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1. Introduction

Lattice Monte Carlo methods (particularly lattice QCD) allow nonperturbative, first-principles
access to a wide range of observables in strongly coupled systems, but at considerable computational
cost. Algorithmic improvements that reduce this cost, while preserving the merits of these Monte
Carlo methods—particularly controllable systematic errors, predictable polynomial scaling, and
access to nonperturbative physics—are valuable. Recent searches for such improvements have
often been inspired by techniques from machine learning (ML) and particularly deep learning.
To slightly over-generalize, one may describe an algorithmic improvement that depends on the
existence of some function 𝑓 (𝑥) such that a functional 𝐿 [ 𝑓 (𝑥)] ≈ 0 is small. The function 𝑓 (𝑥) is
then parameterized and sought via ML techniques (typically an appropriate equivalent of stochastic
gradient descent on the loss functional 𝐿 [·]). This approach has the virtue that the last decade’s
substantial progress in deep learning techniques can be brought to bear on lattice QCD with relatively
little modification.

This talk is focused on those ML and ML-inspired methods which accelerate lattice simulations
in a way that provably introduces no systematic bias, without significantly altering the overall
framework of lattice QCD. The ML-inspired methods discussed in this talk can be divided into
two rough families, depending on whether the method is intended to assist with sampling or
with measurement. On the sampling side, there have been an array of proposals for learning
optimized proposal distributions. The greatest successes in gauge theories have been seen by flow-
based samplers, discussed in Section 2. On the measurement side, signal-to-noise problems (and,
closely related, sign problems) can be alleviated by performing contour deformations as discussed
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in Section 3, or by explicitly constructing observables with equal mean but reduced variance as
discussed in Section 4. Finally, measurement can be made cheaper without great sacrifices to
precision by learning approximate observables which may be quickly evaluated, while using a small
number of configurations to remove the bias (see Section 5).

Of necessity a wide variety of techniques have been excluded from this talk, not because of a
lack of merit but because they do not fit with the narrow framework described above. To conclude
this section let us highlight a portion of this work. Various machine learning methods have been
applied to regularize the ill-posed problem of determining spectral functions [1, 2, 3, 4, 5], relevant
to determining real-time evolution, decay rates, and cross sections from Euclidean lattice data. In
something of a call-back to the origins of deep learning of a field, phases or action parameters can be
learned from samples (or a single sample) of field configurations [6, 7, 8, 9, 10, 11, 12]. Following
the introduction of neural-network quantum states [13], neural networks have been used to represent
wavefunctions of lattice systems (in the Hamiltonian formalism) [14, 15]. Finally, neural networks
have recently been used to parameterize a many-parameter lattice action [16] with an eye towards
minimizing lattice discretization effects.

2. Flow-based sampling

A substantial fraction of the computational effort of lattice QCD comes from the cost of
obtaining a sequences of 𝑁 samples 𝑈𝑛 from the Boltzmann distribution 𝑝(𝑈) ∝ 𝑒−𝑆eff (𝑈) . The
statistical errors on a Monte Carlo measurement scale as 𝜎 ∼ 𝑁−1/2, so assuming negligible
systematics and cheap measurement1, a method that accelerates sampling by a factor 𝐴 will reduce
error bars by a factor

√
𝐴.

Thus we are motivated to consider the vast family of machine-learning methods for efficiently
sampling from various probability distributions. The focus here will be on one particular class
of such methods: normalizing flows (also highlighted in a plenary talk at the previous lattice
conference [17]). Several other ML methods for accelerating sampling have been explored in recent
years, including restricted Boltzmann machines [18, 19], diffusion models [20, 21], and generative
adversarial networks [22, 23]. Our focus is on normalizing flows because normalizing flows have
been tested directly on gauge theories—the performance of other methods on gauge models of size
comparable to QCD lattice is generally unexplored.

Let us say we have a probability distribution on R, 𝑝(𝑥), from which we wish to sample. A
normalizing flow for this distribution is a function 𝑥(𝑧) that obeys:

𝑝(𝑥)𝑑𝑥 =
1

√
2𝜋

𝑒−𝑧
2/2𝑑𝑧. (1)

A normally distributed random variable 𝑧 can be turned into a sample from 𝑝 simply by applying the
function 𝑥(𝑧). Normalizing flows exist for any distribution 𝑝, and can be obtained in one dimension
by inverting the cumulative distribution function.

