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1. Introduction
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Figure 1: Schematic representation of the chiral and
deconfinement transition in QCD.

The theory of strong interaction matter
as described by Quantum Chromodynamics
(QCD), exhibits two important nonperturba-
tive features, spontaneous breaking of the chi-
ral symmetry and color confinement. In fact,
both phenomena are related to symmetries of
the theory. In the former case, the chiral sym-
metry denotes the invariance of the action under
independent unitary rotations of left- and right-
handed Dirac spinors in flavor space, SU(# 5 )L
× SU(# 5 )R. This symmetry is manifest in the
massless Lagrangian but explicitly broken by
the quark mass term and, in addition, sponta-
neously broken at low temperatures. The latter
phenomena is related to the limit of infinitely
heavy quarks (quenched limit of QCD), where
the action is invariant under generalized gauge
transformations w.r.t. the center of the gauge
group, Z(3). While the chiral transition can be
analysed in terms of an effective Hamiltonian of
an order parameter field, the chiral condensate
[1], the mechanism of color confinement is still
not very well understood. One physical picture
is obtained in terms of the Polyakov loop, which
is related to the free energy of a static color charge as probe of the system. For a review on Polyakov
loop modeling for hot QCD see, e.g. [2]. It is a nontrivial observation that the chiral and deconfine-
ment transition temperatures are in good agreement, at least at vanishing baryon number density
[3, 4]. We note, however, that the notion of these temperatures is only uniquely defined through
the order parameters chiral condensate and Polyakov loop in the respective limits of massless and
infinitely heavy quarks. At any small but nonzero quark mass, the order of the transition is a
crossover [5] and each observables might define a different (possibly pseudo-critical) temperature
)?2 . A schematic picture is shown in Fig. 1. On the left side the chiral potential is depicted, which
gives rise to a nonvanishing vacuum expectation value of the chiral condensate below )?2 . On the
right side the perculation picture of the deconfinement transition is represented, where color charges
can move over large distances once hadrons have sufficient overlap above )?2. It is interesting to
mention that the role of the Polyakov loop changes from an order parameter (magnetization-like
operator) at very large masses to a energy-like operator near the chiral limit [6]. The interplay
between chiral and deconfinement transition might also be discussed in terms of the spectrum of
the Dirac operator. While the chiral condensate is very sensitive to the low eigenvalues [7], the
Polyakov loop is more sensitive to the bulk of the spectrum [8]. Additional information is encoded
in the degree of localization of eigenmodes. The transition between localized and unlocalized
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Figure 2: Schematic view of the (2+1)-flavor phase diagram in the parameter space spanned by temperature
) , quark mass ratio <;/<B and baryon chemical potential `�.

eigenmodes (Anderson transition) might be another manifestation of deconfinement [9, 10].
In the following, we will briefly motivate additional control parameters, that influence the

QCD transition (Sec. 2) before we analyse the universal critical scaling near the the chiral transition
in more detail (Sec. 3). We will argue that scaling fits are a powerful tool to extract important
nonuniversal constants such as the chiral transition temperature from lattice data. In Sec. 4 we
will comeback to the deconfinement transition, which we will assess in terms of conserved charge
fluctuations and the melting of hadronic states. Finally we will use the same type of observables
and to constrain the location of the QCD critical point (Sec. 5).

2. A walk through the QCD phase diagram

A schematic view of the (2+1)-flavor phase diagram is indicated in Fig. 2. Our current
understanding of this phase diagram assumes a second order phase transition in the chiral limit.
Despite the fact that the symmetry breaking pattern of the chiral transition, and thus also its nature,
is not established beyond any doubt [11], we assume here that the axial anomaly U(1)A remains
broken at )2 [12], while the chiral symmetry breaks such that SU(# 5 )L × SU(# 5 )R→ SU(# 5 )V
for ) < )2 . With two degenerate light quark flavors (up and down), this would correspond to a
second order transition in the universality class of the $ (4) spin-model. In (2+1)-flavor QCD, the
light quark mass <; is thus an important control parameter that takes over the role of the symmetry
breaking field ℎ. It is convenient to define the two scaling fields C, ℎ as

C = C−1
0 ()/)2 − 1) and ℎ = ℎ−1

0 (<;/<B) . (1)
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Here <B denotes the strange quark mass and C0, ℎ0 are nonuniversal normalization constants that
need to be determined. The same is true for the chiral transition temperature )2 . The traditional
method to determine )2 is by locating the peak position of the chiral susceptibility j;, as a function
of ℎ, which defines one possible pseudo-critical line. A similar method was pursued in Ref. [13],
where the position that corresponds to 60% of the maximum of the peak height (for ) < )2) was
determined. A chiral critical temperature of)2 = 132+3−6 MeV [13] was found, which is considerably
smaller than the crossover temperature )?2 = 156.5(1.5) MeV at physical quark masses [14]. In
the vicinity of the chiral critical point, indicated as red dot in Fig. 2, the pseudo-critical line is given
as C ∼ ℎ1/VX , with V, X being critical exponents.

