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We propose a simple instanton-based random matrix model of hot QCD that in the quenched case

precisely reproduces the distribution of the lowest lattice overlap Dirac eigenvalues. Even after

including dynamical quarks the model can be easily simulated in volumes and for quark masses

that will be out of reach for direct lattice simulations in the foreseeable future. Our simulations

show that quantities connected to the * (1)� and (* (# 5 )� chiral symmetry are dominated by

eigenvalues in a peak of the spectral density that becomes singular at zero in the thermodynamic

limit. This spectral peak turns out to be produced by an ideal instanton gas. By generalizing

Banks-Casher type integrals for the singular spectral density, definite predictions can be given for

physical quantities that are essential to test chiral symmetry breaking, but presently impossible to

compute reliably with direct lattice simulations.
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Figure 1: A schematic representation of the spectral density of the Dirac operator below the critical
temperature in the hadronic phase (left), and above the critical temperature, in the quark-gluon plasma phase
(right).

1. Introduction

Quantum chromodynamics (QCD), the theory of strong interactions has an approximate

(* (2)! × (* (2)' × * (1)+ × * (1)� symmetry. The flavor non-singlet vector symmetry is a

result of the approximate equality of the masses of the two light quarks, the D and 3, and the

axial symmetries are there because both <D and <3 are much lighter than the relevant QCD scale.

Classically, the symmetries would all be exact if <D = <3 = 0 were to hold exactly.

At low temperature the (* (2)! × (* (2)' symmetry is broken spontaneously, and it is only the

diagonal vector subgroup of the symmetry that remains intact. However, at finite temperature, the

transition to the quark-gluon plasma phase results in the restoration of the axial part of the symmetry

(* (2)�. The order parameter characterizing this transition is the chiral condensate 〈k̄k〉. This can

also be written in terms of the spectrum of the Dirac operator as

〈k̄k〉 = ∝
1

+

∑
:

1

8_: + <
∝

∫
Λ

−Λ

3_
<

_2 + <2
d(_) −−−−→

<→0
d(0), (1)

where 8_: are the eigenvalues of the Dirac operator, and the sum over the eigenvalues can be written

in terms of the Dirac spectral density d(_), using the symmetry 8_ ↔ −8_ of the spectrum. Due

to the <
_2+<2 factor, for small quark masses most of the contribution to the integral comes from the

spectral region |_ | . <. As a result, in the chiral limit the only contribution is given by the spectral

density at zero, which is the Banks-Casher formula [1]. In this way, the spectral density at zero can

also serve as an oder parameter of the transition. In Fig. 1 we show a schematic plot of the spectral

density in the low temperature, symmetry broken phase and in the high temperature phase where

the symmetry is restored.

The spectrum of the Dirac operator can also be calculated in lattice simulations, and for a long

time lattice results were in accordance with the above expectations; in the high temperature phase

the spectral density appeared to vanish at zero virtuality. This was the situation until the appearance

of chirally symmetric lattice Dirac operators, in particular the overlap [2]. The first hint at a more

complicated picture appeared in Ref. [3], where a peculiar spike was found at high temperature

in the spectrum at zero of the chirally symmetric overlap Dirac operator. This was a quenched
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simulation on rather coarse lattices, and for a long time this spectral spike was largely ignored, most

likely because it was considered a quenched or coarse lattice artifact.

Recently more detailed studies of the spectral spike appeared. In particular, evidence was found

that it is neither a quenched nor a coarse lattice artifact, as the spike was found to be present on finer

lattices both with and without dynamical quarks [4]. It was also suggested that the spectral spike

was singular in the thermodynamic limit, and could signal a separate phase of QCD, intermediate

between the finite temperature crossover and the even higher temperature perturbative regime [5].