1Neither is a universally valid assumption: many calculations have errors dominated by systematics, and measurement
is typically at least comparably expensive to sampling due to the need to invert the Dirac matrix.
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Figure 1: Comparison of the autocorrelation time as a function of lattice size when using HMC updates,
local Metropolis updates, and normalizing flows. Reproduced from [25].

Normalizing flows naturally generalize to multivariate distributions, where the defining equa-
tion is

𝑝 [𝜙(𝑧)] det
𝜕𝜙

𝜕𝑧
=

1
√

2𝜋
𝑒−𝑧

2/2. (2)

An early published example of a normalizing flow is the Box-Müller transform [24], which converts
between a uniform sample on [0, 1]2 and two normally distributed random variables. In physics,
normalizing flows first appeared under the name of trivializing maps as a method for solving field
theories. Nicolai presented one as a solution to N = 4 supersymmetric Yang-Mills [26], and three
decades later Luscher discussed trivializing maps in the context of lattice gauge theory [27].

So far all of these normalizing flows have been exact normalizing flows, meaning that (2) holds
as written. When attempting to learn a normalizing flow, one does not typically expect to be able
to satisfy such an equality exactly. We instead search for flows 𝜙(𝑧) such that (2) is satisfied only
approximately. Expectation values over the original distribution 𝑝(·) are then estimated either by
using the normalizing flow to generate proposals in a Markov-chain Monte Carlo, or by reweighting.
For good approximations, this is often still much more efficient than sampling from 𝑝(·) by other
means.

Training and using a numerical normalizing flow involves repeated evaluations of the Jacobian
determinant. For an arbitrary function 𝜙 this calculation scales nearly as the cube of the number
of degrees of freedom, and is by far the most computationally intensive step. Therefore, practical
normalizing flows use a restricted class of functions for which both 𝜙 and its Jacobian determinant
can be evaluated efficiently—typically in time linear in the number of degrees of freedom. These
families include NICE [28], RealNVP [29], and neural ordinary differential equations [30].

Continuous normalizing flows have been used to sample the Nambu-Goto string [31] and to
construct normalizing flows the exactly respect the symmetries of the field theory [32]. However,
most large-scale numerical works have used RealNVP.

A trained normalizing flow allows the partition function to be directly estimated [33, 34]. In
the context of lattice quantum field theory, the partition function is typically not of physical interest,
and so this property is not much used.

The use of RealNVP (and various extensions) has led to a series of remarkable results in
accelerating lattice sampling. The first demonstration of this was in scalar field theory [25]. In
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Reference 𝑁params ESS at 𝛽 = 6
[27] 8 < 1%
[41] 420 70%
[35] ∼ 106 48%

Table 1: Comparison of the performance of three different normalizing flows, as measured by effective
sample size (ESS). Larger ESS corresponds to a higher-precision normalizing flow and a more efficient
algorithm. Table reproduced from [41]

that work, the flow is used to generate proposals for a Markov-chain Monte Carlo ensemble, and
so the success of the normalizing flow manifests as a short autocorrelation time. This is shown in
Figure 1.

Applications to gauge theories followed from the design of gauge-equivariant flows [35, 36, 37],
which are only capable of representing gauge-invariant probability distributions 2. This has since
been extened to theories with fermions [38], applied to the lattice Schwinger model [39], and
demonstrated at arbitrary space-time dimension [40].

Most works in this line have adopted the usual perspective of deep learning, that more pa-
rameters leads to better results. At least in the case of 1 + 1-dimensional gauge theory (a special
case, being an exactly solvable model), this is not necessarily true. In [41], it was demonstrated
that a few-parameter ansatz (inspired by Lüscher’s flows) is capable of substantially out-performing
numerically trained flows with ∼ 106 parameters. The key table from this work is reproduced as
Table 1.

