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Hadron structure via GPDs Shohini Bhattacharya

1. Introduction

Figure 1: Hierarchy of parton distri-
butions, emphasizing the central role
of GPDs in bridging parton distribu-
tion functions (PDFs) and form factors
(FFs).

The non-perturbative structure of nucleons is encoded
in various distribution functions, each offering a different
perspective on how quarks and gluons are arranged within
nucleons. The most fundamental are parton distribution func-
tions (PDFs), which provide a one-dimensional view of how
partons carry momentum along the nucleon’s longitudinal
direction. Moving beyond this, form factors (FFs) extend
the picture to two dimensions, revealing, for instance, how
charge distributions vary spatially within the nucleon. How-
ever, to fully capture the complexity of parton dynamics, we
need even more detailed distributions.

This is where transverse momentum-dependent distri-
butions (TMDs) and generalized parton distributions (GPDs)
come into play. TMDs unravel the intricate motion of partons
in both longitudinal and transverse momentum space, while
GPDs bridge the gap between PDFs and FFs by encoding cor-
relations between momentum and spatial distributions. All
the physics embedded in these distributions can be recon-
structed from a more general class of functions known as generalized TMDs (GTMDs) or Wigner
functions, which provide the most comprehensive description of parton correlations. Mapping
these distributions is a central goal of nucleon structure studies, which we aim to achieve with the
Electron-Ion Collider (EIC). Currently under construction at Brookhaven National Laboratory, the
EIC will be a state-of-the-art facility for exploring quark and gluon dynamics in nucleons with
unprecedented precision. Complementing these experimental efforts, lattice QCD provides first-
principles calculations that offer crucial insight, particularly for quantities that are difficult to access
experimentally.

As shown in Fig. 1, the hierarchical connections between these distributions are crucial for
developing a complete understanding of nucleon structure. In these proceedings, we focus on GPDs,
a powerful tool for nucleon tomography, among other key aspects that we will discuss below.

2. Generalized Parton Distributions: Definition and Motivation

We start by recalling the definition of light-cone GPDs that specify the state of quarks inside a
spin-1/2 nucleon. A light-cone GPD correlator for quarks is defined through the Fourier transform
of off-forward matrix elements of non-local quark fields (see for instance Ref. [1]). The definition
reads:

𝐹 [Γ] (𝑥,Δ;𝜆, 𝜆′) = 1
2

∫
𝑑𝑧−

2𝜋
𝑒𝑖𝑘 ·𝑧 ⟨𝑝′;𝜆′ |𝜓̄(− 𝑧

2 ) ΓW(− 𝑧
2 ,

𝑧
2 )𝜓(

𝑧
2 ) |𝑝;𝜆⟩

����
𝑧+=0,®𝑧⊥=®0⊥

. (1)

Color gauge invariance of this non-local quark-quark correlator is enforced by the Wilson line:

W(− 𝑧
2 ,

𝑧
2 )

����
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= P exp
(
− 𝑖𝑔
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. (2)
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In Eq. (2), 𝑔 represents the strong coupling constant, and 𝐴+ is the light-cone plus component of the
gluonic field. The incoming (outgoing) nucleon state in Eq. (1) is specified by its four-momentum
𝑝 (𝑝′) and helicity 𝜆 (𝜆′). The kinematical variables of interest are given by:

𝑃 =
1
2
(𝑝 + 𝑝′), Δ = 𝑝′ − 𝑝, 𝜉 =

𝑝′+ − 𝑝+

𝑝′+ + 𝑝+
, 𝑡 = Δ2. (3)

Here, 𝑃 represents the average momentum of the nucleon, Δ quantifies the momentum transfer, 𝜉,
the skewness variable, describes the longitudinal momentum transfer, and 𝑡 is the usual Mandelstam
variable that characterizes the squared momentum transfer. Depending on the gamma matrix Γ that
is sandwiched between the quark fields in Eq. (1), different GPDs emerge, each encoding distinct
information about quarks inside nucleons. At twist-2, the choices Γ = 𝛾+, 𝛾+𝛾5, 𝑖𝜎

𝑗+𝛾5 (where 𝑗 is
a transverse index) span a total of eight GPDs. More specifically: Unpolarized quark distributions
(𝐻, 𝐸) are obtained from the vector projection 𝛾+. Longitudinally polarized quark distributions
(𝐻, 𝐸) arise from the axial-vector projection 𝛾+𝛾5. Transversely polarized quark distributions
(𝐻𝑇 , 𝐸𝑇 , 𝐻𝑇 , 𝐸𝑇 ) are derived from the tensor projection 𝑖𝜎 𝑗+𝛾5. A generic GPD is a function of
the variables (𝑥, 𝜉, 𝑡), where 𝑥 denotes the average longitudinal momentum fraction, while 𝜉 and 𝑡

are the previously defined momentum transfer variables.
There are several compelling reasons to study GPDs. First, for certain kinematic regimes,

the Fourier transforms of GPDs can be related to impact parameter distributions, which describe
the spatial density of partons inside nucleons in a combined one-dimensional momentum and two-
dimensional spatial representation. This is known as nucleon tomography, a major motivation for
studying GPDs. Recently, high-resolution lattice calculations of these impact parameter distribu-
tions have provided unprecedented insights (see Ref. [2]). At the very least, such studies allow us to
examine the differences between up-quark and down-quark distributions inside nucleons, shedding
light on their internal structure with remarkable detail.

Second, one can also gain insights into the angular momentum distribution of partons inside
nucleons, which is essential for fully understanding the nucleon’s spin structure. As noted in
Ref. [3], the total angular momentum of quarks, for instance, can be related to specific moments of
the GPDs: 𝐽𝑞 =

∫ 1
−1 𝑑𝑥 𝑥 (𝐻

𝑞 + 𝐸𝑞) |𝑡=0.
Third, very interestingly, one can also gain insight into the mechanical properties of nucleons.