Already since the introduction of QCD, people though about the dependence of the chiral
transition on the baryon number density and its connection with the onset of matter. Due to the
charge conjugation symmetry, and since the net baryon chemical potential `� does not break the
chiral symmetry, the parameter can be added to the reduced temperature as

C = C−1
0 (()/)2 − 1) + ^�2 ˆ̀2

�) , (2)

where we denote ˆ̀� = `�/) . Lattice QCD calculations are hindered by the infamous sign problem.
At small chemical potentials the sign problem can be overcome by a Taylor expansion approach
[15]. The curvature coefficient ^�2 can be determined by expanding thermodynamic quantities in
ˆ̀� about ˆ̀� = 0. It was found that the value depends only very mildly on the light quark mass [16].
The value reduces by about 10% under the constraint of a vanishing strange quark density (=( = 0)
[16]. In this case, the continuum extrapolated result is ^�2 = 0.012(4) [14], a consistent results of
^�2 = 0.0153(18) was given in Ref. [17]. As a consequence, )?2 (`�) and )2 (`�) are decreasing
with increasing `�, as indicated in Fig. 2 by the dashed and read lines.

At larger chemical potentials people expect a second order phase transition point as an endpoint
of a first order line, known as the QCD critical end-point (CEP). Due to the emergent discrete
reflection symmetry (Z(2)) in the vicinity of the CEP, it will be in the universality class of the
3d-Ising model. It has been considered a grand challenge to find this point by lattice QCDmethods.
Current advances in this direction will be discussed in Sec. 5. It is interesting to mention that some
recent works from lattice, Functional Renormalization Group (FRG) and holographic models find
a critical point in a similar region at ()24?, `�,24?) ≈ (110, 600) MeV. Considering the light quark
mass dependence of the QCD critical point, a line of second order phase transitions is formed,
indicated as blue line in Fig. 2. The line originates from a tri-critical point ()CA8) in the chiral limit,
indicated as a purple dot. In the vicinity of the tri-critical point, its behavior is gouverned by tri-
critical exponents. It thus emerges a hierarchy of important temperatures: )?2 > )2 > )CA8 > )24?.

It is interesting and phenomenological important to explore also other control parameter in the
QCD phase diagram, as shown in Fig. 3. An obvious extension to the list of control parameter are
further chemical potentials. In (2+1)-flavor QCD there are three independent chemical potentials
(one for each quark flavor), which can be transformed into the corresponding chemical potentials
of the hadronic charges, such as baryon number (�), strangeness ((), and electric charge (&). Often
one also discusses isospin (�). A nonzero ˆ̀� gives rise to a charged pion condensate for `� > <c/2.
The corresponding phase diagram is shown in Fig. 3 (top right) [18], which is of interest for at least
two reasons: (i) a pion condensation phase in the early Universe might have been triggered by a
large lepton asymmetry [20, 21], and (ii) a class of compact stars which is mainly composed out of a

4



P
o
S
(
L
A
T
T
I
C
E
2
0
2
4
)
0
0
5

Selected topics on the QCD phase diagram at finite temperature and density Christian Schmidt

Fig. 9. We found this extrapolation to be more stable than
the fit to all available lattice spacings, including lattice
artefacts of Oða4Þ. Both extrapolations lead to similar
results, see the comparison in Fig. 9.
We are now in the position to draw the continuum

phase diagram, which we display in Fig. 10. The chiral
crossover transition starts from a temperature of Tpcð0Þ ¼
159ð4Þ MeV, which is consistent with the crossover
temperatures from [6] within uncertainties. The results
exhibit a small downward curvature of the TpcðμIÞ line.
The pion condensation boundary remains at μI;c ¼ mπ=2
within our errors up to T ≈ 140 MeV, beyond which it
soon becomes very flat. For T ≳ 160 MeV, we do not
observe pion condensation up to μI ¼ 120 MeV.

The two transition linesmeet at the pseudo-triple point, for
which we obtain μI;pt ¼ 70ð5Þ MeV in the continuum limit,
indicated by the yellow point in Fig. 10. The corresponding
temperature is determined conservatively by taking into
account the upper bound for TpcðμI ¼ μI;ptÞ and the lower
bound for the temperature where μI;c ¼ μI;pt. Defining the
central value of Tpt as the midpoint of this interval we obtain
Tpt ¼ 151ð7Þ MeV. From what we observe at finite lattice
spacings, we expect that chiral symmetry restoration and
the pion condensation phase boundary coincide from the
pseudo-triple point on. Todemonstrate this, in Fig. 11weplot
the pion condensate together with the quark condensate
for μI > μI;pt. The figure indicates that pion condensation
(defined by the point where Σπ ¼ 0) occurs together with
chiral symmetry restoration (the inflection point of the
condensate). The initial rise of the chiral condensate in
Fig. 11 is an interesting feature in the pion condensation
phase. A similar tendency has been observed in a study of
the phase diagram of a related two-color NJL model [52].
We interpret it as a remnant of the relation between pion
and chiral condensate Σ2

ψ̄ψ þ Σ2
π ¼ 1, discussed in Sec. II C,

which follows from χPT to leading order [7].

B. Polyakov loop

Next, we elaborate on the properties of the decon-
finement transition in terms of the renormalized
Polyakov loop Pr. In contrast to the quark condensate,
the Polyakov loop exhibits no pronounced inflection
point. To capture how deconfinement depends on the
isospin chemical potential, we consider the curves in
the μI − T plane, where Pr ¼ const. is satisfied.
Considering our definition (17) for the renormalization,
the contour with Pr ¼ 1 is a possible choice for the
transition temperature. In addition, the distance between

FIG. 11. Pion and quark condensates as functions of the
temperature for μI ¼ 103 MeV as measured on our Nt ¼ 10
ensembles. The light blue area marks the pion condensation
phase boundary and the orange area indicates the location of the
inflection point of the condensate. The lines connecting the points
are only included to guide the eye.