The presence of the spike was also independently verified [6, 7], and shown also for sea quarks

lighter than the physical D and 3 quarks [8]. More recently in a large scale study with staggered

sea and valence quarks, the spectral peak was seen to be present in the continuum limit [9]. Quark

eigenstates in the peak were found to exhibit nontrivial localization properties, hinting at the possible

presence of another mobility edge, very close to zero in the spectrum [10–12], in addition to the

already well established mobility edge higher up in the spectrum, separating localized modes from

the bulk [13].

All the works cited in the above paragraph used staggered or other non-chiral sea quarks,

although some utilized chiral (overlap) quarks for the valence. Since the spectral peak is a narrow

structure close to zero, it is important for the Dirac operator to properly resolve the small Dirac

eigenvalues, for which exact chiral symmetry is needed. This point is particularly important, since

after integrating out the quarks, the partition function of QCD reads

/ =

∫
D*

∏
5

det (� [*] + <f) · e−(g [* ] , (2)

where * is the gauge field configuration, � [*] is the covariant Dirac operator and (g is the gauge

action. If the quark mass is small, the quark determinant is expected to suppress configurations

with many small Dirac eigenvalues which might result in the disappearance of the spectral peak at

zero. There are also studies using (close to) chiral quarks, namely domain wall quarks. Indeed,

their conclusion is that for small but finite quark masses, the spectral peak is so suppressed that it

cannot be detected at all [14–16]. For the most recent updates see [17, 18].

The spectral peak is not only important for the Banks-Casher relation, and the restoration of the

flavor non-singlet chiral symmetry. As discussed in many of the above cited works (see also [19]),

it also determines the fate of the * (1)� axial symmetry. It can be shown that if in the chiral limit

the Dirac spectral density develops a gap at zero, or even if it is analytic at zero, the effects of the

anomalous * (1)� symmetry breaking cannot be seen in scalar and pseudoscalar meson correlators

[20]. The fate of the spectral spike is thus also essential for the * (1)� symmetry.

In the present paper I would like to ask and answer the following three questions. What is

the physical origin of the spectral peak at zero that appears in high temperature QCD? How is it

suppressed by the quark determinant if light dynamical quarks are present? How does the peak

influence the fate of the flavor singlet and the flavor non-singlet axial symmetries in the chiral limit?

2. The spectral peak in quenched QCD

Since the quenched case is much simpler and there is general consensus about the presence

of the spectral spike there, we start the discussion with the quenched theory. In Fig. 2 we show
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Figure 2: The spectral density of the overlap Dirac operator on a set of quenched gauge configurations with
temporal size #C = 8 and temperature ) = 1.05)2 . The exact zero eigenvalues have been removed, they
would show up as a delta function at zero.

a typical example of the overlap Dirac spectrum on quenched gauge field configurations slightly

above the critical temperature. In the quenched case there is a genuine phase transition and thus )2
is well defined. The quenched simulation in question was done with the Wilson action at V = 6.13,

corresponding to ) = 1.05)2 for the temporal lattice size #C = 8. Since we are using the overlap

Dirac operator, there are also exact zero eigenvalues in the spectrum, but those have been removed,

they are not shown in the figure.

Starting from larger eigenvalues and going toward zero, the spectral density falls sharply, and

it appears to go to zero, as expected in the symmetry restored phase. This behavior can also

be qualitatively understood by noting that at finite temperature, due to the antiperiodic temporal

boundary condition, the spectrum of free fermions have a gap around zero, equal to the lowest

Matsubara frequency. If the fermions interact with the gauge field, the question is how the correlation

length compares to the temporal box size, i.e. the inverse temperature. If the correlation length is

smaller than 1/) , then the fermions effectively “do not feel” the boundary condition, and there is

no trace of the Matsubara gap; the spectrum extends with a nonzero density all the way down to the

origin. In QCD this is exactly what happens in the chirally broken phase. On the other hand, if the

correlation length is larger than 1/) , even though there is no sharp Matsubara gap, the part of the

spectrum below the lowest Matsubara frequency becomes heavily depleted.