For example, what are the pressure and shear forces experienced by quarks inside nucleons? The
fundamental object that addresses these questions is the so-called Energy-Momentum Tensor, which
can be parameterized in terms of gravitational form factors (GFFs). These form factors provide
a window into the mechanical structure of protons, illustrating how they would interact with
gravitons. Of course, in nature, we cannot scatter protons off gravitons in experiments. However,
we can indirectly infer their mechanical structure by exploiting the connections between GFFs and
GPDs [4]. GFFs are simply certain moments of GPDs. For instance, we have relations such as
𝐴(𝑡) + 𝜉2𝐷 (𝑡) =

∫ 1
−1 𝑑𝑥 𝑥𝐻 (𝑥, 𝜉, 𝑡), where 𝐴(𝑡) and 𝐷 (𝑡) are GFFs. This connection allows us to

probe fundamental aspects of nucleon structure that would otherwise be inaccessible.
Lastly, recent studies have uncovered previously unexplored connections between chiral and

trace anomalies and specific GPDs, providing a fresh perspective on symmetry breaking and mass
generation mechanisms for particles such as the 𝜂′ meson and glueballs. This marks the first time

3



P
o
S
(
L
A
T
T
I
C
E
2
0
2
4
)
0
1
3

Hadron structure via GPDs Shohini Bhattacharya

these effects have been associated with GPDs. Specific relations are given by 𝐸 ∼ 1
𝑡−𝑚2

𝜂′
, 𝐻, 𝐸 ∼

1
𝑡−𝑚2

𝐺

. See, for example, Refs. [5, 6].
We conclude this section by noting that extracting GPDs through traditional processes, such

as Deeply Virtual Compton Scattering and meson production, presents significant challenges,
necessitating alternative approaches. These difficulties arise because differential cross-sections
are sensitive only to 𝑥-integrated GPDs rather than the distributions themselves (see, for example,
Ref. [3]). In this context, lattice QCD has emerged as a crucial tool and is the focus of these
proceedings, which summarize key calculations of 𝑥-dependent GPDs made possible in recent
years.

3. Calculating parton distributions in Lattice QCD: The essence of the
quasi-distribution approach

In this section, we explore the quasi-distribution approach, a Euclidean method for calculating
parton distributions from lattice QCD [7]. To gain deeper insight, we first calculate the twist-2
(unpolarized) PDF 𝑓1(𝑥) through an elegant perturbative calculation. We focus on a Quark Target
Model calculation of a “ladder-type diagram”. The contribution of this diagram to the light-cone
𝑓1(𝑥) is given by:

𝑓1(𝑥) = −
𝑖𝑔2𝐶𝐹𝜇

2𝜖 𝑔𝜇𝜈

4

∫ ∞

−∞

𝑑𝑛𝑘

(2𝜋)𝑛
Tr

[
𝑢 𝑢 𝛾𝜈 (/𝑘 + 𝑚𝑞) 𝛾+ (/𝑘 + 𝑚𝑞) 𝛾𝜇

]
(𝑘2 − 𝑚2

𝑞 + 𝑖𝜀)2((𝑝 − 𝑘)2 − 𝑚2
𝑔 + 𝑖𝜀)

𝛿

(
𝑥 − 𝑘+

𝑝+

)
1
𝑝+

. (4)

Here, (𝑢, 𝑢̄) are the Dirac spinors corresponding to the external on-shell quark states, and (𝑚𝑔, 𝑚𝑞)
are the gluon and quark masses. A standard approach to handling the loop integrals in Eq. (4)
is to first decompose the loop momentum 𝑘 into (𝑘+, 𝑘−, 𝑘⊥) components. The 𝑘+ integral is
straightforward due to the delta-function in Eq. (4). The 𝑘− integral can be evaluated using the
contour technique, while the 𝑘⊥-integral exhibits both ultraviolet (UV) and infrared (IR) divergences.
We adopt Dimensional Regularization (DR) for the UV divergences, and retain 𝑚𝑔 ≠ 0 for the IR
regularization. The final result for 𝑓1(𝑥) is:

𝑓1 =
𝛼𝑠𝐶𝐹

2𝜋
(1 − 𝑥)

(
P𝑈𝑉 + ln

𝜇2

𝑥𝑚2
𝑔

− 2
)
, (5)

where P𝑈𝑉 is defined as:
P𝑈𝑉 =

1
𝜖𝑈𝑉

+ ln 4𝜋 − 𝛾𝐸 .

Next, consider performing the same calculation using a purely spatial correlator, and subsequently
boosting the target to infinite momentum in the 𝑧-direction. Choosing 𝛾3 as the operator, the starting
expression is:

𝑓1,Q(𝑥) = −
𝑖𝑔2𝐶𝐹𝜇

2𝜖 𝑔𝜇𝜈

4

∫ ∞

−∞

𝑑𝑛𝑘

(2𝜋)𝑛
Tr

[
𝑢 𝑢 𝛾𝜈 (/𝑘 + 𝑚𝑞) 𝛾3 (/𝑘 + 𝑚𝑞) 𝛾𝜇

]
(𝑘2 − 𝑚2

𝑞 + 𝑖𝜀)2((𝑝 − 𝑘)2 − 𝑚2
𝑔 + 𝑖𝜀)

𝛿

(
𝑥 − 𝑘3

𝑝3

)
1
𝑝3 , (6)

where 𝑝3 is the 𝑧-component of the target momentum, and 𝑘3 represents its fraction. Here, the loop
momentum 𝑘 is decomposed into (𝑘0, 𝑘⊥, 𝑘3). Performing the 𝑘3-integral using the delta function
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and evaluating 𝑘0 via contour techniques, we find that taking the limit 𝑝3 → ∞ before integrating
over 𝑘⊥ reproduces Eq. (5). (Note that subleading power corrections scale as 1/𝑝2

3 and are typically
accompanied by nontrivial, 𝑥-dependent prefactors that exhibit divergences.)1

The analysis above demonstrates that parton physics can alternatively be formulated in terms
of Euclidean correlations in the Infinite Momentum Frame (IMF). However, can this approach be
replicated on the lattice? Unfortunately, the answer is no, due to the interplay between the two
limits, (𝑝3 → ∞,

∫
𝑑2𝑘⊥). On the lattice, the maximum achievable value of 𝑝3 is constrained by

the finite lattice spacing. In addition to this, the worsening signal-to-noise ratio at higher momenta
is a significant limitation. As momentum increases, the statistical noise in lattice QCD calculations
grows faster than the signal, making the extraction of meaningful results increasingly difficult. In
fact, in practice, this issue imposes a much more stringent constraint, necessitating that lattice
practitioners work with finite 𝑝3. Consequently, one must first perform the transverse momentum
integral,