3. Contour deformations

We now turn from methods designed to accelerate sampling, to those designed to modify the
signal-to-noise ratio after sampling has been completed. The method of contour deformations is
based on Cauchy’s integral theorem. In the case of a single complex dimension, for any contour 𝛾
obtained by continuously deforming R ⊂ C, we have the equality∫

R
𝑓 (𝑧)𝑑𝑧 =

∫
𝛾

𝑓 (𝑧)𝑑𝑧 (3)

for any function 𝑓 (𝑧) which is holomorphic. The complex integration measure is defined as
𝑑𝑧 = 𝑑𝑥 + 𝑖𝑑𝑦. The two integrals are equal, but the values the integrand takes along R are not the
same as those the integrand takes along the contour 𝛾. As a result, one integral may be numerically
easier than the other.

In the 𝑁-dimensional case, Cauchy’s integral theorem states3∫
R𝑁

𝑓 (𝑧)𝑑𝑧 =
∫
R𝑁

𝑓 (𝜙(𝑥)) det
𝜕𝜙

𝜕𝑥
𝑑𝑧 (4)

2Note that this is not because gauge-equivariance is required for correctness, but rather because it is believed to be
easier to train a flow which already “knows about” all relevant symmetries.

3As pointed out in [42], this construction excludes those contours homologous but not homotopic to the real plane.
No such contour has yet been used to mitigate a sign problem.
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Figure 2: Reproduced from [43], the charge of Perylene as a function of chemical potential. Computed with
a contour deformation, defined by one parameter.

for any continuous (and piecewise differentiable) 𝜙 : R𝑁 → C𝑁 parameterizing an 𝑁-dimensional
integration contour. Suitable generalizations to functions defined on manifolds that only locally
look like R𝑁 are readily available. This includes the integrals over 𝑆𝑈 (𝑁) which are relevant to
lattice QCD.

This fact has been applied to both sign problems (where the Boltzmann factor itself posesses
strong fluctuations) and signal-to-noise problems, in slightly different ways.

3.1 Sign problems

Historically, the motivating applications of contour deformations were theories that exhibit
sign problems. In short4, we have a theory for which the action is in general complex, and therefore
the Boltzmann factor 𝑒−𝑆 no longer defines a probability distribution. In this context expectation
values are commonly computed by sampling with respect to the “quenched ensemble”, defined by
a probability distribution proportional to |𝑒−𝑆 |. This comes at a severe cost. Defining the average
phase

⟨𝜎⟩ ≡
∫
𝑒−𝑆 (𝑈)𝑑𝑈∫
|𝑒−𝑆 (𝑈) |𝑑𝑈

≡ 𝑍

𝑍𝑄

, (5)

the number of samples required to overcome the sign problem scales as ⟨𝜎⟩−2. As the average
phase typically decays exponentially with the system volume, this imposes an exponential cost on
lattice calculations.

Now consider performing a contour deformation—instead of integrating over S𝑈 (3)⊗𝑉 , we
integrate over some contour 𝛾 ⊂ 𝑆𝐿 (3;C)⊗𝑉 . Expectation values are expressible as a ratio of two

4See [44] for a review.
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holomorphic integrals, and are therefore not affected by contour deformation:

⟨O⟩ =

∫
𝑆𝑈 (3)⊗𝑉 O(𝑈)𝑒−𝑆 (𝑈)𝑑𝑉𝑈∫

𝑆𝑈 (3)⊗𝑉 𝑒−𝑆 (𝑈)𝑑𝑉𝑈
=

∫
𝛾
O(𝑀)𝑒−𝑆 (𝑀 )𝑑𝑉𝑀∫
𝛾
𝑒−𝑆 (𝑀 )𝑑𝑉𝑀

. (6)

The figure of merit above, however—the average phase—cannot be written in this way. The
quenched partition function 𝑍𝑄 is dependent on the choice of contour. We therefore conclude that
it is possible to improve the sign problem by judicious choice of integration contour.

It remains to find a useful integration contour: one on which ⟨𝜎⟩ is as large as possible.
Inspired by early work on analytic continuation of field theories [45], the first proposed contours
were Lefschetz thimbles [46]: a particular family of contours for which the imaginary part of the
action happens to be constant5. The Lefschetz thimbles are computationally expensive to find, and
so it was proposed to use supervised learning to obtain an efficient approximation [47].