This is exactly what we see in Fig. 2. However, at very small eigenvalues the spectral density

starts to increase again, forming a sharp peak of near zero eigenvalues. In view of the foregoing

discussion, this unnatural proliferation of small eigenvalues is certainly unexpected, and calls for an

explanation. It was already suggested in Ref. [2] that the presence of instantons and anti-instantons

might be responsible for the excess of small Dirac eigenvalues. Indeed, due to the Atiyah-Singer

index theorem, if the gauge field configuration has topological charge &, then the Dirac operator
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has (at least) |& | exact zero eigenvalues with chirality plus or minus one, depending on the sign of

& [21]. In particular, each instanton and anti-instanton carries a zero mode of given chirality. In

the presence of =8 instantons and =0 anti-instantons there are |=8 − =0 | exact zero modes, while the

rest of the would be zero modes will mix and split around zero. The splitting is governed by the

distance between the topological objects and also their relative orientation in group space [22].

An important quantity characterizing the fluctuations of the topological charge is the topological

susceptibility defined as

j =
1

+
〈&2〉, (3)

where+ is the four-volume of the system and the angled brackets denote expectation with respect to

the path integral. Above the finite temperature transition the topological susceptibility falls sharply,

and instantons form a dilute gas. The typical separation among instantons and anti-instantons is

thus large, resulting in a small splitting of near zero modes around zero. This mechanism is a

promising candidate to explain the spike in the spectral density.

At this point we have to make a remark about our use of the terminology. By instanton

one typically means an exact solution of the Euclidean equation of motion, carrying and integer

topological charge. There is ample evidence that in gauge configurations dominating the path

integral, topological charge does not come in the form of pristine instantons (or calorons, the finite

temperature exact solutions), not even well above the critical temperature. This can be seen from

the fact that the dilute instanton gas approximation that assumes small fluctuations around the exact

solution, cannot describe the dependence of the topological susceptibility on the temperature, seen

in lattice simulations [23–25]. See also Ref.[26] for a recent update on the perturbative instanton

calculation. In spite of all this, for simplicity we will use the word instanton, but by this we mean

only well defined lumps of unit topological charge. We will show that the spike in the Dirac

spectrum above )2 can be understood by assuming that the topological charge comes in the form of

well separated lumps of unit charge.

3. Random matrix model of the zero mode zone of the Dirac operator

In what follows we would like to build a simple model of the subspace of the Dirac operator

spanned by the would be zero modes that we call the zero mode zone (ZMZ). Our starting point is

the simplest nontrivial configuration, that of an instanton and an anti-instanton at a distance A apart.

In this case the ZMZ can be represented by the 2 × 2 matrix

� (�)zmz =

(
0 8F

8F 0

)
, (4)

where

F ∝ e−c) A (5)

is the mixing between the instanton and anti-instanton zero mode. Since at high temperature the

zero modes are exponentially localized with a localization length of 1/c) [27, 28], the mixing is

also expected to be exponentially small in the distance A.

This can be easily generalized for the case when there are =8 instantons and =0 instantons

present. Then the matrix of the Dirac operator in the ZMZ has the form
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=8 =0︷      ︸︸      ︷︷            ︸︸            ︷

� (�)zmz =

©­­­­­­­­­­­­­«

0 8,

8,† 0

ª®®®®®®®®®®®®®¬

(6)

with two diagonal blocks of zeros and with the matrix elements

F8 9 = � × exp(−c) · A8 9 ), (7)

A8 9 denoting the distance of instanton 8 and anti-instanton 9 . The rank of this matrix is easily seen to

be such that it has |=8 −=0 | exact zero eigenvalues and the magnitude of the rest of the eigenvalues is

controlled by the exponentially small off-diagonal matrix elements F8 9 . The matrix also has exact

chiral symmetry, as it anticommutes with W5 which in this basis takes a diagonal form with =8 −1-s

and =0 +1-s in the diagonal. Given any instanton configuration, we can construct the matrix using

the locations of the instantons and anti-instantons.