FIG. 9. Continuum extrapolations for the isospin chemical
potential μI;pt corresponding to the pseudo-triple point, where
the chiral crossover line meets the pion condensation boundary.
The orange curve corresponds to the continuum extrapolation for
Nt ¼ 8, 10 and 12 including lattice artefacts of Oða2Þ and the
gray curve is the continuum extrapolation for all points including
an additional Oða4Þ term.

FIG. 10. The QCD phase diagram for nonzero isospin chemical
potential in the continuum limit. The blue band indicates the
chiral crossover transition temperature TpcðμIÞ and the green line
is the boundary μI;cðTÞ of the pion condensation phase (the
shaded green area). The yellow point marks the triple point,
beyond which the two transitions are coincident (see text).
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Figure 3: Different versions of the QCD phase diagram with temperature and one further control parameter,
shown are isospin chemical potential `� (top left), exteranal magnetic field 4� (top right), topological angle \
(bottom left) and imaginary chemical potential \� (bottom right). The top diagrams are taken from Ref. [18],
and Ref. [19], respectively.

Bose-Einstein condensate of charged pions [22] might exist. Even though the lattice computations
at `� > 0 do not suffer from a sign problem as in the `� > 0 case, they are still not completely
trivial. The calculation have to be performed with a isospin-breaking term present, which relative
strength has to be extrapolated to zero [23]. A improved method for the extrapolation has been
introduced in [18], see also [24, 25]. A completely different method relies on the calculation of
n-point correlation function of charged pions, which can be pushed to n as large as 6144 [26].

A further control parameter which is often discussed is the external magnetic field 4�, Fig. 3
(top right). The interest into strong magnetic fields is again motivated by the (i) phenomenology of
heavy ion collisions (ii) compact stars and (iii) the early universe, where in all cases strong magnetic
fields can be generated. In particular, it was estimated that in peripheral heavy ion collisions at
LHC energies magnetic fields of up to 4� ∼ 15<2

c could be generated [27]. It was observed that
the pseudo critical temperature )?2 (�) is decreasing with increasing magnetic field [28–30], which
is in contrast to analytic predictions [31]. At strong magnetic fields as large as 4� = 9�4+2 a first
order transition was observed [19], which is indicative for a critical point in the range of 4� = 4
– 9�4+2. At asymptotically large magnetic fields, quarks might decouple from the theory [32],
which raise the question whether the first order line terminates at ) = 0 or if it becomes constant
in 4�. This is indicated with a question mark in Fig. 3 (top right). For further influence of the
external magnetic field on the QCD thermodynamics see also [33, 34] (chiral magnetic effect) [35]
(topological sysceptibility) [36–38] (equation of state and conserved charge fluctuations).

Finally we mention that the dependence of the phase diagram on the topological vacuum angle
\ is also studied [39], which is motivated by axion physics and the axial anomaly [40]. It was
proposed that the ) − \ phase diagram is analogous to the phase diagram wit imaginary chemical
potential \� = Im[`�] [39], see Fig. 3 (bottom). We note that direct simulations with \ > 0 are
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unfeasible because of the obvious sing problem in the gauge action. Just like in the case of `�, the
problem is circumvented by either performing a Taylor expansion in \ about \ = 0, or by performing
simulations at imaginary \.

3. Universal scaling and chiral symmetry restoration

It is very important to investigate to what extent universal scaling related to the chiral transition
can be observed in lattice QCD calculations. Universal scaling assumes that the free energy has
a singular and a regular part 5 (), �, !) = 5B (), �, !) + 5reg(), �, !), where the state variables
), �, ! are the temperature, the external field and the system size, respectively. We further assume
that the singular part is a generalized homogeneous function of the reduced scaling fields C, ℎ, ;,

5B (C, ℎ, ;) = 1−3 5B (1HC C, 1Hℎℎ, 1;) , (3)

which is the scaling hypothesis, motivated by the fact that there is no physical length scale near a
critical point due to critical fluctuations. The exponents HC = 1/a and Hℎ = VX, define the critical
exponents V, X, a, which are related to each other through the hyperscaling relation X = 3a/V − 1.
If we chose the (arbitrary) scale parameter 1 to keep one of the scaling fields constant, we arrive
at a scaling function with has one argument less. A popular choice is to chose 1 = ℎ−1VX , which
will eliminate the ℎ dependence and introduces the scaling variable I = C/ℎ1VX . The standard
order parameter and the magnetic susceptiblity are given as " = −m 5 /m�, jℎ = m"/m�. The
corresponding scaling functions,

" (), �, !) = ℎ1/X 5� (I, I!) + reg and jℎ = ℎ
−1
0 ℎ1/X−1 5j (I, I!) + reg , (4)

are known for the relevant Universality classes Z(2), O(2) and O(4) [41]. At this point we make
contact with QCD observables. In QCD the (bare) ciral condensate and chiral susceptiblity are
given as

"; =
<B

5 4
 

)

+

m ln /
m<;

, j; =
<2
B

5 4
 

)

+

m2 ln /
m<2

;

, (5)

where the factors<B (<2
B) removemultiplicative divergences. Themultiplicationwith an appropriate

power of the kaon decay constant 5 makes the observables dimensionless. The partial derivative
with respect to the light quarkmass is to be understood as m/m<; = m/m<D+m/m<3 . The remaining
UV divergences still need to be subtracted. In the past this was done by subtracting a fraction of the
strange condensate [42, 43]. However, that construction is not directly related to a scaling function.
It is advantageous to introduce an improved order parameter [44, 45], given as

" = "; − �j; = ℎ1/X ( 5� (I, I;) − 5j (I, I!)) . (6)

