can be used to investigate the different possible topological phases this model
can be in. In fact the spectra reveals that the Floquet system can be in four different topological
phases as a function of 𝑡0 and 𝑡1 as shown in Fig 1. They are labeled trivial, 0, 𝜋, and 0𝜋. The
quasi-energy gap with PBC closes on the phase boundaries of these topological phases. One of
the ways to confirm that these four regions of the parameter space indeed describes different topo-
logical phases is to consider the Floquet spectra with OBC. Under OBC, the trivial phase does not
exhibit any edge state, the 0 phase exhibits zero quasi-energy edge states, the 𝜋 phase exhibits edge
states with quasi-energy 𝜋/𝑇 and the 0𝜋 phase exhibits edge states with both quasi-energy 0 and 𝜋/𝑇 .

Upon closer inspection, one finds an intriguing feature of the quasi-energy spectra for 𝑡0 = 𝜋/4.
This is a vertical line, colored red and blue and shown in dashes, in Fig. 1 phase diagram, along
which the quasi-energy eigenvalues are “𝜋 paired" under both OBC and PBC. The phrase 𝜋-pairing
refers to the feature that for every quasi-energy eigenvalue 𝜖 , there is another one with eigenvalue
𝜋/𝑇 − 𝜖 . Moreover, the PBC eigenvalues on 𝑡0 = 𝜋/4 line are reflection symmetric across the
horizontal line 𝑡1 = 𝜋

4 . This is to say that with PBC, 𝜖
��
𝑡0=

𝜋
4 ,𝜂

= 𝜖
��
𝑡0=

𝜋
4 ,−𝜂

where 𝜂 ≡ 𝑡1 − 𝜋
4 .

This suggests that the part of the Floquet phase diagram along 𝑡0 = 𝜋/4 may be mappable to a
lattice fermion theory with naively discretized time direction such that the spectra exhibits 𝜋-pairing
or fermion doubling.

At this point it’s useful to notice the pattern of 𝜋 pairing with PBC as illustrated by Fig 2. As
is shown in the Fig.2 the blue and the orange bands are 𝜋 paired whereas the eigenvalues within
the blue or the orange bands are not 𝜋 paired with each other. We first aim to construct a lattice
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Figure 2: On the leftmost panel we show PBC quasi-energy eigenvalues as a function of crystal momenta
for 𝑡0 = 𝜋/4 for some representative value of 𝑡1. The middle panel shows the sine of the eigenvalues. The
rightmost panel shows the frequency solutions of the discrete time Schroedinger equation where one uses the
sine of the blue band from the middle panel as eigenvalues of the target static Hamiltonian.

fermion Hamiltonian 𝐻𝑠 which when fed to the frequency space version of the naively discretized
Schroedinger/Dirac equation

𝑖∇0𝜓 = 𝐻𝑠𝜓, (8)

i.e.

sin(𝑝0𝑇)𝜓(𝑝) = (𝑇𝐻𝑠)𝜓(𝑝) (9)

produces frequency solutions that match the PBC Floquet eigenvalues one to one. Diagonalizing
𝐻𝑠 we can get the PBC eigenvalues of the target lattice Hamiltonian 𝐻𝑠 which we call 𝜖𝑠. It is now
easy to see that in order to reproduce the Floquet quasi-energy eigenvalues, we have to demand
that the eigenvalues 𝜖𝑠 match onto the sine of the Floquet quasi-energy eigenvalues. Since the blue
and the orange bands are 𝜋− paired, taking the sine of the quasi-energy eigenvalues produces a
double degeneracy as shown in the middle panel of the Fig. 2. In order to construct the map to a
discrete time theory, we need to retain only one set of the eigenvalues discarding the corresponding
degenerate set. E.g. we could work with just the sine of the blue band, i.e. sin(𝑇𝜖 (𝑘)) for
3𝜋
4 > 𝑘 ≥ 𝜋