Shortly after, it was realized that instead of attempting to approximate the Lefschetz thimbles,
one could directly maximize the average phase ⟨𝜎⟩ over a family of contour deformations [48, 49].
This unsupervised learning algorithm has been applied to a variety of systems, including fermions
at finite density in 2 + 1 dimensions [50].

One lesson learned from the many works searching for integration contours with a mild sign
problem, is that very simple contour deformations are often sufficient in practice. The simplest
nontrivial contour deformation is a “constant shift”, where each degree of freedom has the same
imaginary part added:

𝜙𝑥 → 𝜙𝑥 + 𝑖𝐶.

This sort of contour deformation has proven useful in the study of small systems of strongly
correlated electrons [51]. Note that when performing a Monte Carlo on a deformed contour, there
is a Jacobian determinant that must be evaluated, coming from the curvature of the contour. A
constant shift has no curvature, and so there is no cost associated to this determinant. This line of
work culminated in the calculation of the behavior and spectrum of doped Perylene [43]. From that
work, the charge as a function of chemical potential is shown in Figure 2.

More complicated contours, defined by many-parameter neural networks, were demonstrated
to be valuable for the calculation of scalar 𝜆𝜙4 field theory at complex coupling [42]. This model
is of possible interest as a PT -symmetric field theory [52, 53, 54, 55]. Key figures from this work
are reproduced in Figure 3.

These sorts of machine-learned contour deformations have also been used to study the 𝑋𝑌

model in 2+1 dimensions [56],𝑈 (1) gauge theory with complex parameters [57], one-dimensional
QCD [58], QCD in the heavy-dense limit [59].

As with normalizing flows (discussed above), it is generally believed that an ansatz will perform
better if the symmetries of the problem are “built-in”, so that they do not have to be learned during
training. This has provided motivation for the study of the performance of neural networks that take
as input only gauge-invariant quantities [60].

5To prevent a common misconception, note that the Lefschetz thimbles do not in general maximize ⟨𝜎⟩. This is
both because the Jacobian determinant introduces additional phase fluctuations, and because of cancellations between
the thimbles.
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Figure 3: From [42], investigations of lattice scalar field theory at complex coupling. At left is shown the
partition function of 0 + 1-dimensional scalar (𝜆𝜙4) field theory as a function of complex anharmonicity 𝜆;
the branch cut on R− can clearly be seen. At right, the average phase of 1 + 1-dimensional lattice scalar
field theory at 𝜆 = 𝑖, as a function of volume. Both the defining contour R𝑉 and the trained contour exhibit
exponential decays, but the trained contour has a slope more than an order of magnitude smaller.

Not all successes of the contour deformation method have stemmed from machine learning.
A popular alternative is the holomorphic gradient flow, which defines a family of contours that
approximate the Lefschetz thimbles. This family has been used to study the chiral random matrix
model [61] and QED in 1 + 1 dimensions [62].

The contour deformation method, on its face, is only able to handle systems with continuous
parameters (which can then be complexified). This can be extended to spin systems by introducing
auxiliary degrees of freedom [63, 64, 65].

Finally, most of the works above have focused on systems at a finite chemical potential (which
introduces the sign problem). Via the lattice Schwinger-Keldysh formalism, real-time dynamics can
also be studied, albeit with a severe sign problem. This sign problem has been the target of various
contour deformation-based methods [66, 67, 64], including machine learning [68]. However, in the
case of field variables on compact spaces (particularly relevant to gauge theory), there are substantial
technical obstacles to preserving unitarity in time-evolution [69].

3.2 Signal-to-noise problems

Sign problems and signal-to-noise problems are closely related. In fact, a sign problem can
be seen as a signal-to-noise problem in evaluating the ratio of partition functions 𝑍/𝑍𝑄. Just as a
sign problem can be improved by choice of appropriate contour (because 𝑍𝑄 is not the integral of
a holomorphic quantity), so can the noise in an observable be reduced by choice of an appropriate
integration contour. This comes from the fact that the variance associated to ⟨O⟩ is ⟨O†O⟩—the
operator in the expectation value is not holomorphic.