To complete the model we still have to decide how to choose the number of (anti-)instantons

and their locations. It has been established that in quenched QCD, above )2 the distribution of the

topological charge [29, 30], as well as that of the number of eigenvalues in the spike are consistent

with a noninteracting, free instanton gas [31]. This suggests that we can choose the locations of the

topological objects independently with a uniform spatial distribution. Since above )2 the typical

instanton size is expected to be comparable to the temporal box size, we adopt a dimensionally

reduced picture by choosing the instanton locations and measuring their distances in a 3D box

of spatial size !3, completely ignoring the temporal dimension. Finally, in a free instanton gas

the distribution of the number of instantons and anti-instantons follows independent and identical

Poisson distributions. The probability of having =8 instantons and =0 anti-instantons is thus

?(=8 , =0) = e−j+ ×
(j+/2)=8

=8!
×

(j+/2)=0

=0!
, (8)

where j is the topological susceptibility, + is the four-volume. This completes the definition of our

model. If the two parameters, the topological susceptibility and the prefactor � in Eq. (7) is known,

we can produce an ensemble of random matrices that model the zero mode zone of the lattice Dirac

operator.

To determine the two parameters, we computed the lowest part of the Dirac spectrum on an

ensemble of 323 × 8 quenched lattice configurations at ) = 1.1)2 . We determined the topological

susceptibility by counting the number of exact zero eigenvalues, giving the topological charge

on each configuration. The parameter � can be fitted to any feature of the lattice overlap Dirac

spectrum. We chose to look at the distribution of the lowest nonzero eigenvalues, and could obtain

a good fit of the whole distribution with the choice � = 0.35. This completes the fixing of the
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Figure 3: The distribution of the lowest overlap Dirac eigenvalue on two ensembles of quenched gauge
configurations with different volumes. The temperature is ) = 1.1)2 in both cases, and for a better resolution
of the small eigenvalues we plotted the distribution of the (natural) log of the eigenvalues. The triangles
represent the lattice data, the continuous lines are calculated from the random matrix model. We used the
smaller volume for fitting the parameter �, the larger volume is a prediction of the model without any further
fitting.

parameters, and now we can test how well the resulting model describes the spectrum in different

situations. A possible test is the distribution of the lowest eigenvalue on a larger volume. In Fig. 3

we compare the distribution of the lowest eigenvalue in the random matrix model to that of the

lattice Dirac operator for two different volumes. The smaller volume with linear size ! = 2.5 fm

was used for fitting �, the larger volume, ! = 3.5 fm is a prediction of the model that appears to

agree with the lattice distribution. Several other tests can be performed for the distribution of higher

eigenvalues in different volumes, also with restriction to a given topological charge sector, and in

all cases the prediction of the model agrees with the lattice results. This indicates that the random

matrix model, based on the free instanton picture gives an excellent description of the zero mode

zone of the lattice overlap spectrum in the quenched case.

We would like to remark that the instanton-based random matrix model we propose here is

not new. Already a long time ago it was extensively used in the context of instanton liquid models

(see e.g. [22, 32]). What is new here is that our model is much simpler than the previous ones, as

we use a dimensionally reduced 3D picture, ignore gauge interactions among topological lumps,

and completely neglect the orientation of instantons in group space, as well as their nontrivial size

distribution. These are all reasonable assumptions at high temperature in the quenched case. The

other novelty of our model is that after fitting its two parameters, it can precisely describe the

detailed features of the lattice overlap Dirac spectrum.