This order parameter is renormalized, fulfills an equation of state in terms of scaling functions and
also removes the leading contributions of the regular part. In Fig. 4 (left) results for the improved
order parameter from highly improved staggered quarks (HISQ) are shown [16]. The calculations
are from lattices with temporal lattice extent #g = 8 and the spatial extent #f , which has been
increased with decreasing <;, i.e. 4 ≤ #f ≤ 7, insuring that the inverse of the pion correlation
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FIG. 2. Left: The dimensionless renormalized order parameter M versus T . Shown also is a fit to the data for

H = 1/40 and 1/80 in the temperature interval T 2 [140 MeV : 148 MeV]. The resulting fit parameters (Tc, z0, h
�1/�
0 ) =

(143.8(2)MeV, 1.45(3), 39.0(3)), are also given in Table II. The fit result is also shown beyond the actual fit range. Right: The
renormalized order parameter M versus the bare scaling variable zb calculated using as input only the critical temperature
from the fit shown in the left hand figure.

we need to restrict the fit to small quark masses and a
temperature region close to the pseudo-critical tempera-
ture. This has also been done in earlier analyses of the
magnetic equation of state [41]. It should be noted that
in regular contributions to M the leading H dependent
term gets cancelled, leaving only a weaker H3 dependent
contribution arising from regular terms.

We fitted the scaling ansatz, Eq. 35, to data for M ob-
tained with light to strange quark mass ratios H = 1/40
and 1/80 in the temperature interval T 2 [140 MeV :
Tmax] with Tmax = 146 MeV and 148 MeV, respectively.
These fits have been performed with and without includ-
ing the data for the smallest quark mass H = 1/160,
which have been obtained on our smallest physical vol-
ume and may still su↵er somewhat from finite volume ef-
fects. The resulting fit parameters are given in Table II.
As can be seen the fit parameters vary little, although
the �2/dof of the fits is quite sensitive to the chosen
fit-interval and the range of H-values used in the fit.

In Fig. 2 (right) we show the rescaled order parameter
M as function of the scaling variable zb introduced in
Eq. 23. As can be seen, scaling holds well at least up to
zb ' 0.5. For our smallest quark mass ratio, H = 1/160,
this corresponds to a temperature interval (T �Tc)/Tc '
0.026, which is similar to that finally used also in [41].

The fits performed in a small temperature interval and
for small values of H still provide a good description
of our data sets for larger and smaller masses as well
as for data outside the temperature range used in the
fits. Deviations of data outside the fit range from the fit
prediction provide an estimate for the influence of regu-
lar or sub-leading universal contributions. In Fig. 3 we
show the relative deviation of data from the fit also out-
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FIG. 3. Relative deviation of data from the fit shown in
Fig. 2 (left). Deviations are shown also outside the actual
fit range and for values of H not included in the fit.

side the actual fit interval. This suggests that correc-
tions to universal scaling behavior arising from regular
or sub-leading universal terms remain smaller than 10%
for (T � Tc)/Tc<⇠0.06.

In the following we use the average of the fit results

for (Tc, z0, h
�1/�
0 ) obtained by leaving out the data for

H = 1/160 in the fit. We take care of this data set by
including the di↵erences as systematic error contributing
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H = 1/20

1/27

1/40

1/80

1/160

χMt(T )

T [MeV]

Nτ = 8

Tc = 143.7(2) MeV

Figure 4: Left: The dimensionless renormalized order parameter " versus ) . Shown also is a fit to the
data for � = 1/40 and 1/80 in the temperature interval ) ∈ [140MeV, 148MeV]. Right: The temperature
derivative of the improved order parameter, obtained from rational function fits to the data.

length stays approximately constant, <c! ∼ (3 − 4). Also shown is a fit to the equation of state
Eq. (6). The overall agreement is quite satisfactory, however, to obtain a good j2, the temperature
interval has to be reduced to ) ∈ [140MeV, 148MeV] and the quark mass ratio is restricted to
� ∈ [1/80, 1/40]. The scaling function and critical exponents are those of the O(2) universality
class. The reason is that staggered fermions break the chiral symmetry such that the expected
O(4) symmetry for two light flavors is further reduced to an O(2) symmetry for any fixed lattice
spacing. The fit yields a critical temperature of )2 = 143.7(2) MeV, which is in agreement with the
corresponding #g = 8 value from [13].

The size of the scaling region is controversial. While FRG studies predict a small scaling
region which requires <c . (2 − 5) MeV [46], tt was found to reach out to the physical point in
Ref. [45]. We note, however, that the notion of scaling region is not unique and strongly depends
on the precise definition. It is supposed to be a measure on how much the physics at the physical
point is determined by universal behaviour.

In order to avoid the assumption of the universality class, which is necessary to perform a
scaling fit, one can also plot normalized ratios of the improved order parameter end extract the value
of the critical exponent delta, in particular from Eq. (6) and the known normalization of the scaling
functions we can derive

" ()2 , �)/�1/X = ℎ−1/X
0 (1 − 1/X) and ln

(
" ()2 , �1)/�1/X

1

" ()2 , �2)/�1/X
2

)
=

1
X

ln(�1/�2) . (7)

While the first equation shows that " (), �)/�1/X has a unique crossing point at ) = )2 , which
can be used to determine )2 without any scaling fit, the second equation can be used to determine
X and thus the universality class. Preliminary results are shown in Fig. 5, using 2 = �1/�2 = 2 and
2 = 2.96.
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Figure 5: The logarithm of ratios of the improved
order parameter versus temperature as introduce in
Eq. (7). The dashed and dotted lines give the values
for 1/X in the O(2) and U(2) ×* (2) [11] universality
classes, respectively.