∫
𝑑2𝑘⊥. This leads to the key question: what happens if we keep 𝑝3 finite and repeat

the above calculation? More specifically, what is the outcome when one systematically expands in
powers of 1/𝑝2

3 after performing the 𝑘⊥ integral?2 The result is given by:

𝑓1,Q(𝑥; 𝑝3) = 𝛼𝑠𝐶𝐹

2𝜋



(1 − 𝑥) ln
𝑥

𝑥 − 1
+ 1 𝑥 > 1

(1 − 𝑥) ln
4(1 − 𝑥)𝑝2

3

𝑚2
𝑔

+ 𝑥 0 < 𝑥 < 1

(1 − 𝑥) ln
𝑥 − 1
𝑥

− 1 𝑥 < 0

+ O
(

1
𝑝2

3

)
. (7)

Clearly, the result in Eq. (7) differs significantly from Eq. (5). Several key observations emerge:

• The quasi-PDF 𝑓1,Q exhibits finite support outside the “physical” region 0 < 𝑥 < 1.

• IR divergences appear only within the 0 < 𝑥 < 1 region. Importantly, the IR pole structures
of 𝑓1,Q(𝑥) and 𝑓1(𝑥) are identical, both containing the term −(1− 𝑥) ln𝑚2

𝑔. Additionally, the
quasi-PDF acquires an explicit dependence on 𝑝3.

• Interestingly, UV divergences, such as those encountered in the light-cone PDF 𝑓1(𝑥), are
absent. As a result, the 𝑥-dependent quasi-PDF 𝑓1,Q(𝑥) is UV-finite. However, the same UV
divergences arising from

∫ ∞
𝑑2𝑘⊥ in 𝑓1(𝑥) instead appear in the integral

∫ ∞
−∞ 𝑑𝑥 for 𝑓1,Q(𝑥).

This feature necessitates an additional renormalization of quasi-PDFs in the “unphysical”
regions 𝑥 > 1 and 𝑥 < 0.

The key takeaway is that the order of these two limits—whether 𝑝3 → ∞ is taken before or after
the 𝑘⊥-integral—matters. The limits do not commute, leading to two important consequences:

• Nontrivial differences in the UV behavior of the quasi-PDF and the light-cone PDF.

• No change in the IR singularities between the quasi-PDF and the light-cone PDF—this is the
core principle of the quasi-distribution approach.

1Here, 𝑝2
3 should be understood as (𝑝3)2. We used this for ease of notation.

2More technically, the limitation on 𝑝3 makes the UV cutoff Λ finite (𝑎 ∼ Λ, where 𝑎 is the lattice spacing). One is
therefore forced to address UV renormalization prior to the large-momentum limit in lattice calculations.
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Due to this agreement in the IR, the two distributions can be related through a perturbative procedure
called “matching”. The generic structure of a matching formula is,

𝑞(𝑥, 𝜇, 𝑃3) =
∫ 1

−1

𝑑𝑦

|𝑦 |𝐶
(
𝑥

𝑦
,
𝜇

𝑃3

)
𝑞(𝑦, 𝜇) + O

(
Λ2

QCD

(𝑃3)2 ,
𝑀2

𝑁

(𝑃3)2

)
, (8)

where 𝑞 and 𝑞 denote the quasi-PDF and light-cone PDF, respectively, 𝐶 is a perturbatively calcu-
lable matching coefficient, 𝜇 is the renormalization scale, and 𝑝3 = (𝑥/𝜉)𝑃3, with 𝑃3 representing
the hadron momentum, ΛQCD the confinement scale, and 𝑀𝑁 the nucleon mass. The matching for
GPDs has a more intricate structure:

𝑞(𝑥, 𝜉, 𝑡, 𝜇, 𝑃3) =
∫ 1

−1

𝑑𝑦

|𝑦 |𝐶
(
𝑥

𝑦
,
𝜉

𝑦
,
𝜇

𝑃3

)
𝑞(𝑦, 𝜉, 𝑡, 𝜇) + O

(
Λ2

QCD

(𝑃3)2 ,
𝑀2

𝑁

(𝑃3)2 ,
𝑡

(𝑃3)2

)
. (9)

This complexity arises due to the multi-dimensional nature of GPDs. Currently, GPD matching
is only known up to one-loop order, with key references including [8–10]. Note that, for the
specific case of 𝜉 = 0, the GPD matching coincides with the PDF matching, at least at twist-2. For
unpolarized PDFs, the state-of-the-art calculation is the two-loop matching [11], which represents
a significant advancement in the field.

We conclude this section by noting that, in addition to the quasi-distribution approach, several
other methods exist. Among these, the pseudo-distribution approach [12] has gained particular
popularity and has recently been employed to extract GPDs [13, 14]. Another notable method is
the Compton amplitude approach [15], which has been used to compute both moments and the
𝑥-dependence of GPDs. A comprehensive overview of these Euclidean approaches, along with a
detailed report on their corresponding lattice results, can be found in Ref. [16]. In these proceedings,
our focus will be on presenting results within the quasi-distribution approach.

4. Compilation of Lattice QCD results for 𝑥-dependent GPDs: Progress and
Developments

4.1 First calculations of twist-2 GPDs

The first-ever calculation of the pion GPD within the quasi-distribution approach was presented
in Ref. [17]. The left plot in Fig. 2 shows the pion GPD as a function of 𝑥 at 𝜉 = 0 for various values
of 𝑡. Although the uncertainties appear large, the results exhibit the expected qualitative behavior
of a GPD—namely, as 𝑡 increases, the distribution gradually flattens.

The right plot in Fig. 2 presents the first-ever calculation of the proton (unpolarized) GPD as
a function of 𝑥 at both 𝜉 = 0 and 𝜉 ≠ 0 for different values of 𝑡, as reported in Ref. [18]. A few
notable qualitative features emerge from the plot, particularly the differences in behavior between
the small-𝑥 and large-𝑥 regions. Specifically, there is greater sensitivity to changes in 𝑡 at small
𝑥, whereas as 𝑥 → 1, this sensitivity to 𝑡 completely disappears. This observation aligns with the
power-counting analysis suggested in Ref. [19]. Despite large and uncontrolled uncertainties, this
calculation successfully predicted the qualitative behavior of the GPD over the entire range of 𝑥,
which was otherwise inaccessible through experiments. Furthermore, Refs. [18, 20] extracted all
the twist-2 GPDs, some of which are presented in Fig. 3. These results are particularly remarkable

6
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Figure 2: Left: Pion GPD as a function of 𝑥 for 𝜉 = 0 at various values of 𝑡. Right: Proton GPD as a
function of 𝑥 for both 𝜉 = 0 and 𝜉 ≠ 0, with different values of 𝑡.

