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In this article I provide an overview of the current state of scattering within lattice QCD, along
with ongoing projects that examine weak decays involving scattering states as either final or
intermediate states. Significant progress has been made in the study of multi-hadron weak decays,
opening the door for scattering calculations to make meaningful contributions to flavour physics
and further establishing lattice QCD as the key non-perturbative tool for QCD predictions. In
addition to discussing new calculations, I also highlight recent advancements in finite-volume
formalisms, which enable the exploration of previously inaccessible channels.
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From scattering towards multi-hadron weak decays

1. Resonances on the lattice

Lattice QCD computations employ a Euclidean path integral formulation, using Euclidean time
𝑡. Consequently, correlation functions calculated in lattice QCD do not exhibit real-time behaviour.
However, at sufficiently large Euclidean time 𝑡, matrix elements ⟨0|𝑂̂ |𝑛⟩ and finite-volume energy
states 𝐸𝑛 can be determined by fitting to the spectral decomposition:

⟨𝑂1(𝑡)𝑂2(0)⟩ =
∑︁
𝑛

1
2𝐸𝑛

⟨0|𝑂̂1 |𝑛⟩⟨𝑛|𝑂̂2 |0⟩𝑒−𝑡𝐸𝑛 . (1)

Importantly, while these matrix elements and energies are derived from Euclidean correlation
functions, they contain no dependence on the metric signature and could equally well have been
determined from Minkowski signature correlation functions.

The approach described above effectively captures behaviour asymptotic in Euclidean time
𝑡, rendering it applicable for studying QCD-stable hadrons such as pions, kaons, and protons.
Conversely, resonances are unstable QCD states decaying into multiple stable hadrons. In infinite-
volume, continuum QCD, a resonance can be described as a pole singularity in the scattering
amplitude, which can be determined in the complex Mandelstam 𝑠 plane using the scattering
amplitude

𝑡ℓ (
√
𝑠) = 1

cot 𝛿ℓ (
√
𝑠) − 𝑖

, (2)

where ℓ denotes the definite orbital angular momentum or partial wave of the infinite-volume
scattering phase shift 𝛿ℓ (

√
𝑠). Examining the complex 𝑠 plane reveals that for a single channel ℓ,

the square-root cut generates two Riemann sheets. Each additional channel introduces another cut,
effectively doubling the number of Riemann sheets. The resonance pole position 𝑠 = (𝑀𝑅+𝑖Γ𝑅/2)2

with mass 𝑀𝑅 and width Γ𝑅 lies above the cut and away from the real axis. As sketched in Fig. 1,
bound states can also occur on the real axis. These typically appear on the physical sheet where
Im[𝑘 (𝑠)] > 0. Here 𝑘 is defined by the relation

√
𝑠 =

√︃
𝑘2 + 𝑚2

1 +
√︃
𝑘2 + 𝑚2

2 for scattering of two
particles with masses 𝑚1 and 𝑚2. Bound states may also appear on the unphysical sheet where
Im[𝑘 (𝑠)] < 0 as virtual bound states.

In lattice QCD, the finite volume obscures resonance poles, branch cuts, and multiple Riemann
sheets. Instead, a discretized energy spectrum can be calculated. This process involves defining
an interpolator basis incorporating all single- and multi-hadron states in the resonance system.
For instance, for a mesonic vector resonance like the 𝐾∗(892), vector bilinears and two-hadron 𝐾𝜋
interpolators with various meson momenta must be included to have overlap with all low-lying states
in the system. After computing correlation functions for all interpolators, solving a generalized
eigenvalue problem (GEVP) [1–3] yields optimized correlators from which the lowest-lying states
of the discretized spectrum can be extracted.

This finite-volume spectrum differs from the spectrum of energies for non-interacting particles.
Lüscher [4–6] demonstrated that these finite-volume energy shifts represent predictable imprints of
the finite volume on the spectrum, directly relating it to the infinite-volume scattering phase shift
𝛿ℓ (

√
𝑠). Originally derived for two identical particles at rest, this formalism has been extended for

broader cases [7–15]. While lattice phase shift predictions occur at discrete energies
√
𝑠 = 𝐸cm, a
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From scattering towards multi-hadron weak decays

Figure 1: Complex plane of the Mandelstam variable 𝑠, illustrating possible pole singularities of the
scattering amplitude. Sheets are distinguished by the imaginary part of 𝑘 . The left plot shows the physical
sheet where bound states occur on the real axis. The right plot shows the unphysical sheet where resonances
appear above the branch cut and bound states may manifest as virtual bound states.

continuous description of the phase shift can be achieved through fitting of a model to this data.
See Refs. [16, 17] for recent reviews.