While the data is still lacking sufficient
precision to further resolve the unique cross-
ing point, the value of X currently favours the
O(2) universality class, which corresponds to
the O(4) universality class in the continuum.
This would indicate that the axial anomaly is
still present at ) = )2 . The alternative univer-
sality class U(2) × U(2), is disfavoured. The
values of X for both universality classes are in-
dicated as dashed lines.

Results presented so far are based on (2+1)-
flavor calculations with staggered fermions. It
will be important to verify universal scaling also
with other lattice discretizations. In Ref. [45],
twisted mass Wilson fermions were used. Uni-
versal scaling was found that is compatible with
O(4) scaling. The estimated chiral transition
temperature )2 = 134+6−4 MeV is in good agree-
ment with the HotQCD result )2 = 134+2−6 MeV
[13]. Calculations with Möbius domain wall
fermions at finite temperature are also underway [47–49]. A preliminary pseuo-critical transition
temperature of )?2 = 153(2) MeV was found on 363 × 12 configurations, which is consistent with
the HotQCD ()?2 = 156.5(1.5) MeV) [14] and Wuppertal-Budapest ()?2 = 158.0(0.6) MeV) [17]
results.

The control parameter which we have neglected so far is the number of light quark flavors
# 5 . The seminal work of Pisarki and Wilczek [1] predicted a first-order chiral phase transition
for # 5 ≥ 3, i.e. QCD with three mass-degenerate quark flavors. This statement was not verified
in lattice calculations. Albeit first-order transitions have been found on coarse lattices [50, 51], it
turned out that the first order region for # 5 = 3 is strongly cut-off dependent and likely vanishes
in the continuum limit. Calculations with HISQ fermions at #g = 6, 8 found evidence for a second
order critical point in the chiral limit [52, 53], as in the (2+1)-flavor case [16]. The chiral transition
temperature )2 (# 5 = 3) was estimated to be 983

−6 MeV. Although a very small critical quark
mass can not be excluded, this seems currently unlikely. In calculations with Möbius domain wall
fermions no direct evidence for a first order region could be identified [47]. The difficulties in the
determination of a first order region for # 5 = 3 motivated calculations with # 5 ≥ 3, where the
strength of the first order region is predicted to be larger. A rigorous scan of the bare parameter
space {V, 0<, # 5 , #f , #g} with staggered fermions was conducted [54–56]. The problem was
also generalized to non integer numbers of flavors in order to find the tri-critical point # CA82

5
in

the version of the Columbia plot shown in Fig. 6 (right). The tri-critical point indicates the flavor
number where the order of the transition in the chiral limit changes from second order to first order.
The strategy is the following: In the first step the critical coupling V2 and the critical quark mass
0<2 are determined for each of the combinations {# 5 , #g}. This is done by a finite size scaling

8
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Figure 6: Left: Diagram that indicates the order of the QCD transition in the <, # 5 plane. The figure was
taken from [55]. Right: critical temperature on the Z(2) boundary line between crossover and first order
region. The fits are motivated by the expected tricritical scaling. The figure was taken from [56].

analysis of the kurtosis of the order parameter

�4 =

〈
(" − 〈"〉)4

〉〈
(" − 〈"〉)2

〉2 (8)

which is also known as Binder’s Cumulant [57]. This quantity has a universal, volume independent
value at the critical point. The expected Z(2) value is �4 = 1.604 and the Z(2) finite size scaling is
found to very good precision [50]. All the critical points (V2 , 0<2) are located on the Z(2)-critical
line that originates from the tri-citical point as shown in Fig. 6 (right). The second step is now the
extrapolation of the Z(2) critical points to the tri-critical point in the chiral limit. This can be done
by exploiting the known tri-critical scaling at fixed #g or at fixed # 5 . For the critical temperature
we have

)2 (<) = )CA82 + �<2/5 + �<4/5 + O(<6/5) . (9)

The extrapolation at fixed # 5 in lattice units is shown in Fig. 6 (right). We note that the first
order region below the curve only survives the continuum extrapolation, if the curve is connected
with the origin, representing the continuum limit. The conclusion is that the tri-citical point is
located at # CA82

5
> 7. For all # 5 ≤ 7, the observed first order region is a lattice artefact. It

is interesting to mention that the same analysis was performed on the published data from O(0)
improved Wilson calculations at # 5 = 3 [58] with the same conclusion, i.e. also the observed
first order region in the Wilson calculations vanish in the continuum. The apparent discrepancies
between the lattice calculations and Ref. [1] was recently re-investigated in the linear sigma model
and Ginzburg-Landau models [59–61]. The discrepancy was not resolved but the possibility of a
undetectable small critical mass was pointed out.

Given the above findings, we can now ask if the chiral transition temperature )2 (# 5 ) remains
finite at # 5 = # CA82

5
or not. If )2 (# CA85 ) = 0, we hit a quantum tricitical point and enter the

conformal window. Current estimates for the lower bound of the conformal window #∗
5
suggest

8 . #∗
5
. 12 [62–69]. This does not leave much room for the existence of a first order region

below the conformal window.

9
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4. Conserved charge fluctuations and effective degrees of freedom

In order to get some insight into the physics at nonzero density, one can formally expand the
pressure in terms of chemical potentials. We introduce here four independent chemical potentials
of of the hadronic net charges, i.e. baryon number, electric charge, strangeness and charm as
`�, `&, `( , `� . The expansion of the dimensionless pressure ?/)4 is given as

?