Figure 3: Left: Proton helicity GPDs 𝐻̃ and 𝐸̃ at 𝜉 ≠ 0 as a function of 𝑥. Right: Proton transversity GPD
𝐻𝑇 at both 𝜉 = 0 and 𝜉 ≠ 0 for different values of 𝑡 as a function of 𝑥.

given that, at the time, no GPD extractions from experimental data existed for the full 𝑥-dependence.
A recurring question arising from these plots concerns the meaning of the discontinuities at 𝑥 = ±𝜉.
These discontinuities are not physical but rather artifacts of power corrections in GPDs, which
diverge at these points.

4.2 First calculations of twist-3 GPDs

Recently, there has been significant progress in the calculation of twist-3 GPDs [21]. These
quantities are essential to study due to their comparable magnitude to twist-2 GPDs and their crucial
role in capturing quark-gluon-quark correlations inside hadrons.

Fig. 4 illustrates, on the left, the proton twist-2 GPD 𝐻̃ and the twist-3 combination 𝐻̃ + 𝐺̃2 as
functions of 𝑥, compared against each other at 𝜉 = 0. This comparison clearly demonstrates that
twist-2 and twist-3 GPDs can be sizeable. This is an important result because, although twist-3
GPDs appear suppressed by the hard scale of the process in experiments, the GPDs themselves are
not. Thus, the ability to compute them on the lattice is highly valuable. On the right of Fig. 4, we
show the twist-3 combination 𝐸̃ + 𝐺̃1 at 𝜉 = 0. Since the norm of the twist-3 GPD 𝐺̃1 is expected to
vanish at 𝜉 = 0, it is reasonable to expect that the majority of the signal in the plot originates from
the twist-2 GPD 𝐸̃ . Notably, 𝐸̃ is typically inaccessible at 𝜉 = 0 because it drops out from the matrix

7
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Figure 4: Left: Proton twist-2 GPD 𝐻̃ and twist-3 combination 𝐻̃ + 𝐺̃2 as functions of 𝑥, compared against
each other at 𝜉 = 0. Right: Proton twist-3 GPD combination 𝐸̃ + 𝐺̃1 at 𝜉 = 0 as a function of 𝑥.

Figure 5: Left: Symmetric frame of reference for calculating GPDs. Note the symmetric appearance of
momentum transferΔ between incoming and outgoing nucleon states. Right: Asymmetric frame of reference
for calculating GPDs. Note that the momentum transfer is only on one of the nucleon states, here the incoming
state.

element. However, here we obtain a glimpse of this otherwise inaccessible function at 𝜉 = 0 through
its twist-3 linear combination, which is a significant achievement. Furthermore, by analyzing the
𝑡-dependence of the GPDs, we found that 𝐸̃ exhibits a pronounced dependence on 𝑡 near the origin.
This suggests that we are observing the pion-pole dominance picture, 𝐸̃𝑢 − 𝐸̃𝑑 ∼ 1

𝑡−𝑚2
𝜋
, being

realized at the level of the GPD for the first time—a phenomenon well known at its corresponding
form-factor level, where the 𝑥-integrated version of the GPD corresponds to the form factor, see
Fig. 1.

These results are remarkable, considering that we have no experimental information on the
𝑥-dependence of GPDs, and even less on higher-twist GPDs. While there are certainly theoretical
and lattice-related challenges that need further improvement, these calculations demonstrate the
impressive capabilities of lattice QCD in exploring GPD structures beyond what is accessible
through experiments.

4.3 A fresh take: Revisiting GPD calculations in a different kinematic frame

All the GPD results we discussed earlier come with a challenge. Traditionally, these calculations
have been performed in the so-called “symmetric frame”, as shown in the left plot of Fig. 5. In

8
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this frame, the momentum transfer Δ is symmetrically distributed between the incoming (source)
and outgoing (sink) states of the nucleon. However, lattice calculations in these frames are highly
inconvenient because every time we change the value of 𝑡, adjustments are required in both states’
momenta, imposing a significant computational burden.

A key way to resolve this practical challenge is to address the question: Can we probe the same
physics from a different frame of reference? The answer is yes. If we select a frame where all the
momentum transfer is assigned to a single state, such as the incoming state (see the right plot of
Fig. 5), we can circumvent this issue [22, 23]. Such a frame is called an “asymmetric frame”. By
performing lattice QCD calculations of GPDs in asymmetric frames, we achieve:

• A significant reduction in computational cost.

• Access to a broader range of 𝑡 enables a higher-resolution exploration of the partonic structure
of nucleons [2, 24].

In Refs. [22, 23], significant theoretical advancements were made for working in an asymmetric
frame. First, a Lorentz-covariant formalism was developed to compute quasi-GPDs in any frame.
Second, quasi-GPDs at finite boost are generally affected by power corrections. Within this
framework, it was shown that multiple definitions of quasi-GPDs exist, each differing from the
others by power corrections. This non-uniqueness naturally raises questions about which definition
converges faster.

The starting point for providing a Lorentz-covariant formulation is the equation below:

𝐹𝜇 (𝑧, 𝑃,Δ) = 𝑢̄(𝑝′, 𝜆′)
[
𝑃𝜇

𝑚
𝐴1 + 𝑚𝑧𝜇𝐴2 +

Δ𝜇

𝑚
𝐴3 + 𝑖𝑚𝜎𝜇𝑧𝐴4

+ 𝑖𝜎𝜇Δ

𝑚
𝐴5 +

𝑃𝜇𝑖𝜎𝑧Δ

𝑚
𝐴6 + 𝑚𝑧𝜇𝑖𝜎𝑧Δ𝐴7 +

Δ𝜇𝑖𝜎𝑧Δ

𝑚
𝐴8

]
𝑢(𝑝, 𝜆) . (10)

Here, 𝐹𝜇 = ⟨𝑝′, 𝜆′ |𝑞(−𝑧/2)𝛾𝜇𝑞(𝑧/2) |𝑝, 𝜆⟩|
𝑧=0,®𝑧⊥=®0⊥ , and we observe eight Dirac structures, each

multiplied by eight linearly independent amplitudes:

𝐴𝑖 ≡ 𝐴𝑖 (𝑧 · 𝑃, 𝑧 · Δ, 𝑡 = Δ2, 𝑧2). (11)

One may wonder about the significance of this equation. In Eq. (10), we have systematically shifted
all the kinematic dependence into specific Dirac structures, while all non-perturbative information
resides in the amplitudes. This has significant consequences. Before addressing these points, we
first note that, for example, unpolarized quasi-GPDs are defined using the operator 𝛾0:

𝐹0(𝑧, 𝑃𝑠,Δ𝑠) = 𝑢̄𝑠 (𝑝𝑠′ , 𝜆′)
[
𝛾0𝐻𝑠

Q(0) (𝑧, 𝑃
𝑠,Δ𝑠) +

𝑖𝜎0𝜇Δ𝑠
𝜇

2𝑀
𝐸 𝑠

Q(0) (𝑧, 𝑃
𝑠,Δ𝑠)

]
𝑢𝑠 (𝑝𝑠, 𝜆) , (12)

where the superscript ‘𝑠’ on the variables denotes the symmetric frame. By mapping Eqs. (10)
and (12), we can establish a relation such as

𝐻𝑠
Q(0) (𝑥, 𝜉, 𝑡; 𝑃

3) =
∑︁
𝑖

𝑐𝑠𝑖 𝐴𝑖 . (13)

9
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Figure 6: Left: The unpolarized proton GPD 𝐸 , derived within the amplitude formalism from an asymmetric
frame using the Lorentz-invariant definition. We present this specific example of the 𝐸 GPD because the
Lorentz-invariant definition yields a more precise result compared to the traditional operator 𝛾0. Right: The
unpolarized pion GPD 𝐻, obtained within the same amplitude formalism and asymmetric frame.

This implies that, for example, the quasi-GPD 𝐻Q(0) in the symmetric frame can be expressed as a
linear combination of amplitudes that are independent of the frame in which they are calculated, with
𝑐𝑠
𝑖

serving as frame-dependent kinematic prefactors. Consequently, we can construct any quasi-
GPD in our preferred symmetric frame using matrix elements computed entirely in the asymmetric
frame, significantly reducing computational costs for lattice practitioners.

Regarding the second point mentioned above about power corrections, we present an expression
for the light-cone GPD 𝐻, which is a Lorentz-invariant quantity:

𝐻

(
𝑧 · 𝑃𝑠/𝑎, 𝑧 · Δ𝑠/𝑎, (Δ𝑠/𝑎)2

)
= 𝐴1 +

Δ𝑠/𝑎 · 𝑧
𝑃𝑠/𝑎 · 𝑧

𝐴3. (14)

The corresponding quasi-GPD, which is generally a frame-dependent quantity at finite momentum
boost, is expressed in the symmetric frame (which we focus on to illustrate this point) and is given
by:

𝐻𝑠
Q(0) (𝑧, 𝑃

𝑠,Δ𝑠) = 𝐴1 +
Δ0,𝑠

𝑃0,𝑠 𝐴3 −
𝑚2Δ0,𝑠𝑧3

2𝑃0,𝑠𝑃3,𝑠 𝐴4 +
[
(Δ0,𝑠)2𝑧3

2𝑃3,𝑠 − Δ0,𝑠Δ3,𝑠𝑧3𝑃0,𝑠

2(𝑃3,𝑠)2 −
𝑧3(Δ𝑠

⊥)2

2𝑃3,𝑠

]
𝐴6

+
[
(Δ0,𝑠)3𝑧3

2𝑃0,𝑠𝑃3,𝑠 − (Δ0,𝑠)2Δ3,𝑠𝑧3

2(𝑃3,𝑠)2 −
Δ0,𝑠𝑧3(Δ𝑠

⊥)2

2𝑃0,𝑠𝑃3,𝑠

]
𝐴8. (15)

By comparing Eqs. (14) and (15), we observe that there are significantly more amplitudes at the
level of quasi-GPDs than in the light-cone GPD case. This suggests that, at least naively, one
must reach higher and higher momentum values to suppress these “additional contaminations” and
approach the light-cone GPD limit. However, this is not a practical feature due to the limitation
imposed by finite lattice spacing, which restricts the maximum achievable momentum. The key
question we addressed in our work is whether there exists a definition of quasi-GPDs in which, a
priori, all these additional amplitudes are absent.

The main idea we propose is that the answer to the question raised above is yes—it is possible to
construct a quasi-GPD in which all extra amplitudes are absent a priori by appropriately modifying

10
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the operator definition of the quasi-GPD. The schematic structure is given by:

H → 𝑐0⟨𝜓̄𝛾0𝜓⟩ + 𝑐1⟨𝜓̄𝛾1𝜓⟩ + 𝑐2⟨𝜓̄𝛾2𝜓⟩. (16)

The schematic structure demonstrates that a quasi-GPD can be expressed as a sum of bilinear quark
operators, 𝛾1,2, weighted by certain frame-dependent kinematic factors and added to the usual
𝛾0. These additional 𝛾1,2 operators play a crucial role in canceling extra amplitudes that would
otherwise appear in the 𝛾0-only formulation. This ensures that the resulting quasi-GPDs retain the
same functional form as their light-cone counterparts, thereby preserving Lorentz invariance even at
finite momentum boost. The schematic structure of the Lorentz-invariant definition of quasi-GPD
is given by:

H
(
𝑧 · 𝑃𝑠/𝑎, 𝑧 · Δ𝑠/𝑎, (Δ𝑠/𝑎)2, 𝑧2

)
= 𝐴1 +

Δ𝑠/𝑎 · 𝑧
𝑃𝑠/𝑎 · 𝑧

𝐴3. (17)

This expression has the same functional form as the light-cone GPD in Eq. (14). The key difference,
however, is that in this case, the amplitudes implicitly depend on power corrections, i.e., 𝐴𝑖 ≡
𝐴𝑖 (𝑧2 ≠ 0), whereas for light-cone GPDs, they are evaluated at 𝑧2 = 0. Consequently, one might
expect these Lorentz-invariant quasi-GPD definitions to converge more rapidly to light-cone GPDs.
However, this reasoning is likely too simplistic and requires further substantiation. It is possible that
the presence of additional amplitudes (explicit power corrections) interacts nontrivially with implicit
power corrections, leading to an overall reduction in power corrections for the traditional operator
definition compared to the Lorentz-invariant one. As a result, the actual convergence of different
quasi-GPD definitions may, in reality, be governed by the underlying dynamics. Empirically,
we have observed that the absence of certain amplitudes does not necessarily guarantee faster
convergence—while 𝐸 shows significant improvement, 𝐻 is not substantially affected. For 𝐻̃, the
traditional operator definition exhibits better convergence.