The structure of the remainder of this document is as follows: In Section 2, I will review recent
developments in scattering computations and advancements in formalism. Section 2.4 focuses on
a calculation of the 𝜌 and 𝐾∗ resonances at physical pion masses, a project I co-authored. The
review then progresses with a discussion of works related to processes involving electroweak matrix
elements in Section 3. Finally, I will conclude with a brief outlook in Section 4.

2. Recent scattering works

A clear indication of the growing importance of scattering in lattice QCD is that Lattice 24
featured two separate plenary talks on the subject. This allowed me to delve deeply into many
of the recent exciting developments, while the other presentation focused on progress related to
exotic states. For a more comprehensive overview of recent advancements in scattering, I encourage
readers to also read N. Mathur’s proceedings [18]. For works that precede the ones covered in these
proceedings the reader is refered to A. Hanlon’s proceedings [19] on scattering for the Lattice 23
conference. I will also not cover works that have first appeared after my plenary talk.

2.1 Various two-particle scattering works

At the 𝑆𝑈 (3)𝐹 symmetric point, where the light and strange quark masses are equal, i.e.,
𝑚𝑢 = 𝑚𝑑 = 𝑚𝑠, a study was conducted on elastic S-wave scattering of a charmed meson with a
light pseudoscalar meson (𝜋/𝐾) in the 𝐽𝑃 = 0+ channel [20]. The analysis employed three lattice
volumes with 𝑀𝜋 ∼ 700 MeV. The high symmetry present at the 𝑆𝑈 (3)𝐹 point results in three
relevant sectors in the flavour representation: 3, 6, 15. Utilising an extensive basis of interpolating
operators, the authors identified a deeply bound state corresponding to the 𝐷∗

𝑠0(2317) in the 3
sector. Additionally, a virtual bound state was observed in the 6 sector, located within the region

3
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Figure 2: Scattering amplitudes for the charmonium resonances computed in [25, 26]. The left plot shows
the 𝐽𝑃𝐶 = 0++ and the right plot shows the 𝐽𝑃𝐶 = 2++ channel. Shaded bands are the envelope over fit
variations to the energy levels shown as black dots at the bottom of the plots.

of 2510 − 2610 MeV. While direct conclusions regarding physical-point scattering cannot be easily
drawn from this analysis, such studies offer valuable insights into the influence of flavour symmetries
on particle dynamics.

Another study investigated 𝐷𝜋 scattering away from this symmetry point [21]. The authors
explored several pion masses ranging from 132 MeV to 317 MeV which means that they, for the
first time in this channel, included physical pion masses in their analysis. However, at the physical
point, the results exhibit very large uncertainties. By comparing their findings with previous works
in this channel [22–24], the pion mass dependence of the pole position was mapped out. The results
confirm that (virtual) bound states appear in the channel for 𝑀𝜋 ≳ 300 MeV, while resonances are
observed for 𝑀𝜋 ≲ 270 MeV.

Furthermore, a computation has appeared of 𝜒𝑐0, 𝜒𝑐2 charmonium resonances [25, 26]. These
channels are interesting due to experimental discoveries and puzzles like the 𝑋 (3872) at Belle [27]
or the 𝑍𝑐 (3900) at BESIII [28] and Belle [29]. Despite challenges due to the very high density of
scattering channels, the lattice study found that the Lüscher method with its extensions continued to
work well, and found interactions in quark-disconnected channels (like 𝐽/Ψ −𝜔) much suppressed
when compared to interactions in quark-connected channels (like 𝐷𝐷̄, 𝐷𝑠𝐷̄𝑠). They found a single
resonance pole in 𝐽𝑃𝐶 channels 0++ and 2++ coupled to multiple channels, shown in Fig. 2. Two
extra states so far unobserved (but not unexpected) were found in 2−+ and 3++.
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2.2 The tetraquark 𝑇+
𝑐𝑐 (3875)

The tetraquark𝑇+
𝑐𝑐 (3875), an exotic state, was discovered by LHCb in 2022 [30]. It is positioned

very close to the 𝐷𝐷∗ threshold:

𝑀𝑇+
𝑐𝑐

− (𝑀𝐷∗+ + 𝑀𝐷0) = −0.27(6) MeV . (3)

The𝐷∗ resonance is remarkably narrow, with a width of Γ𝐷∗+ ∼ 80 keV and a mass of𝑀𝐷∗+ ∼ 2 GeV.
The sole observed decay mode for the tetraquark is 𝑇+

𝑐𝑐 (3875) → 𝐷0𝐷0𝜋+, making it a prime
candidate for applying three-particle scattering formalisms [31].