4 . Solving,

sin(𝑝0𝑇) = sin(𝑇𝜖 (𝑘)) (10)

for 3𝜋
4 > 𝑘 ≥ 𝜋

4 we now produce the blue band solution with 𝑝0 = 𝜖 (𝑘) for 3𝜋
4 > 𝑘 ≥ 𝜋

4 and their
𝜋 pairs, 𝑝0 = 𝜋

𝑇
− 𝜖 (𝑘) = 𝜖 (𝑘 + 𝜋

2 ) which reproduces the orange band quasi-energy eigenvalues.
Remarkably, we find that sin(𝑇𝜖 (𝑘)) for 3𝜋

4 > 𝑘 ≥ 𝜋
4 can be fit to the eigenvalues of a massive

Dirac Hamiltonian itself, e.g. an SSH Hamiltonian. Only the point 𝑡0 = 𝑡1 = 𝜋/4 maps to a massless
Dirac Hamiltonian. The details of this fit is given in [3]. The fit for the PBC eigenvalues work with
a Dirac Hamiltonian with a positive mass as well as a negative mass of the same magnitude. This
is expected given that the PBC eigenvalues of a Dirac Hamiltonian does not care about the sign of
the Dirac mass. Given that the PBC quasi-energy eigenvalues satisfy 𝜖

��
𝑡0=

𝜋
4 ,𝜂

= 𝜖
��
𝑡0=

𝜋
4 ,−𝜂

, we have
two possible mapping choices for 𝜂 = ±|𝜂 |, e.g. let’s say that the sine of the PBC quasi-energy
eigenvalues for a specific 𝜂 = 𝜂0 with 𝜂0 > 0 can be fit to a Dirac Hamiltonian of mass +𝑚0 or −𝑚0
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with𝑚0 > 0, then the same is true of the sine of the quasi-energy eigenvalues for 𝜂 = −𝜂0. If we now
want to reproduce the OBC quasi-energy spectra as well, our choices get restricted. We see from
the phase diagram, that, for 𝑡1 > 𝜋/4, along the 𝑡0 = 𝜋/4 line one finds both 0 and 𝜋 quasi-energy
edge states whereas for 𝑡1 < 𝜋/4 there aren’t any. Therefore, the correct choice of map for 𝑡1 > 𝜋/4,
i.e. some 𝜂 = 𝜂0 > 0, is a positive mass Dirac fermion of mass 𝑚 = 𝑚0 with 𝑚0 > 0. Similarly,
for 𝑡1 < 𝜋/4, the correct choice for the corresponding 𝜂 = −𝜂0 would be, a negative mass Dirac
fermion with 𝑚 = −𝑚0. Since the positive mass Dirac Hamiltonian has zero energy edge states
under OBC, the corresponding discrete time theory with naive time discretization has both zero and
𝜋 frequency edge states matching onto the spectra for quasi-energies for 𝑡1 > 𝜋/4. Similarly, the
negative mass Dirac Hamiltonian has no edge states of zero energy and therefore the corresponding
discrete time theory has neither zero frequency nor 𝜋 frequency edge states, matching onto the OBC
quasi-energy spectra for 𝑡1 < 𝜋/4. This is the essence of the mapping described in [3]. Of course,
the correspondence described in this talk pertains to the 𝑡0 = 𝜋/4 line with a 𝜋− paired spectra.
However, there has been follow up work which extend this mapping away from 𝑡0 = 𝜋/4 [4].

4. Summary and future directions:

Periodically driven systems observed at integer multiples of drive time are often referred to
as discrete time systems in a vague sense. We made this notion concrete for a certain 1 + 1 D
Floquet system by demonstrating that its spectra can indeed be reproduced from a discrete time
theory with a static Hamiltonian. This mapping has been extended to the cases where there is no
𝜋− pairing. There has also been work on the possibility of extending the map to higher dimensions.
For reference see [5]. There remain several exciting unanswered questions:

1. How general is this mapping? Under what conditions do such correspondence hold?

2. Does a similar map exist between interacting Floquet system and discrete time static lattice
theories?

3. How would one identify which interacting theories on the Floquet side can be mapped to
which interacting theory on the lattice side?

4. Does the correspondence amount to a duality relation between the two sides? If so, how
would one formulate such a duality?

Beyond exploring the nature of the correspondence between discrete time static theories and Floquet
systems, it may be worthwhile considering whether this correspondence can be made useful for the
quantum simulation of certain types of fermion theories.
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