7



P
o
S
(
L
A
T
T
I
C
E
2
0
2
4
)
0
1
2

* (1)� Breaking in Hot QCD in the Chiral Limit Tamas G. Kovacs

4. Full QCD, including dynamical quarks

So far we presented a simple random matrix model for describing the zero mode zone of the

lattice overlap Dirac operator in the quenched case. Our goal in this section is to include dynamical

quarks in the model. On the lattice this is done by including the fermion determinant det(� +<)#f

in the Boltzmann weight of each configuration. For simplicity, we will assume # 5 degenerate

quark flavors with mass <, but the generalization to different masses is straightforward. If the

quark determinant is written in terms of the Dirac eigenvalues, it can be split into a product of two

contributions, one coming from the eigenvalues in the zero mode zone, and the contribution of the

rest of the spectrum that we call the bulk as

det(� + <) =
∏
zmz

(_8 + <) ×
∏
bulk

(_8 + <). (9)

The main observation here is that the bulk is separated from the ZMZ by a strongly depleted region

in the spectrum, and the contribution of the bulk is not expected to be correlated with that of

the ZMZ. Therefore, when computing expectations pertaining to the ZMZ, the bulk contribution

gives only a constant factor, canceling in the expectations. In this way, when computing physical

quantities dominated by the ZMZ, the contribution of the bulk to the determinant can be omitted.

On the other hand, the contribution to the determinant of the ZMZ can be consistently computed

within our random matrix model, and it can be added as an additional weight for each quenched

instanton configuration. So the random matrix model of the ZMZ of full QCD will have the weight

%(=8, =0) ∝ e−j0+
1

=8!

1

=0!

(
j0+

2

)=8+=0
︸                           ︷︷                           ︸

free instanton gas with random locations

× det(� + <)#f (10)

for a given instanton configuration with =8 instantons and =0 anti-instantons. Here j0 is the

quenched susceptibility, and the first part of the weight comes from the Poisson distributions of

the free instanton gas, and the determinant of the random matrices is the extra reweighting factor

due to the sea quarks. Although we have not indicated it explicitly, the determinant depends on the

location of the topological objects.

5. Simulation of the random matrix model of the ZMZ of full QCD

In this section we present the results of a simulation of the random matrix model for two

degenerate flavors of dynamical quarks. In Fig. 4 we show the topological susceptibility as a

function of the quark mass. The triangles are the simulation data, and the continuous line is not a

fit, but the quadratic function j0<
2, and it describes the simulation data perfectly.

To understand why this happens, let us first assume that the quark mass is much larger than the

typical eigenvalues in the ZMZ. In this case the quark determinant can be approximated as∏
=8 ,=0

(_8 + <)# 5 ≈ <# 5 (=8+=0) , (11)

which means that in this approximation the determinant does not depend on the instanton locations,

only on their numbers. This, in turn, implies that the reweighting with the determinant does not
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Figure 4: The topological susceptibility as a function of the quark mass, obtained from a simulation of
the random matrix model, including the reweighting with the quark determinant for two degenerate quark
flavors. The simulation data is plotted with triangles, and the continuous curve is not a fit, but the quadratic
function <2j0, where j0 is the quenched topological susceptibility, the parameter of the model. Without the
reweighting with the determinant, this would be the topological susceptibility.

introduce any interaction among the topological objects. Indeed, substituting the approximated

determinant into Eq. (10), the <# 5 (=8+=0) factor can be absorbed into the Poisson distributions as

%(=8, =0) ∝

(
j0+

2

)=8+=0
× det(� + <)#f ≈

(
<#fj0+

2

)=8+=0
(12)

which, after proper normalization, results again in Poisson distributions for the number of instantons

and anti-instantons, but with a density suppressed by the quark mass as j0 → <#fj0. In other

words, if |_8 | ≪ <, then the matrix model with dynamical quarks still describes a free instanton

gas, but with a smaller topological susceptibility.

What happens if the quark mass becomes smaller? To understand this, we write the determinant

as

det(� + <)#f = <# 5 (=8+=0) ×
∏
8

(
1 +

|_8 |
2

<2

)
, (13)

where the last product is over the nonzero complex conjugate pairs of eigenvalues of the random

matrix, representing the Dirac operator. If the quark mass is small, the power of the quark mass

heavily suppresses those configurations that have many instantons. The configurations contributing

to expectations have only a small number of instantons that are far apart. Since the matrix elements

of the random matrix are exponentially small in the distance between the topological objects, the

typical eigenvalues also become smaller and smaller as the instanton gas becomes more dilute.