We present specific GPDs for protons and pions using the amplitude formalism and asymmetric
frame formulation in Fig. 6 from Refs. [25, 26]. Notably, the spanned values of 𝑡 highlight a key
advantage we previously discussed—working in asymmetric frames allows access to a broader
range of 𝑡 values. This advancement is now achievable within lattice calculations.

5. Summary

In these proceedings, we have highlighted the significant recent progress in studying the
partonic structure of hadrons using lattice QCD through Euclidean correlators. Lattice QCD
calculations are particularly impactful in areas where experimental access is challenging—GPDs
being a prime example. Among the various Euclidean approaches, the quasi-distribution approach
has seen remarkable advancements, making it the central focus of our discussion.

Over the years, major strides have been made in computing both leading-twist and higher-twist
GPDs for pions and protons, particularly in determining their 𝑥-dependence—an aspect that remains
elusive in experiments. As the field evolves, efforts are underway to reformulate these calculations
using computationally more efficient and faster techniques, a development we have explored here.

Beyond methodological improvements, recent work has also focused on integrating lattice-
QCD results with experimental data for specific processes within the GPD framework, allowing
for a more detailed extraction of nucleon tomography and the total angular momentum carried

11
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by valence quarks [27]. This marks an important step toward bridging lattice calculations with
phenomenology. Naturally, as new experimental facilities such as the EIC become operational,
the experimental landscape will evolve as well. This opens the door for a truly complementary
relationship between lattice QCD and phenomenology, where lattice predictions can help interpret
experimental results while experimental constraints refine lattice methodologies.

We are in an exciting era of rapid progress, with more breakthroughs on the horizon. GPDs play
a crucial role in unraveling the intricate dynamics of partons inside nucleons, and advancements
in lattice QCD calculations will provide invaluable insights into the fundamental structure of
matter—insights that will be particularly significant in the EIC era.

Acknowledgments

I sincerely thank the organizers of the Lattice 2024 Conference for inviting me to give a plenary
talk. I am also deeply grateful to Krzysztof Cichy for reviewing these proceedings and providing
valuable feedback.

References

[1] M. Diehl, Generalized parton distributions, Phys. Rept. 388, (2003) 41, [hep-ph/0307382].

[2] S. Bhattacharya, K. Cichy, M. Constantinou, X. Gao, A. Metz, J. Miller, S. Mukherjee,
P. Petreczky, F. Steffens and Y. Zhao, Moments of proton GPDs from the OPE of nonlocal
quark bilinears up to NNLO, Phys. Rev. D 108, (2023) 014507, [2305.11117].

[3] X. D. Ji, Gauge-Invariant Decomposition of Nucleon Spin, Phys. Rev. Lett. 78, (1997) 610,
[hep-ph/9603249].

[4] M. V. Polyakov and A. G. Shuvaev, On‘dual’ parametrizations of generalized parton distri-
butions, hep-ph/0207153.

[5] S. Bhattacharya, Y. Hatta and W. Vogelsang, Chiral and trace anomalies in deeply virtual
Compton scattering. II. QCD factorization and beyond, Phys. Rev. D 108, (2023) 014029,
[2305.09431].

[6] A. Tarasov and R. Venugopalan, The role of the chiral anomaly in polarized deeply inelastic
scattering III: Wess-Zumino-Witten contributions and chiral Ward identities for finite quark
mass, 2501.10519.

[7] X. Ji, Parton Physics on a Euclidean Lattice, Phys. Rev. Lett. 110, (2013) 262002,
[1305.1539].

[8] X. Ji, A. Schäfer, X. Xiong and J. H. Zhang, One-Loop Matching for Generalized Parton
Distributions, Phys. Rev. D 92, (2015) 014039, [1506.00248].

[9] Y. S. Liu, W. Wang, J. Xu, Q. A. Zhang, J. H. Zhang, S. Zhao and Y. Zhao, Matching
generalized parton quasidistributions in the RI/MOM scheme, Phys. Rev. D 100, (2019)
034006, [1902.00307].

12

https://doi.org/10.1016/j.physrep.2003.08.002
https://arxiv.org/abs/hep-ph/0307382
https://doi.org/10.1103/PhysRevD.108.014507?_gl=1*fjfzam*_ga*MjAwNzA3OTI0MS4xNjg3MjgyMDQ4*_ga_ZS5V2B2DR1*MTczODM2OTEzMi41MS4wLjE3MzgzNjkxMzIuMC4wLjEzMzUwMjM0NjQ.
https://arxiv.org/abs/2305.11117
https://doi.org/10.1103/PhysRevLett.78.610?_gl=1*1v0jnob*_ga*MjAwNzA3OTI0MS4xNjg3MjgyMDQ4*_ga_ZS5V2B2DR1*MTczODM2OTEzMi41MS4xLjE3MzgzNjkzNDcuMC4wLjEzMzUwMjM0NjQ.
https://arxiv.org/abs/hep-ph/9603249
https://arxiv.org/abs/hep-ph/0207153
https://doi.org/10.1103/PhysRevD.108.014029?_gl=1*zoxurz*_ga*MjAwNzA3OTI0MS4xNjg3MjgyMDQ4*_ga_ZS5V2B2DR1*MTczODM2OTEzMi41MS4xLjE3MzgzNjk2MTAuMC4wLjEzMzUwMjM0NjQ.
https://arxiv.org/abs/2305.09431
https://arxiv.org/abs/2501.10519
https://doi.org/10.1103/PhysRevLett.110.262002?_gl=1*1soxh78*_ga*MjAwNzA3OTI0MS4xNjg3MjgyMDQ4*_ga_ZS5V2B2DR1*MTczODM2OTEzMi41MS4xLjE3MzgzNjk4NDMuMC4wLjEzMzUwMjM0NjQ.
https://arxiv.org/abs/1305.1539
https://doi.org/10.1103/PhysRevD.92.014039?_gl=1*1qil71j*_ga*MjAwNzA3OTI0MS4xNjg3MjgyMDQ4*_ga_ZS5V2B2DR1*MTczODM2OTEzMi41MS4xLjE3MzgzNjk5MzkuMC4wLjEzMzUwMjM0NjQ.
https://arxiv.org/abs/1506.00248
https://doi.org/10.1103/PhysRevD.100.034006?_gl=1*96lycf*_ga*MjAwNzA3OTI0MS4xNjg3MjgyMDQ4*_ga_ZS5V2B2DR1*MTczODM2OTEzMi41MS4xLjE3MzgzNzAwMTguMC4wLjEzMzUwMjM0NjQ.
https://doi.org/10.1103/PhysRevD.100.034006?_gl=1*96lycf*_ga*MjAwNzA3OTI0MS4xNjg3MjgyMDQ4*_ga_ZS5V2B2DR1*MTczODM2OTEzMi41MS4xLjE3MzgzNzAwMTguMC4wLjEzMzUwMjM0NjQ.
https://arxiv.org/abs/1902.00307