For lattice QCD practitioners, this distinct hierarchy of scales suggests that for slightly heavier-
than-physical pions 𝑀𝜋 ≳ 150 MeV, the 𝐷∗ becomes a stable resonance, effectively approximated
by a vector-like bilinear interpolator using the narrow-width approximation. A first computation
using this approach appeared in 2022 [32] and was soon followed by other studies [33, 34]. Notably,
the pole position of the 𝑇𝑐𝑐 lies near the left-hand branch cut associated with one-pion exchange,
potentially leading to significant finite-volume effects not accounted for in the Lüscher formalism.
This challenge was first encountered earlier in the H-dibaryon spectrum [35].

This issue has prompted refinements of the Lüscher method to account for the left-hand cut
explicitly. One solution [36] modifies the formalism by more carefully projecting onto on-shell
intermediate states, yielding a modified quantization condition involving a K-matrix free of the cut.
The physical scattering amplitude is then reconstructed using integral equations. An alternative
approach [37], also presented at the conference, similarly separates long-range and short-range
components in the derivation and arrives at an analogue of the intermediate K-matrix. In this
second approach, the K-matrix can be related to the physical scattering amplitude via an algebraic
relation, so the necessity to solve integral equations is avoided. Yet another approach tailored to
the 𝑇𝑐𝑐 [31] uses a three-particle formalism that sidesteps the left-hand cut issue by allowing pion
exchange between the 𝐷 and 𝐷∗. This approach has been numerically implemented [38], showing
good agreement with lattice data [32] and phase shifts from the three-particle formalism. Their plot
comparing their solution to lattice data is shown in Fig. 3a.

Additional strategies to address the issue include incorporating a local diquark-antidiquark
operator [40], which modestly affects the pole position, enhancing the system’s attraction. This
effect is more pronounced for the 𝑏-quark system with the 𝑇𝑏𝑏 tetraquark. Another study [41],
conducted at 𝑀𝜋 = 280 MeV across five charm-quark masses bracketing 𝑚

phys
𝑐 , employed an

S-wave fit to the Lippman-Schwinger equation with an EFT potential that incorporates the left-
hand cut. At the physical charm-quark mass they find a resonance pole, that becomes a bound
state for higher heavy-quark mass. A similar transition from resonance to bound state was known
from earlier studies on ensembles with smaller light-quark masses but at the physical charm-quark
mass [32–34].

Further insights into the 𝑇𝑐𝑐 were gained from a coupled-channel 𝐷𝐷∗, 𝐷∗𝐷∗ scattering
analysis [42]. This study identified two poles in the S-wave: a virtual bound state consistent with
the 𝑇𝑐𝑐 found in single-channel analyzes and a resonance below the 𝐷∗𝐷∗ threshold, referred to
as 𝑇 ′

𝑐𝑐, which primarily couples to the 𝐷∗𝐷∗ S-wave channel but also influences the 𝐷𝐷∗ S-wave
amplitude.
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(a) Three-particle solution from [38] which they comapre
to the data of [32]. Shown is 𝑞 cot 𝛿 as a function of energy,
with the bottom plot a zoom-in of the top one. Crucially,
no pole appears left of the 𝐷𝐷∗ threshold.
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(b) Pole position of the 𝜔 meson calculated in [39]. Ex-
trapolations of the two calculated pole position using an
effective field theory inspired method (EFT4) overlap with
the experimental result.

Figure 3: Plots from the 𝑇𝑐𝑐 and 𝜔 works involving 3-particle formalisms.

2.3 Three-particle scattering

Finite-volume scattering formalisms were initially developed for systems involving two parti-
cles. However, several formalisms for three-particle scattering have been available for some time
now [43–48]. For a detailed discussion and comparison of the three available approaches, which
are mutually compatible where a comparison is applicable, the reader is referred to recent reviews
on three-particle formalisms [49, 50].

Recent formal advancements presented at the conference included an extension of the three-
particle formalism to multiple channels of distinct particles, illustrated using the 𝜂𝜋𝜋+𝐾𝐾𝜋 system
in isosymmetric QCD [51]. Additionally, the first implementation of the previously derived [52]
three-neutron quantization condition was presented [53], marking a significant step towards a deeper
understanding of three-nucleon forces and ultimately contributing insights into the properties of
neutron-rich nuclei. Furthermore, a first implementation of the previously derived relativistic-
field-theory finite-volume formalism across all three-pion isospin channels [54] was introduced.
Previously, this quantization condition had only been implemented for maximal isospin, corre-
sponding to the case of three identical 𝜋+ mesons.