Consequently, no matter how small the quark mass is, the eigenvalues of the random matrices

always remain much smaller than the quark mass, the last product of Eq. (13) is essentially equal

9
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Figure 5: The spectral density of the quenched matrix model for different system sizes. The continuous
line is a power-law fit to the common envelope of the curves, corresponding to different volumes.

to unity, and the approximation in Eq. (12) remains valid even in the chiral limit. This explains our

finding that for two quark flavors the topological susceptibility is proportional to <2, and the lowest

part of the Dirac spectrum can be understood as the zero mode zone of a free instanton gas.

6. The nature of the spectral spike

Using the random matrix model, we can also study the spectral spike in more detail. As we

already saw, independently of the quark mass, the lowest part of the spectrum can be attributed

to a free instanton gas. Therefore, it is enough to simulate the quenched random matrix model.

In the example we show, the parameters fitted to the quenched ) = 1.1)2 lattice data were used.

In Fig. 5 we show the spectral density of the random matrix model. The exact zero eigenvalues

have been removed from the spectrum, and we use log-log scale to be able to resolve the smallest

eigenvalues. The different symbols correspond to simulations performed for systems of different

sizes, indicated in the legends. The data points corresponding to different system sizes possess a

common enveloping linear curve. This shows that in the infinite volume limit the spectral density

is described by a singular power-law. In this particular case a linear fit to the envelope yields

d(_) ∝ _U with U = −0.770(5), (14)

which is an integrable singularity.

Our experience shows that if the instanton gas becomes more dilute, the singularity gets stronger,

i.e. U moves toward −1. We conjecture that in the chiral limit U → −1. At first sight this might

seem counter-intuitive, as one would expect light dynamical quarks to repel the eigenvalues from

zero. However, there is no contradiction, since even though in the chiral limit typical eigenvalues

become smaller and the singularity gets stronger, the total number of eigenvalues in the singular
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peak diminishes, and in the chiral limit vanishes, as expected. Singular behavior of the spectral

density at zero in a similar instanton-based model was already found a long time ago by Sharan and

Teper [33].

7. The fate of chiral symmetry in the chiral limit

According to the Banks-Casher formula, in the chiral limit the order parameter of chiral

symmetry breaking is the spectral density at zero. We saw that in the high temperature phase the

spectral density is singular at zero, and thus the Banks-Casher formula cannot be used. However,

we can still go back to Eq. (1), the derivation of the Banks-Casher formula. Making use of the fact

that even in the chiral limit the eigenvalues in the singular part of the spectral density are much

smaller than the quark mass, we obtain

〈k̄k〉 ∝ 〈
∑
8

<

<2 + |_8 |2
〉 ≈

(avg. number of in-
stantons in free gas

)
︸          ︷︷          ︸

<#f j0+

×
1

<
= <#f−1j0+. (15)

Here we used that if |_8 | ≪ < then each term in the sum gives a contribution 1/<, and after taking

the expectation with the path integral, the average number of terms coincides with the average

number of instantons (plus anti-instantons) in the free instanton gas, responsible for the singular

spike. The upshot is that in the chiral limit the condensate is proportional to the # 5 − 1-th power of

the quark mass. As a result, for more than one flavor, the condensate vanishes in the chiral limit, as

we expect from the restoration of the flavor non-singlet chiral symmetry. In the case of one flavor,

the condensate does not vanish, but in this case there is no chiral symmetry to be broken or restored.