P
o
S
(
L
A
T
T
I
C
E
2
0
2
4
)
0
1
3

Hadron structure via GPDs Shohini Bhattacharya

[10] F. Yao, Y. Ji and J. H. Zhang, Connecting Euclidean to light-cone correlations: from flavor
nonsinglet in forward kinematics to flavor singlet in non-forward kinematics, JHEP 11, (2023)
021, [2212.14415].

[11] Z. Y. Li, Y. Q. Ma and J. W. Qiu, Extraction of Next-to-Next-to-Leading-Order Parton Dis-
tribution Functions from Lattice QCD Calculations, Phys. Rev. Lett. 126, (2021) 072001,
[2006.12370].

[12] A. V. Radyushkin, Generalized parton distributions and pseudodistributions, Phys. Rev. D
100, (2019) 116011, [1909.08474].

[13] S. Bhattacharya, K. Cichy, M. Constantinou, A. Metz, N. Nurminen and F. Steffens, Gener-
alized parton distributions from the pseudodistribution approach on the lattice, Phys. Rev. D
110, (2024) 054502, [2405.04414].

[14] H. Dutrieux et al. [HadStruc], Towards unpolarized GPDs from pseudo-distributions, JHEP
08, (2024) 162, [2405.10304].

[15] A. Hannaford-Gunn et al. [CSSM/QCDSF/UKQCD], Reconstructing generalized parton dis-
tributions from the lattice off-forward Compton amplitude, Phys. Rev. D 110, (2024) 014509,
[2405.06256].

[16] K. Cichy, Progress in 𝑥-dependent partonic distributions from lattice QCD, PoS LAT-
TICE2021, (2022) 017, [2110.07440].

[17] J. W. Chen, H. W. Lin and J. H. Zhang, Pion generalized parton distribution from lattice QCD,
Nucl. Phys. B 952, (2020) 114940, [1904.12376].

[18] C. Alexandrou, K. Cichy, M. Constantinou, K. Hadjiyiannakou, K. Jansen, A. Scapellato and
F. Steffens, Unpolarized and helicity generalized parton distributions of the proton within
lattice QCD, Phys. Rev. Lett. 125, (2020) 262001, [2008.10573].

[19] F. Yuan, Generalized parton distributions at x —> 1, Phys. Rev. D 69, (2004) 051501,
[hep-ph/0311288].

[20] C. Alexandrou, K. Cichy, M. Constantinou, K. Hadjiyiannakou, K. Jansen, A. Scapellato and
F. Steffens, Transversity GPDs of the proton from lattice QCD, Phys. Rev. D 105, (2022)
034501, [2108.10789].

[21] S. Bhattacharya, K. Cichy, M. Constantinou, J. Dodson, A. Metz, A. Scapellato and F. Steffens,
Chiral-even axial twist-3 GPDs of the proton from lattice QCD, Phys. Rev. D 108, (2023)
054501, [2306.05533].

[22] S. Bhattacharya, K. Cichy, M. Constantinou, J. Dodson, X. Gao, A. Metz, S. Mukherjee,
A. Scapellato, F. Steffens and Y. Zhao, Generalized parton distributions from lattice QCD
with asymmetric momentum transfer: Unpolarized quarks, Phys. Rev. D 106, (2022) 114512,
[2209.05373].