Numerical implementations of three-particle scattering studies were also presented for various
three-meson scattering amplitudes, including one work calculating 𝐾𝐾𝐾 , 𝐾𝐾𝜋, 𝐾𝜋𝜋, and 𝜋𝜋𝜋,
all at physical quark masses and maximal isospin (where all particles carry positive charge) [55].
Additionally, the first calculation of the 𝜔(782) meson, a three-particle resonance in the isoscalar
channel, was reported [39]. The 𝜔 meson primarily decays to three pions (𝜔 → 3𝜋), though two
of these pions can couple to the 𝜌 meson, making 𝜔 → 𝜌𝜋 another decay channel that needs to

6
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be accounted for explicitly. This work was conducted on four CLQCD ensembles, using a single
lattice spacing and two different volumes at pion masses of 𝑀𝜋 = 210 MeV and 𝑀𝜋 = 300 MeV.
The pole positions of the 𝜔 were determined on all ensembles using various EFT-inspired fits, with
extrapolations to the physical pion mass compared to experimental values - shown in Fig. 3b. Good
agreement was found for one of the fit forms. The study also included an analysis of the 𝜌 → 2𝜋
channel, and the 𝜔 − 𝜌 mass splitting was determined to be 29(15) MeV.

2.4 Physical-point 𝜌 and 𝐾∗ resonances

A recently published study (of which I am a co-author) focused on the 𝜌(770) and 𝐾∗(892)
mesonic resonances [56, 57]. While these resonances have been extensively investigated in the
past, our work’s calculations were performed using light and strange quarks at physical masses,
albeit limited to a single lattice spacing. Additionally, we developed an extension to data-driven
formalisms, enabling us to report both statistical and systematic uncertainties for the final resonance
pole positions. All correlator data generated for this study has been made publicly available [58] as
a 760 GB dataset.

The data production employed the distillation method [59, 60] and has been performed using
the Grid [61] and Hadrons [62] software frameworks. These tools, developed in part by the authors
of [56, 57], are open-source and thoroughly documented [63]. Distillation allows one to effectively
compute all two-point correlation functions from a basis of interpolating operators, including vector
bilinears:

𝑂𝑉 (𝑥) ∼ 𝑞𝑉 (𝑥)𝛾𝑞′𝑉 (𝑥), 𝑉 ∈ 𝜌+, 𝐾∗+, (4)

as well as two-bilinear operators:

𝑂𝑀𝑀′ (𝑥, 𝑦) ∼ 𝑞1(𝑥)𝛾5𝑞2(𝑥) 𝑞′1(𝑦)𝛾5𝑞
′
2(𝑦), 𝑀𝑀 ′ ∈ 𝜋𝜋, 𝐾𝜋 , (5)

where each meson is projected to individual definite spatial momenta. Because the lattice has
reduced cubic symmetry, correlation functions are projected into irreducible representations (irreps)
of the cubic group, denoted by Λ. Correlators in all irreps are assembled into matrices:

𝐶Λ
𝐴𝐵 (𝑡, 𝑡

′) = ⟨𝑂Λ
𝐴(𝑡)𝑂

Λ
𝐵 (𝑡′)†⟩ , (6)

where 𝐴, 𝐵 are generic labels for 𝑉, 𝑀𝑀 ′. In our setup we compute the correlation functions from
all 𝑁𝑇 = 96 source times 𝑡′ and define

𝐶Λ
𝐴𝐵 (𝑡) =

1
𝑁𝑇

∑︁
𝑡 ′
𝐶Λ
𝐴𝐵 (𝑡 − 𝑡

′, 𝑡′) . (7)

From these matrices, effective masses and energy levels of the finite-volume spectrum in the irrep
Λ can be extracted by solving the generalized eigenvalue problem (GEVP) [1–3]

𝐶Λ(𝑡)𝑢Λ𝑛 (𝑡) = 𝜆Λ𝑛 (𝑡)𝐶Λ(𝑡0)𝑢Λ𝑛 (𝑡) , (8)

This results in 𝑛op generalized eigenvalues 𝜆𝑛 (𝑡) and eigenvectors 𝑢𝑛 (𝑡), with mild dependence on
𝑡0. The eigenvalues 𝜆Λ𝑛 (𝑡) correspond to optimized interpolators, which couple effectively to state
𝑛 and allow extraction of both ground and excited states.