Thus motivated, simple contour deformations have been explored in the context of𝑈 (1) gauge
theory and complex scalar field theory [71], and two-dimensional 𝑆𝑈 (2) Yang-Mills [70]. A
demonstration from the latter work is reproduced as Figure 4. The improvement in the signal-to-
noise ratio is shown to be exponential in the size of the Wilson loop.
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Figure 4: From [70], evidence of exponential improvement in the signal-to-noise problem of two-dimensional
𝑆𝑈 (2) Yang-Mills. Shown is the ratio of the variance of the estimator of the Wilson loop, to the the variance
of a contour-improved estimator of the same quantity.

3.3 Theoretical aspects

Beyond the machine-learning aspects of this method, a great deal is now known about the
space of possible contour deformations and their sign problems. Here we briefly summarize a few
important results and major open questions.

If, in the definition (2) of a normalizing flow, the function 𝑥 : R𝑁 → C𝑁 is permitted to
be complex-valued, then 𝑥(𝑧) can be seen to parameterize a complex integration contour. This
observation leads to the notion of a complex normalizing flow [68], which can be used to work
around the difficulty of efficiently sampling on an arbitrary contour deformation. In the context of
machine learning, by learning a complex normalizing flow, one obtains many of the benefits of a
contour deformation and a normalizing flow simultaneously.

The discussion of contour deformations above hinged on the Boltzmann factor 𝑒−𝑆 being
holomorphic. For some applications (e.g. nuclear forces) this assumption does not hold. It has
been shown that this approximation can be relaxed, either by approximating the action by a nearby
holomorphic one [72], or by constructing a Riemann surface on which the Boltzmann factor is
holomorphic [73]. In both cases, a key insight is that the calculation we want to perform is defined
only on the real plane. The behavior of the action (and other functions) away from the real plane is
a choice we make for algorithmic convenience.

It has been shown that a necessary and sufficient condition for a contour 𝛾 to be a local
maximum of ⟨𝜎⟩, is that the integrand 𝑒−𝑆𝑑𝑧 has locally constant phase as long as that phase is
defined. In other words, the phase of 𝑒−𝑆𝑑𝑧 is piecewise constant, with regions of different phase
being separated by zeros of that integrand. This is reminiscent of a similar property of Lefschetz
thimbles, where it is the phase of 𝑒−𝑆 that is constant except where that Boltzmann factor vanishes.
It has been conjectured [51, 74] that there exists an expansion in ℏ, of which the Lefschetz thimbles
are the leading-order term and the perfect contours are the sum. Rigorous results to this effect are

9
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Figure 5: No-go regions for 1+1-dimensional lattice Yang-Mills at complex coupling 𝛽, from [74]. Outside
of the blue lines, perfect integration contours (on which ⟨𝜎⟩ = 1) were found numerically; within the red
lines, proofs that no such contours existed were found. The black points indicate zeros of the partition
function.

not yet available.
Empirically, most studies that use contour deformations have failed to find a perfect contour.

That is, there is usually some residual average phase, which decays exponentially with the volume of
the system. When this happens, it is a priori unclear whether no such contour exists, or the learning
algorithm has simply failed to find the perfect contour (in which case applying more computational
power may be advisable). In [74], a method of proving that no perfect contour exists was devised.
Writing the quenched partition function over a contour 𝛾 as

∫
𝛾
|𝜔 | for some differential form 𝜔, one

finds another differential form 𝛼 obeying both 𝑑𝛼 = 0 and |𝛼 | ≤ |𝜔 |. For any such form 𝛼 one has
the following sequence of inequalities:����∫

R
𝛼

���� = ����∫
𝛾

𝛼

���� ≤ ∫
𝛾

|𝛼 | ≤
∫
𝛾

|𝜔 |, (7)

establishing that
∫
R
𝛼 is a lower bound on the quenched partition function, no matter the choice

of contour. By this method an exponentially decaying upper bound on ⟨𝜎⟩ was found for 1 + 1-
dimensional lattice Yang-Mills for a range of complex couplings (see Figure 5). No such bounds
have yet been found for theories that are not exactly solvable; nor have any such bounds been derived
for improvements in signal-to-noise problems.