)4 =

∞∑
8, 9 ,:,;=0

1
8! 9!:!;!

j
�&(�

8 9:;
ˆ̀8� ˆ̀ 9

&
ˆ̀:( ˆ̀;� , (10)

where ˆ̀- = `-/) , for - ∈ {�,&, (, �} The cumulants j�,&,(1, 9 ,:,; are obtained as partial derivatives,
defined as

j
�,&,(,�

8, 9,:,;
=
m (8+ 9+:+;) (?/)4)
m ˆ̀8

�
ˆ̀ 9
&

ˆ̀:
(

ˆ̀;
�

������
®̀=0

. (11)

They are very useful quantities for at least three reasons: (i) they encode the partition function and
thus provide access to the QCD phase diagram [70], as we will discuss in the next section. (ii)
They can also be measured in heavy ion experiments. Matching lattice QCD calculations with the
experimental data, results in a model free way to determine freeze-out parameter [71, 72]. (iii)
They can be used to discuss the relevant degrees of freedom in the system and are thus sensitive to
the deconfinement transition. This can be done, e.g., by disentangling different strangeness sectors
[73]. As long as the ideal hadron resonance gas (HRG) is a good description of the system the
pressure can be written as sum over the partial pressures

(?/)4) = (? |( |=0
"/�/)

4) + (? |( |=1
"
/)4) + (? |( |=1

�
/)4) + (? |( |=2

�
/)4) + (? |( |=3

�
/)4) . (12)

Here ?" , ?� denotes the mesonic, baryonic partial pressure, respectively. Using all strangeness
fluctuations, and baryon strangeness correlations up to fourth order (j(2 , j

(
4 , j

�(
11 , j

�(
13 , j

�(,

22 j�(31 )
will leave us with six equations for the four partial pressures with nonvanishing strangeness [73].
The system is thus overconstrained and we can find two linear independent combinations, denoted as
E1, E2, that should identically vanish as long as the HRG is a good description of the system. Results
for these combinations are shown in Fig. 7 (left), obtained with (2+1)-flavor of HISQ fermions on
#g = 8 lattices. We find that below )?2 the description in terms of an uncorrelated gas of hadrons
is correct but quickly looses its validity for ) > )?2, i.e. the melting of strange hadrons starts just
above )?2 . In particular, the agreement with the HRG is much improved in the vecinity of )?2,
once additional strange hadrons are added to the experimentally established list of hadrons [75],
which are predicted by quark model calculations [76, 77] and observed in lattice QCD spectrum
calculations [78].

A similar analysis can be performed in terms of the charmed degrees of freedom [74, 79, 80],
see Fig. 7 (right). Here the partial pressures of the |� | = 2 and |� | = 3 baryons are negligible
since they are exponentially suppressed by their large masses. Current lattice simulations have
not the precision to resolve these exponentially small contributions. On the other hand we can
project onto the partial pressure of charm quarks as well. We find that the agreement with the
HRG is good below )?2, once additional charmed hadrons from quark model calculations [81–83]

10
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Right after Tpc, Pq starts contributing to PC, which is compensated by a
reduction (and deviation from HRG) in the fractional contribution of the
hadron-like states to PC. Phys.Lett.B 850 (2024), arXiv:2312.12857

Sipaz Sharma Bielefeld University July 30th, 2024 7 / 18

Figure 7: Left: Two combinations, E1 and E2, of strangeness fluctuations and baryon-strangeness correlations
that vanish identically if the system is described by an uncorrelated gas of hadrons. Also shown is the
difference of quadratic and quartic baryon number fluctuations, j�2 − j

�
4 , which has to vanish under the same

condition. The figure is taken from [73]. Right: Partial pressures of charmed mesons, charmed baryons and
charm quarks as functions of temperature. All three observables have been normalized to the total partial
charm pressure. The dashed lines show corresponding results obtained from the QM-HRG model. Filled
(open) symbols show the results for #g = 8 (#g = 12) lattices. The yellow band represents )?2 with its
uncertainty. The figure is taken from [74].

are added to the PDG list of experimentally established charmed hadrons. Again, the melting of
charmed hadrons starts immediately above )?2, where also charmed quarks appear as new degrees
of freedom. Remarkably, already at ) > 1.1)?2 (& 175 MeV) the partial pressure of charm quarks
generates half of the total charm pressure.

In addition we can also monitor above which temperature the conserved charge fluctuations
become consistent with perturbative QCD calculations. Some of the cumulants, involving only one
derivative of baryon number/electric charge, start to differ only at O(UB ln(UB)) from the free gas
result [84], with UB being the strong coupling constant, and are thus in agreement with perturbative
estimates already at ) & 250 MeV. However, in general we find that the cumulants become
perturbative for ) & 450 − 700 MeV. In the temperature range between )?2 < ) < (2 − 3))?2 we
thus find a strongly interacting gas of color charges and excitations, sometimes also called "stringy
liquid" [85, 86]. This is the temperature range where an additional emerging chiral-spin symmetry
of the color charges has been proposed [85–87].