7
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Figure 4: Effective masses of the two lowest GEVP eigenvectors in the P = [110] frame, 𝐵1 irrep in the 𝐾𝜋
scattering system. The overlaid bands correspond to our fit result for the combined systematic and statistical
error, estimated from the weighted histogram plotted at the left-hand side of the plot.

To simplify notation, we omit the irrep index Λ in the following discussion. Correla-
tion functions are computed across five momentum frames, with lattice momenta ranging from
0 ≤ P2 ≤ 4(2𝜋/𝐿)2. Within these frames, we consider all irreps coupling exclusively to the ℓ = 1
or 𝑃-wave in the partial wave expansion.

The effective masses for the two lowest states in a selected irrep are shown in Fig. 4. Each
level’s estimator, which covers statsitical and systematic uncertainty, is determined from a weighted
histogram of fit results within reasonable bounds, described further in [56]. The weight associated
with each fit result entering the histogram is defined by:

𝑤corr = 𝑒
− 1

2 AICcorr (9)

where the Akaike information criterion (AIC) [64, 65] is given by:

AICcorr = 𝜒
2 − 2𝑛par − 𝑛data , (10)

for a fit to 𝑛data points with 𝑛par parameters and chi-squared 𝜒2. This data-driven approach
has been recently employed [66] to systematically determine errors on fit-range choices with
minimal human intervention. Due to the structure of the Lüscher formalism, extracting scattering
information requires using the computed energy levels as input for a second fit to a phase shift
model. We employed both Breit-Wigner and effective range expansion models for this purpose.
Performing a phase shift fit for a single sample of energy levels (i.e. one estimator per energy level)
allows straightforward statistical error propagation via the bootstrap method. However, propagating
systematic errors is more complex: In an idealistic method, all combinations of underlying correlator
fits would be used, weighted by a combined AIC score to obtain the final result. Given approximately
𝑂 (20) energy levels, each estimated by a histogram over𝑂 (100) correlator fits, the number of phase
shift fits in this ideal method would be 𝑛ideal ∼ 10020, making direct computation infeasible.

Our solution involves importance sampling. For each energy level, we randomly draw a
representative fit, with the likelihood of selection determined by 𝑤corr. A full set of these fits
constitutes a collection sample 𝑠. For each sample, we perform a phase-shift fit and compute an

8



P
o
S
(
L
A
T
T
I
C
E
2
0
2
4
)
0
1
6

From scattering towards multi-hadron weak decays

5.075 6.025

0.1

0.2

B
W

g

model avg.

0.515 0.522

0.1

0.2

am

model avg.

−33.75 −21.25

0.1

0.2

E
R

E

run1

run2

run3

run4
a−3a1

model avg.

2.075 3.225

0.1

0.2

r1

model avg.

(a) Weighted histograms displaying the distribution of the 𝐾∗ phase-
shift fit parameters in lattice units are presented. The top row shows
the Breit-Wigner parameters 𝑔 and 𝑚, while the bottom row illustrates
the effective range expansion parameters 𝑎1 and 𝑟1. The four runs
represent variations in the fit ranges used for the underlying correlator
fits, which are combined to obtain the final result. Further details can
be found in [56].
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(b) 2D histogram of the resonance pole posi-
tions in the complex plane, presented in lattice
units, for both the𝐾∗ and 𝜌 resonances. These
positions are determined by solving Eq. (2)
using a phase shift parametrization derived
from the parameters shown in Fig. 5a. The
grayscale shading represents the weighted fre-
quency of each bin.

Figure 5: Histograms of the final results of the 𝐾∗ and 𝜌 scattering study. Figures taken from [56, 57]

associated AIC score, AICPS. Repeating this process across multiple samples allows us to explore
the fit space systematically. A histogram of phase shift parameters, such as the mass𝑚 and coupling
𝑔 in a Breit-Wigner fit, is then produced. Since the underlying data was already weighted by 𝑤corr,
applying an additional weight 𝑤PS derived from AICPS results in a total weight AICtot. In the infinite
sampling limit, this approach converges to the ideal AIC score AICideal. The histograms obtained
for 𝐾𝜋 scattering phase-shift parameters are shown in Fig. 5a. Resonance pole positions can then
be determined by solving Eq. (2) for the parameterized phase shift 𝛿(

√
𝑠), as shown in Fig. 5b.