4. Control variates

For the remainder of this talk we continue with the theme of variance reduction. Of course
this can often be accomplished via normalizing flows [75]: the variance is reduced if the number
of samples can be efficiently increased. However it may be that no high-quality normalizing flow
can be constructed, or that the cost of measurement outweighs the cost of sampling. In such cases
we desired to modify the observable in such a way that the variance changes while the expectation
value remains the same.
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Suppose we know of a function 𝑓 such that ⟨ 𝑓 ⟩ = 0 vanishes exactly. Then instead of
computing ⟨O⟩, we might computed ⟨O − 𝑓 ⟩. The two expectation values are exactly equal, but
the statistical noise might be improved. The function 𝑓 is termed a control variate. Control
variates are extraordinarily general: for every observable there exists a “perfect” control variate that
entirely removes the noise [76]. Moreover, other variance reduction methods (including contour
deformations as discussed above) can often be re-written as control variates [76]. This generality
is both a blessing and a curse: we know that there exist desirable control variates, but we have little
guidance in how to find them.

Control variates are in principle applicable to both sign problems and signal-to-noise problems.
The most striking successes of control variates have all been in their application to signal-to-noise
problems, so this section will focus on those cases. Small but significant improvements have
been obtained in the sign problems for fermionic systems [77, 76] and Ising models at complex
coupling [78].

To make this approach practical, we first need a large family of functions 𝑓 whose expectation
values can be proven6 to vanish exactly. Such a family of functions is provided by noticing that the
integral of a total derivative (on a compact space of field configurations) must vanish. As a result
we have

⟨𝜕𝑔⟩ = ⟨𝑔𝜕𝑆⟩, (8)

where 𝑆 is the action and 𝑔 is any function of field configurations. Equalities of this form, which
hold for any first-order derivative 𝜕, are termed Schwinger-Dyson relations.

The immediate problem with applying this method to lattices of realistic sizes is that there
are simply too many Schwinger-Dyson relations, and in a sense we do not know which ones to
use. To be concrete, consider lattice scalar field theory with 𝑉 sites. At leading order there are 𝑉2

Schwinger-Dyson relations available, of the form

⟨ 𝜕

𝜕𝜙𝑥

𝜙𝑦⟩ = ⟨𝜙𝑦

𝜕

𝜕𝜙𝑥

𝑆⟩ (9)

for (not necessarily distinct) sites (𝑥, 𝑦). Using translational invariance this is reduced to a set of 𝑉
relations. A general control variate may be written as a linear combination of these. This control
variate has 𝑉 free coefficients, which must be determined by a fit. On a 2 + 1-dimensional lattice of
reasonable (∼ 1003) size, this fit requires ≳ 106 configurations, which are likely not available.

One approach, proposed in [79], is to use 𝐿1 regularization. The assumption is made that a good
control variate exists for which the vast majority of coefficients are exactly 0, and such a “sparse”
control variate is optimized numerically. The performance of this method is shown in the left panel
of Figure 6: an order-of-magnitude improvement in the signal-to-noise ratio, corresponding to a
speed-up of a factor of ∼ 102, is obtained.

Another proposed approach to this high-dimensional fit has been to parameterize the function
𝑔 by a neural network [80]. Recall that any function 𝑔 defines a control variate. The high-
dimensional fitting problem can then be approached in any number of ways standard in machine
learning, including regularization by limiting training time. Tested in scalar field theory, this method

6It is critical that ⟨ 𝑓 ⟩ = 0 be a theorem, rather than an empirical statement from Monte Carlo data. By construction,
the observable 𝑓 will be noisy.
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Figure 6: Two approaches to reducing the signal-to-noise problem associated with the correlator in scalar
field theory, both based on Schwinger-Dyson control variates. At left [79], a complete basis of leading-order
Schwinger-Dyson relations is used, with 𝐿1 regularization to mitigate overfitting. At right [80], a neural
network parameterizes the function 𝑔(𝜙) which defines the Schwinger-Dyson control variate.

also yields an improvement in the signal-to-noise ratio of more than an order of magnitude (see
again Figure 6).