5. The beam energy scan and the QCD critical point

The cumulants of the conserved hadronic charges, as defined in Eq. (11), are accessible from
the event-by-event distributions of the measured particle yields in heavy ion collisions. Usually
we consider ratios of cumulants of charge - , we denote '-<< = j-= /j-< , in order to eliminate the
leading dependence on the freeze-out volume. A non-monotonic behaviour in the kurtosis '�42
was proposed as signal for the critical point [88]. Recently the beam energy scan (BES) program
II at the Relativistic Heavy Ion Collider (RHIC) was concluded. The collected data is expected

11
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FIG. 4. The ratio µS/µB on the pseudo-critical line in (2+1)-
flavor QCD versus µ̂B obtained for strangeness neutral matter
with nQ/nB = 0.4. The bands show continuum estimates for
second and fourth order Taylor expansion results of µS/µB on
the pseudo-critical line that have been obtained from fits to
data obtained in simulations on lattices with temporal extent
N⌧ = 8 and 12. Also shown are results obtained by the STAR
Collaboration [9, 13, 32] and HRG model calculations using
the PDG-HRG and QMHRG2020 particle lists, respectively.

(NNLO [5,4]) shown in this figure are statistically well
controlled for µ̂B  1.5. For large values of the chem-
ical potential, µ̂B  2, we only show the result (NLO
[3,2]) based on O(µ̂3

B) and O(µ̂2
B) Taylor series for �B

1

and �B
2 , respectively. These continuum estimates are ob-

tained from fits to data taken on lattices with temporal
extent N⌧ = 8 and 12. As can be seen, the ratio RB

12

starts to deviate from HRG model calculations at about
µ̂B ' 1. The Taylor series, however, is still well con-
trolled at least up to µ̂B ' 1.5. We compare RB

12(T, µ̂B),
calculated in (2+1)-flavor QCD, with the corresponding
ratio of net proton-number and its variance, Rp

12(
p

s
NN

),
[33] as follows. In order to convert the experimental con-
trol parameter,

p
s

NN
, to a chemical potential value on

the freeze-out line we use the set of freeze-out temper-

atures (Tf ) and baryon chemical potentials (µf
B) deter-

mined from the analysis of particle yields using fits based
on the thermodynamics of a hadron gas in the Grand
Canonical Ensemble [13, 33].

As can be seen in the figure, the experimental re-

sults for Rp
12(Tf , µf

B) are close to the line of values for
RB

12(T, µB) on the pseudo-critical line. We thus deter-
mined a set of freeze-out parameters obtained by de-

manding Rp
12(

p
s

NN
) = RB

12(Tpc(µ
f
B), µf

B). In Table I we
compare the thus determined set of freeze-out parame-

ters, {µf
B , Tpc(µ

f
B)}, with the experimental set of freeze-

out parameters, {µf
B , Tch}, obtained by comparing mea-

sured particle yields to hadronization models [12–14].

As can be seen in Fig. 5, NLO and NNLO QCD re-
sults agree well with each other up to µ̂B ' 1.5, where
the errors of the NNLO expansion start getting large. In
Tab. I, we tabulate the freeze-out parameters determined
from Rp

12 using NLO QCD results for RB
12(T, µ̂B) and
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FIG. 5. The ratio RB
12(T (µB), µB) on the pseudo-critical line

in (2+1)-flavor QCD versus µ̂B obtained for strangeness neu-
tral matter with nQ/nB = 0.4. The bands show continuum
estimates for next-to-leading (NLO [3,2]) and next-to-next-
to-leading (NNLO [5,4]) order Taylor expansion results on
the pseudo-critical line that have been obtained from fits to
data obtained in simulations on lattices with temporal extent
N⌧ = 8 and 12 (see also discussion in the text). Also shown
are results obtained by the STAR Collaboration for the cor-
responding proton cumulant ratio, Rp

12 for various beam en-
ergies

p
sNN [33]. Results from [13] have been used to con-

vert
p

sNN to thermal parameters (Tf , µ̂f
B). Furthermore,

we show recent results for Rp
12 obtained by the STAR Col-

laboration [34]. For data taken at two new beam energies,p
sNN = 9.2 GeV and 17.3 GeV we used the parametrization

of interpolating curves for freeze-out parameters given in [12].
Solid curves show results from HRG model calculations using
the PDG-HRG and QMHRG2020 particle lists, respectively.

they agree well with the freeze-out parameters {Tf , µ̂f
B}

obtained from particle yields down to
p

s
NN

<⇠17.3 GeV,
which also corresponds to µ̂B ' 1.5. For smaller

p
s

NN
or

µ̂B ' 2.0 the NNLO lattice QCD results have too large
errors for a detailed quantitative comparison. Results
from the NLO expansion are, however, still in good agree-
ment with the STAR data down to

p
s

NN
' 11.5 GeV. In

order to compare QCD results with STAR data at even
lower beam energies statistically well controlled higher
order Taylor series will be necessary.

It also should be noted that the experimen-
tally determined Rp

12 becomes larger than unity forp
s

NN
<⇠17.3 GeV. This is consistent with lattice QCD re-

sults for RB
12, which become larger than unity for µ̂B>⇠1.3

or µB>⇠200 MeV. On the other hand, HRG model calcula-
tions based on non-interacting, point-like hadrons will al-
ways lead to RB

12(T, µ̂B) < 1. The experimental data thus
seem to reflect interactions in strong-interaction matter
at freeze-out (on the pseudo-critical line) that go beyond
those taken care of in HRG models through the presence
of a tower of excited states and resonances.