Since our study is limited to a single lattice spacing, the pole positions exhibit discretization effects.
Ideally, these effects would be quantified by repeating the analysis on multiple lattice spacings. In
the absence of such data, we estimate discretization effects conservatively using a power-counting
argument. At approximately the 5% level, these effects dominate the uncertainty in our final results.
Our final results for the𝐾∗ and 𝜌 pole positions show good agreement with experimental values [67].
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3. Electroweak matrix elements

Lattice scattering computations, such as those described above, are valuable both for producing
results testable against experiments and for predicting new QCD states. An especially intriguing
application involves studying processes that involve an electroweak matrix element with multi-
hadron final or intermediate states. The foundation for relating finite-volume and infinite-volume
transition matrix elements originates from the work of Lellouch and Lüscher [68], who examined
the hadronic 𝐾 → 𝜋𝜋 decay. This formalism was later expanded to handle states with non-zero
total momentum in finite volume, particles with intrinsic spin, and coupled two-particle channels
involving non-identical and non-degenerate particles [8, 13, 14, 69, 70].

A further significant extension is the formalism for 1 + J → 2 transitions [71–73], describing
processes where an external current is involved, enabling the extraction of resonance form factors.
Frameworks for 2+J → 2 transitions have been developed [74–76], although no numerical results
have yet been published.

In the following, I will review the current progress in computations using these formalisms and
discuss new studies presented at the conference.

3.1 Hadronic decays

One of the most detailed lattice QCD studies of multi-hadron weak decays is the 𝐾 → 𝜋𝜋

calculation by the RBC/UKQCD collaboration [77]. This channel is particularly significant because
it enables the determination of the direct kaon CP-violation parameter 𝜖 ′. In their most recent
published result, they resolved a long-standing puzzle by including a lattice calculation directly at
the physical pion mass. Experimentally, the ratio of the real parts of the 𝐾 → 𝜋𝜋 amplitudes 𝐴𝐼 for
the isospin channels 𝐼 = 0, 2 is measured as Re(𝐴0)/Re(𝐴2) = 22.45(6), with 𝐴0 being significantly
enhanced compared to 𝐴2. This phenomenon is referred to as the Δ𝐼 = 1/2 rule and has long posed
a challenge for perturbative approaches, which underestimate the ratio by approximately a factor
of 10. The lattice computation revealed that Re(𝐴2) is highly sensitive to the light-quark mass
due to significant cancellations of leading contributions at physical kinematics. Only by directly
simulating at the physical pion mass, 𝑀phys

𝜋 , were they able to reproduce the experimental ratio,
obtaining Re(𝐴0)/Re(𝐴2) = 19.9(2.3) (4.4), thus providing an explanation for the discrepancy.

At this year’s conference, two independent updates on the calculation of 𝜖 ′ were presented,
both by the RBC/UKQCD collaboration. The first approach [78] builds on the existing calculation
by introducing a second, finer lattice spacing. It uses G-parity boundary conditions to avoid the
need for explicitly removing certain multi-hadron states that could introduce growing exponential
contributions. Ensemble generation for this study has progressed sufficiently for measurements to
be underway, targeting a precision of 10%.

The second approach [79] uses periodic boundary conditions and employs the GEVP method, to
determine the excited-state spectrum and account for them explicitly in the finite-volume formalism.
Preliminary results were presented using two lattice spacings, with ongoing efforts to include a third,
finer one.
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3.2 1 + J → 2 transitions

Finite-volume matrix elements describing a 1+ J → 2 transition can be expressed in terms of
a "finite-volume form factor" [80]

⟨𝑛,P 𝑓 |𝐽𝜇 |P𝑖⟩𝐿 =
1
𝐿3

1
√

2𝐸𝑖

1
√

2𝐸𝑛
K𝜇F𝐿 , (11)

where P𝑖 and P 𝑓 are the initial and final momenta, and ⟨𝑛,P 𝑓 | represents an optimized resonance
state obtained from a GEVP scattering analysis. K𝜇 is a kinematic factor, and the finite-volume
form factor F𝐿 is related to its infinite-volume counterpart F through the Lellouch-Lüscher factor.·

Initial applications of this formalism explored the 𝜋𝛾 → 𝜋𝜋 transition [81, 82]. More recently,
a study of the 𝐾𝛾 → 𝐾𝜋 transition appeared as well [83]. At this year’s lattice conference, progress
on a study of nucleon transition matrix elements ⟨𝑁𝜋 |𝐽 |𝑁⟩ at a single lattice spacing with𝑀𝜋 = 420
MeV was presented [84]. They presented an impressive improvement in matrix element extraction
by using the GEVP method. This calculation is highly relevant for comparisons with experimental
results from DUNE, Hyper-Kamiokande, and other experiments. Another independent effort [85]
reported progress on the 𝑁𝛾∗ → 𝑁𝜋 transition using two ensembles at the physical pion mass.
Preliminary results were compared with ANL-Osaka experimental data.