In recent years there have been a lot of discussion about how the anomalous* (1)� symmetry is

manifested in the high temperature phase. A quantity that was extensively studied is the difference

of the pion and delta susceptibility that is expected to be nonzero if the symmetry is broken. This

can also be written as a Banks-Casher type spectral sum, for which the foregoing argument can

again be used. Thus we obtain that in the chiral limit

jc − jX = 〈
∑
8

<2

(<2 + _2
8
)2
〉 ≈

(avg. number of in-
stantons in free gas

)
︸          ︷︷          ︸

<#f j0+

·
1

<2
= <#f−2j0+. (16)

This behavior, and that in Eq. (15) is fully supported by direct simulations of our matrix model.

Remarkably, for # 5 = 2 the quantity jc − jX is nonzero in the chiral limit. We emphasize that

this happens in spite of the fact that in the chiral limit the topological susceptibility vanishes, but

the anomaly still nontrivially affects the c minus X susceptibility. This can happen only because

the spectral density is singular at the origin. This scenario has another nontrivial consequence.

Even though the spontaneously broken chiral symmetry is restored above )2, the order of the

thermodynamic and the chiral limit is still essential. If the chiral limit is taken first in a finite

volume, then as can be seen in Fig. 5, the singularity at the origin is “regularized” by the finite

volume, and jc − jX becomes zero.

This argument also highlights the difficulties in seeing this effect in actual lattice simulations.

The influence of the anomaly on these quantities, related to chiral symmetry is proportional to the

11
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topological susceptibility. Even in the quenched case the topological susceptibility falls sharply

above )2, and light dynamical quarks suppress topological fluctuations even more. Therefore, at

high temperatures the effect we described can be numerically small. If the volume is not large

enough to contain typically several instantons and anti-instantons, the spectral spike does not form.

In addition, to resolve the small eigenvalues in the spectral spike, one needs a chiral Dirac operator

both for the sea, to account for the proper suppression of the small eigenvalues, and for the valence

to have the correct contribution of the small eigenvalues to physical quantities.

8. Conclusions

We saw that the singular spike in the spectral density at the origin can be explained by

mixing would be zero modes of a free gas of instantons and anti-instantons. This is consistent

with constraints obtained for the spectral density from the assumption of the restoration of the

spontaneously broken chiral symmetry [34, 35], and also consistent with the quasi-instanton picture

of Kanazawa and Yamamoto [36, 37]. As we already remarked, instantons here do not mean

field configurations close to solutions of the field equations, and they might not even mean well

localized lumps of topological charge. Indeed, all that we can infer from the success of our model

is that the would be zero modes are exponentially localized with exponentially small mixing matrix

elements. Finding different localization properties in the gauge field and the zero modes would

not be unnatural, as in contrast to the zero mode, the gauge field of the finite temperature caloron

solution falls only like a power-law [38]. The topological charge density certainly has nontrivial

structures [39], and exploring their relationship to the spatial structure of eigenmodes in the ZMZ

would be interesting.

Our instanton-based random matrix model also predicts the appearance of some tightly bound

instanton–anti-instanton pairs, in addition to the free instanton gas. However, in the chiral limit

the splitting of the corresponding eigenvalues remains constant, governed by the small size of the

molecules. Therefore, the corresponding eigenvalues do not appear in the singular spike, and they

do not contribute to the quantities dominated by the spectral spike [40].

We showed that in one particular quantity, the pion minus delta susceptibility, for # 5 = 2 light

flavors the anomalous chiral symmetry breaking still shows up at high temperature in the chiral

limit. Since our arguments are valid up to arbitrarily high but finite temperatures, the anomalous

breaking of the * (1)� symmetry should remain up to arbitrarily high temperatures. However, the

strength of the breaking was seen to be proportional to the topological susceptibility in the quenched

limit at the given temperature. Since this susceptibility falls sharply with increasing temperature,

the size of the symmetry breaking should also become very small, but still non-vanishing. This

suggests that the * (1)� symmetry is not restored, but the manifestation of its breaking for different

quantities is still an open question that has also a bearing on the nature of the transition in the chiral

limit. This is a topic that has been recently extensively studied both in lattice simulations [41–44]

and low energy effective models [45–49].
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