13

https://doi.org/10.1007/JHEP11(2023)021
https://doi.org/10.1007/JHEP11(2023)021
https://arxiv.org/abs/2212.14415
https://doi.org/10.1103/PhysRevLett.126.072001?_gl=1*3a8tud*_ga*MjAwNzA3OTI0MS4xNjg3MjgyMDQ4*_ga_ZS5V2B2DR1*MTczODM2OTEzMi41MS4xLjE3MzgzNzAzMTAuMC4wLjEzMzUwMjM0NjQ.
https://arxiv.org/abs/2006.12370
https://doi.org/10.1103/PhysRevD.100.116011?_gl=1*1kqyel4*_ga*MjAwNzA3OTI0MS4xNjg3MjgyMDQ4*_ga_ZS5V2B2DR1*MTczODM2OTEzMi41MS4xLjE3MzgzNzA0MTguMC4wLjEzMzUwMjM0NjQ.
https://doi.org/10.1103/PhysRevD.100.116011?_gl=1*1kqyel4*_ga*MjAwNzA3OTI0MS4xNjg3MjgyMDQ4*_ga_ZS5V2B2DR1*MTczODM2OTEzMi41MS4xLjE3MzgzNzA0MTguMC4wLjEzMzUwMjM0NjQ.
https://arxiv.org/abs/1909.08474
https://doi.org/10.1103/PhysRevD.110.054502?_gl=1*a89wgf*_ga*MjAwNzA3OTI0MS4xNjg3MjgyMDQ4*_ga_ZS5V2B2DR1*MTczODM2OTEzMi41MS4xLjE3MzgzNzA1MzIuMC4wLjEzMzUwMjM0NjQ.
https://doi.org/10.1103/PhysRevD.110.054502?_gl=1*a89wgf*_ga*MjAwNzA3OTI0MS4xNjg3MjgyMDQ4*_ga_ZS5V2B2DR1*MTczODM2OTEzMi41MS4xLjE3MzgzNzA1MzIuMC4wLjEzMzUwMjM0NjQ.
https://arxiv.org/abs/2405.04414
https://doi.org/10.1007/JHEP08(2024)162
https://doi.org/10.1007/JHEP08(2024)162
https://arxiv.org/abs/2405.10304
https://doi.org/10.1103/PhysRevD.110.014509?_gl=1*1o7nprq*_ga*MjAwNzA3OTI0MS4xNjg3MjgyMDQ4*_ga_ZS5V2B2DR1*MTczODM2OTEzMi41MS4xLjE3MzgzNzIwOTQuMC4wLjEzMzUwMjM0NjQ.
https://arxiv.org/abs/2405.06256
https://doi.org/10.22323/1.396.0017
https://doi.org/10.22323/1.396.0017
https://arxiv.org/abs/2110.07440
https://doi.org/10.1016/j.nuclphysb.2020.114940
https://arxiv.org/abs/1904.12376
https://doi.org/10.1103/physrevlett.125.262001
https://arxiv.org/abs/2008.10573
https://doi.org/10.1103/PhysRevD.69.051501?_gl=1*15pvve6*_ga*MjAwNzA3OTI0MS4xNjg3MjgyMDQ4*_ga_ZS5V2B2DR1*MTczODM2OTEzMi41MS4xLjE3MzgzNzEwMTIuMC4wLjEzMzUwMjM0NjQ.
https://arxiv.org/abs/hep-ph/0311288
https://doi.org/10.1103/PhysRevD.105.034501?_gl=1*vtpn9f*_ga*MjAwNzA3OTI0MS4xNjg3MjgyMDQ4*_ga_ZS5V2B2DR1*MTczODM2OTEzMi41MS4xLjE3MzgzNzEwODUuMC4wLjEzMzUwMjM0NjQ.
https://doi.org/10.1103/PhysRevD.105.034501?_gl=1*vtpn9f*_ga*MjAwNzA3OTI0MS4xNjg3MjgyMDQ4*_ga_ZS5V2B2DR1*MTczODM2OTEzMi41MS4xLjE3MzgzNzEwODUuMC4wLjEzMzUwMjM0NjQ.
https://arxiv.org/abs/2108.10789
https://doi.org/10.1103/PhysRevD.108.052004?_gl=1*zwesg6*_ga*MjAwNzA3OTI0MS4xNjg3MjgyMDQ4*_ga_ZS5V2B2DR1*MTczODM2OTEzMi41MS4xLjE3MzgzNzExNTUuMC4wLjEzMzUwMjM0NjQ.
https://doi.org/10.1103/PhysRevD.108.052004?_gl=1*zwesg6*_ga*MjAwNzA3OTI0MS4xNjg3MjgyMDQ4*_ga_ZS5V2B2DR1*MTczODM2OTEzMi41MS4xLjE3MzgzNzExNTUuMC4wLjEzMzUwMjM0NjQ.
https://arxiv.org/abs/2306.05533
https://doi.org/10.1103/PhysRevD.106.114512
https://arxiv.org/abs/2209.05373


P
o
S
(
L
A
T
T
I
C
E
2
0
2
4
)
0
1
3

Hadron structure via GPDs Shohini Bhattacharya

[23] S. Bhattacharya, K. Cichy, M. Constantinou, J. Dodson, X. Gao, A. Metz, J. Miller, S. Mukher-
jee, P. Petreczky and F. Steffens, et al. Generalized parton distributions from lattice QCD
with asymmetric momentum transfer: Axial-vector case, Phys. Rev. D 109, (2024) 034508,
[2310.13114].

[24] S. Bhattacharya, K. Cichy, M. Constantinou, X. Gao, A. Metz, J. Miller, S. Mukherjee,
P. Petreczky, F. Steffens and Y. Zhao, Moments of Axial-Vector GPD from Lattice QCD:
Quark Helicity, Orbital Angular Momentum, and Spin-Orbit Correlation, 2410.03539.

[25] K. Cichy, S. Bhattacharya, M. Constantinou, J. Dodson, X. Gao, A. Metz, J. Miller, S. Mukher-
jee, A. Scapellato and F. Steffens, et al. Generalized Parton Distributions from Lattice QCD,
Acta Phys. Polon. Supp. 16, (2023) 7-A6, [2304.14970].

[26] H. T. Ding, X. Gao, S. Mukherjee, P. Petreczky, Q. Shi, S. Syritsyn and Y. Zhao,
hree-dimensional Imaging of Pion using Lattice QCD: Generalized Parton Distributions,
2407.03516.

[27] K. Cichy, M. Constantinou, P. Sznajder and J. Wagner, Nucleon tomography and total angular
momentum of valence quarks from synergy between lattice QCD and elastic scattering data,
Phys. Rev. D 110, (2024) 114025, [2409.17955].

14

https://doi.org/10.1103/PhysRevD.109.034508?_gl=1*9u87vp*_ga*MjAwNzA3OTI0MS4xNjg3MjgyMDQ4*_ga_ZS5V2B2DR1*MTczODM2OTEzMi41MS4xLjE3MzgzNzIyMDIuMC4wLjEzMzUwMjM0NjQ.
https://arxiv.org/abs/2310.13114
https://arxiv.org/abs/2410.03539
https://www.actaphys.uj.edu.pl/fulltext?series=Sup&vol=16&aid=7-A6
https://arxiv.org/abs/2304.14970
https://arxiv.org/abs/2407.03516
https://doi.org/10.1103/PhysRevD.110.114025?_gl=1*69dwj7*_ga*MjAwNzA3OTI0MS4xNjg3MjgyMDQ4*_ga_ZS5V2B2DR1*MTczODM2OTEzMi41MS4xLjE3MzgzNzE1OTguMC4wLjEzMzUwMjM0NjQ.
https://arxiv.org/abs/2409.17955

	Introduction
	Generalized Parton Distributions: Definition and Motivation
	Calculating parton distributions in Lattice QCD: The essence of the quasi-distribution approach
	Compilation of Lattice QCD results for x-dependent GPDs: Progress and Developments
	First calculations of twist-2 GPDs
	First calculations of twist-3 GPDs
	A fresh take: Revisiting GPD calculations in a different kinematic frame

	Summary