Progress has also been made on the 𝐵 → 𝜌ℓ𝜈 decay, with the calculation recently com-
pleted [86]. This channel requires extracting four form factors from vector and axial-vector currents:

⟨𝑛; p𝜋𝜋 |𝐽𝑉 |𝐵, p𝐵⟩𝐿 = C𝜇
𝑉
𝐹𝑉 (𝐿) , (12)

⟨𝑛; p𝜋𝜋 |𝐽𝐴|𝐵, p𝐵⟩𝐿 =

2∑︁
𝑖=0

C𝜇
𝐴𝑖
𝐹𝐴𝑖

(𝐿) . (13)

A significant challenge in this calculation arises from the lattice discretization of the heavy 𝑏-quark.
This is addressed using an anisotropic Clover action which requires careful parameter tuning to
minimize heavy-quark discretization errors. Further details on heavy-quark discretizations can
be found in the quark flavour physics proceedings by J.T. Tsang [87]. This 𝐵 → 𝜌ℓ𝜈 study was
performed at 𝑀𝜋 = 317 MeV, a pion mass heavier than physical, but light enough for the 𝜌 to remain
unstable and decay into two pions. All four form factors were extracted in the high-𝑞2 region where
lattice data is available and are shown in Fig. 6.

This work opens the path towards computing semileptonic 𝐵 → 𝐾∗ℓ+ℓ− decays, which require
seven form factors to be described. These decays are crucial in the context of the so-called 𝐵

anomalies. Experimental results from the LHCb collaboration for 𝑏 → 𝑠ℓ+ℓ− rare decays, such
as 𝐵 → 𝐾 [88], 𝐵𝑠 → 𝜙 [89], and 𝐵 → 𝐾∗ [90], consistently lie below theoretical predictions,
especially in the low 𝑞2 region which is less accessible for lattice computations and where predictions
often rely on light-cone sum rules. A recent HPQCD result on 𝐵 → 𝐾 rare decay form factors [91],
extending into the low 𝑞2 region, has reinforced the tensions with experimental data. Applying the
techniques employed in [86] to the 𝐵 → 𝐾∗ decay channel could play a decisive role in investigating
these anomalies and searching for potential signs of new physics.

3.3 Long-range electroweak matrix elements

Another important application is the extraction of long-range electroweak matrix elements,
which requires a detailed understanding of strongly-coupled intermediate multi-hadron states. Ex-
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Figure 6: The four form factors describing the 𝐵 → 𝜌ℓ𝜈 transtion as shown in [86]. Lattice data is available
at the high-𝑞2 region, between the black vertical lines. The lighter shaded region outside these lines is an
extrapolation from the lattice data on the first-order 𝑧-expansion.

tensions of the Lüscher formalism were initially developed for rare kaon decays [92] and kaon
mixing [93], later generalized for broader applications [94], but also for explicit decays like the rare
hyperon decay Σ+ → 𝑝ℓ+ℓ− [95]. In this decay the lattice computation aims to extract the decay
amplitude

A𝑟𝑠
𝜇 =

∫
𝑑4𝑥 ⟨𝑝, 𝑟 |𝑇 [H𝑊 (𝑥)𝐽𝜇 (0)] |Σ+, 𝑠⟩ , (14)

involving a time-ordered product of the weak Hamiltonian H𝑊 and the electromagnetic current 𝐽𝜇,
with 𝑟, 𝑠 denoting the spinor indices of the baryon states.

The finite-volume estimator of this amplitude

𝐹𝜇 (k, p)𝐿 =
∑︁
𝑛

𝐶𝑛,𝜇

2𝐸𝑛 (𝐿)
(
𝐸Σ − 𝐸𝑛 (𝐿)

) + . . . (15)

contains poles when a finite-volume energy state 𝐸𝑛 (𝐿′) equals 𝐸Σ for some 𝐿′. The full amplitude
in Eq. (14) can be recovered from the finite-volume estimator by including an additive correction
term

Ã𝜇 (𝑘, 𝑝) = 𝐹𝜇 (k, p)𝐿 + Δ𝐹𝜇 (k, p)𝐿 , (16)