Recent work has also proposed constructing control variates in perturbation theory [81], al-
though with less success than the previously mentioned approaches.

5. Surrogate observables

The previous section focused on reducing the noise associated with measuring an expectation
value ⟨O⟩. This is valuable when, for any reason, we cannot perform a sufficiently large number
of calculations of O(𝑈) on independent configurations. This may be because collecting the
configurations is expensive (the cost of HMC), or because given 𝑈, the task of evaluating O(𝑈) is
expensive. In either case, reducing the noise will reduce the number of configurations on which
O(𝑈) is needed.

WhenO(𝑈) is expensive and collecting configurations𝑈 is (relatively) cheap, another approach
is available. By one method or another, we construct an approximation Õ(𝑈) ≈ O(𝑈), which is
cheaper to evaluate. We can evaluate Õ on a larger number of configurations; however its use
introduces a systematic bias from the difference ⟨O⟩ − ⟨Õ⟩ ≠ 0. This bias can be corrected by
evaluating ⟨O − Õ⟩. Per-sample, this is as expensive as evaluating O; however, because this last
expectation value has smaller variance, it does not need to be evaluated on as many samples.

This approach is summarized by the equation

⟨O⟩ = ⟨Õ⟩ + ⟨O − Õ⟩ ≈ ⟨Õ⟩𝑁̃ + ⟨O − Õ⟩𝑁 , (10)

where ⟨·⟩ denotes the true lattice expectation value, and ⟨·⟩𝑛 an expectation value with respect to 𝑛

samples. The ratio 𝑁

𝑁̃
< 1 controls which term in the estimator dominates the variance.

It remains only to construct an approximation to the observable O, and at this point the
connection to machine learning is obvious. The true observable O is computed on some set of con-
figurations, which are used to train a neural network or other device to represent the approximation
Õ. This approximation is by construction cheap to compute, enabling the above procedure.

12
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Figure 7: Predicting 𝑅(𝑡 = 2) (ratio of 3-pt to 2-pt) of kaon quasi-PDF correlators at (𝑝pred, 𝑡pred, 𝑡sep) =

(4, 4, 5) from measurements at (3, 4, 5). From [82]. The red curve shows the cost savings from the use of
surrogate observables, with a maximum of around 20%.

This method has been applied to lattice QCD at scale, with mild success. In [83], boosted
decision trees were used to construct approximations to, among other things, nucleon three-point
functions given already-computed two-point functions. That work reported reduction in compu-
tational cost of 7%-38%. In [82], both the boosted decision trees and a linear regression model
were used to extract kaon quasi-PDF correlators. One figure from this latter study is reproduced in
Figure 7. The amount of improvement is similar to that in the previous study.

6. Discussion

We have seen four broad families of machine learning algorithms for accelerating lattice
simulations: normalizing flows for improving sampling, contour deformations chiefly for improving
sign problems, control variates for improving the signal-to-noise ratio, and surrogate observables for
accelerating measurement. All can be used without introducing any additional systematic bias into
the Monte Carlo results. Normalizing flows and surrogate observables have already been proven
somewhat useful “at scale”—at least, in 4-dimensional gauge theories. Contour deformations and
control variates have proven useful in smaller systems, but not yet in lattice QCD itself.

A recurring theme in this field is that methods that involve large numbers of parameters (usually
some form of “deep learning”) do not systematically out-perform methods with few, or even no,
parameters. This was highlighted in Table 1 above with respect to normalizing flows, but the
phenomenon has also repeatedly been reported in the context of contour deformations (see for
example [47, 50]).

A second pattern, noticeable throughout this talk, is that relatively few of these methods have
been successfully applied to systems of physical interest. The most remarkable exception is the study
of C20H12-Perylene via contour deformations [43], although this work is also not quite sufficient to
make direct contact with experiment.

Those interested in using these techniques—or just gaining practical experience for self-
edification—may find useful a normalizing flow tutorial published several years ago [84], and
two software packages targetting normalizing flows for lattice field theory: [85, 86].
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