Δ𝐹𝜇 (k, p)𝐿 = 𝑖A𝐽𝜇 (𝐸Σ, k, p)F (𝐸Σ, k, 𝐿)A𝐻𝑊
(𝐸Σ, k) , (17)

where Δ𝐹𝜇 depends on the Σ → 𝑁𝜋 amplitude A𝐻𝑊
, the 𝑁𝜋 → 𝑁𝜋 scattering amplitude, to

which F is directly related, and the 𝑝 → 𝑁𝜋 amplitude A𝐽𝜇 .
These methods have been successfully applied to rare kaon decays, first at 𝑀𝜋 ∼ 430 MeV [96]

and later at the physical pion mass [97]. However, the latter calculation faced large errors due
to cancellations in the GIM subtraction of up and charm quarks. Recent progress includes the
application of the split-even approach [98, 99] to rare kaon decays [100], showing error reductions
of a factor of 4 to 10.
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A recent calculation explored the long-distance contribution to the kaon-mixing CP-violation
parameter 𝜖𝐾 [101]. While experimentally measured with high precision, the theoretical determi-
nation is complicated by long-distance effects. This exploratory study, performed at unphysical
light and charm quark masses, achieved a 40% accuracy for 𝜖𝐾 . However, the authors outline a path
for future improvements, aiming to reduce the uncertainty to 10% or lower.

Another investigation focused on the processes 𝐵 → 𝜇+𝜇−𝛾, currently being searched for
at LHCb [102], and 𝐵𝑠 → 𝜙𝛾 [103]. The authors presented the vector, axial, and tensor form
factors governing the transitions in the electroquenched approximation, while also suggesting
methods to extend beyond this approximation. The phenomenologically significant charming
penguin contributions were modeled as part of the study.

Furthermore, significant progress was reported on the first application of a novel formalism
for computing the two-photon exchange contribution to 𝐾𝐿 → 𝜇+𝜇− [104]. Initial results for the
amplitude were obtained on an ensemble with near-physical pion mass and a coarse lattice spacing,
with plans to extend the calculation using finer lattice spacings in the future.

3.4 Long-distance contribution to the muon 𝑔 − 2

Another important area where electroweak transition matrix elements involving scattering
states have played a significant role is the muon 𝑔−2, discussed in detail in the plenary proceedings
by C. Davies [105]. This quantity is derived from an integral over the vector-vector correlator.
Achieving the unprecedented precision required for 𝑔 − 2 calculations in lattice QCD involves
different challenges across the short-distance, intermediate-distance, and long-distance components
of the vector-vector correlator. Specifically, the long-distance contribution faces an exponential
signal-to-noise problem, but it can be reconstructed from 𝜋𝜋 scattering states [106, 107]

𝐺 (𝑡) =
𝑁∑︁
𝑛=0

⟨𝐸𝑛, 𝐿 |𝐽 (𝑡) |0⟩𝑒−𝐸𝑛𝑡 , (18)

where the finite-volume energy states ⟨𝐸𝑛, 𝐿 | are obtained from a GEVP analysis of 𝜌 → 𝜋𝜋

scattering. This precise estimation method has been employed in the most recent long-distance
𝑔 − 2 calculations by the Mainz group [108] (shown in Fig. 7a) and RBC/UKQCD [109] (shown
in Fig. 7b). Additionally, Mainz presented related progress on the extraction of the timelike pion
form factor [110] at the physical pion mass.

4. Outlook

A deep understanding of multi-hadron scattering is essential for lattice QCD computations
aiming to provide rigorous tests of the Standard Model through comparison with experimental
measurements. Two landmark examples of such calculations are hadronic 𝐾 → 𝜋𝜋 decays and
the muon 𝑔 − 2, both of which incorporate hadron scattering as a key component while also
controlling the chiral-continuum extrapolation and presenting a complete error budget - a necessity
for comparison with experimental results.

It is encouraging to witness both a surge in new scattering calculations and the continuous
development and application of finite-volume formalisms, allowing a broader range of processes,
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Figure 7: Plots displaying the reconstructed 𝑔 − 2 integrand from Mainz [108] and RBC/UKQCD [109],
both computed on ensembles with physical pion masses. In both cases, the reconstructed integrand closely
matches the direct lattice calculation of the vector-vector correlator, shown as black (Mainz) and purple
(RBC/UKQCD) data points. At large time separations, the reconstructed approach avoids the exponential
signal-to-noise problem, yielding a highly precise estimator for the integrand.

including those involving three hadrons, to be treated rigorously. Additionally, an increasing number
of computations are being performed directly at physical quark masses, a critical factor for drawing
reliable conclusions from comparisons with experimental data.

As scattering computations reach this level of maturity, it will become increasingly important
to establish quality criteria, similar to those employed by FLAG [111], to ensure control over
the underlying scattering states. With non-perturbative QCD results playing a growing role in
precision physics and the lattice QCD community expanding the scope and applicability of scattering
calculations, I am optimistic about the coming years, where lattice QCD will be a decisive tool in
the search for physics beyond the Standard Model.
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