We give a comparison of the chemical potentials and
pseudo-critical temperatures on the pseudo-critical line,
{Tpc(µ̂B), µB}, that are obtained by demanding RB

12 =

Figure 8: Left: Skewness ('-31) and kurtosis ('
-
42) ratios as function of '

-
12. Here - = ?, � for heavy ion and

lattice data, respectively. Dashed lines are fits to the experimental data, bands are lattice QCD calculations
from [91]. Right: '-12 as function of `�/) . The bands show NLO [3,2] and NNLO [5,4] Padé resummations
of the Taylor coefficients calculated on the lattice. Also shown are HRG model calculations.

to reduce statistical and systematic uncertainties over the BES-I results on the kurtosis, where
non-monotonicity was found with a significance of 3.1 f [89]. Preliminary BES-II results have
been presented [90]. Unfortunately non-monotonic behavior could not be established so far, yet the
general trend is consistent with the presence of a critical point [88]. It is also interesting to note
that at low densities the data is well described by equilibrium thermodynamic calculations from
lattice QCD as shown in Fig. 8. To remove the model dependent extraction of the chemical potential
`�/) , associated with the collision energy

√
B## , we plot the skewness ('-31) and kurtosis ('

-
42) as

function of the density '-12. Dashed lines correspond to fits to the experimental data, while bands
are lattice QCD calculations from [91]. Up to a small horizontal shift, the agreement between
experimental measurements and lattice data is good for '-12 < 0.9. The shift indicates that the
freeze-out temperature is below the crossover line, on which the lattice data is plotted.

In order to push lattice QCD calculation towards chemical potential values of `�/) . 2.5,
coefficients in the Taylor series (Eq. (10)) need to be known up to the eighth order [70]. Unfor-
tunately, errors on the eights order are still very large [92], due to cancellations between different
contributions, which are as large as O(+4), where + is the volume. The Taylor series has a finite
radius of convergence [93–95]. Estimates on the radius can be used to obtain bounds on the QCD
critical point [70, 96]. To overcome the radius of convergence, various resummation schemes are
discussed [70, 97–100].

Recently, universal scaling related to the Lee-Yang edge singularity has been exploit to deter-
mine the location of the QCD critical point [98, 101]. From a rational multi-point approximation of
the baryon number density at imaginary chemical potentials, singularities in the complex `� plane
are estimated. The multi-point Padé procedure naturally extents the Taylor expansion approach
about `� = 0 [15] to include numerous expansion coefficients around multiple imaginary chemical
potential values `� = 8\�. The need for precise high-order coefficients is thus treated against
multiple expansion points. Once a rational approximation of the baryon number density is known,
the determination of its complex poles is strait forward. The closest singularity, which is found to be
stable under the order of the Padé approximation, is identified with the Lee-Yang edge singularity.
That this strategy is meaning full has been tested so far in the Ising Model [102], the Roberge-Weiss
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Figure 9: Left: Universal scaling fits to the temperature dependence of the poles in the complex `� plane.
Data are from the multi-point Padé approach at imaginary chemical potential (#g = 6) [101], and from the
Taylor expansion approach about `� = 0 (#g = 8) [70]. Error ellipses are the 1-f confidence ellipses of the
critical point locations obtained from the fit, the orange bar denotes the weighted average over O(105) fits
in the multi-point case. Right: histogram of all O(105) fit results in the multi-point case, weighted with and
without Akaike information criterion.

transition in QCD [98], the 3-state Potts model and heavy-quark QCD [103, 104]. In all cases the
expected universal scaling was found and known results on the location of the critical point could
be reproduced.

Once the location of the Lee-Yange edge is known for some temperatures, they need to be
extrapolated to the critical temperature, which is defined as the temperature where the imaginary
part of the Lee-Yang edge vanishes. The scaling with temperature is fixed by the circle theorem of
Lee andYang [105] and by assigning a universal position in the scaling variable I, i.e. C/ℎ1/VX = I!.
[106]. Unfortunately, the scaling fields near the critical point are unknown. This is due to the fact
that the reflection symmetry realized at the QCD critical point is an emergent symmetry and not
manifest in the QCD Lagrangian. A frequently used mixing ansatz [107, 108] is given as

C = UC () − )24?) + VC (`� − `24?) ,
ℎ = Uℎ () − )24?) + Vℎ (`� − `24?) , (13)

where UC , Uℎ, VC and Vℎ are the mixing parameters. One can easily verify that the ratio −Vℎ/Uℎ
defines the slope of the first order line at the QCD critical point. With this ansatz and the assumption
that the position of the Lee-Yang edge is universal, we can derive the temperature behaviour of the
Lee-Yang edge in the complex chemical potential plane. We find that Im[`!. ] ∼ () −)24?)VX , for
) ↘ )24?, while Re[`!. ] = `24? − Vℎ/Uℎ () −)24?) + O()2) [109]. A fit to the Lee-Yang scaling
is shown in Fig. 9 (left). The poles are obtained from the multi-point analysis at imaginary chemical
potential (#g = 6) [101], where [3,3]-, [4,4]- and [5,5]-Padés have been used, and from the eighth
order Taylor expansion of the pressure about `� = 8 (#g = 8), which is resummed in a [4,4]-Padé.
The corresponding estimates are shown in the upper panel, where the error ellipses are from the fit,
while the yellow box indicates the weighted average over O(105) fits to the multi-point Padé data,
that differ in the order of the Padé and the fit range. In Fig. 9 (right) a two dimensional histogram
of all critical point locations are shown, weighted with and without Akaike information criterion.
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Figure 10: compilation of critical point locations from lattice
QCD, FRG, DSE and BHE. Also shown are second and fourth
order parametrizations of the crossover line.

For the location of the CEP we find
)24? = 105+8−18 MeV, and `24? =

422+80
−35 MeV. Similar scaling fits for

the data from [70], combined with
a conformal mapping, has been pre-
sented [110]. Preliminary results on
Lee-Yang edge scaling applied to the
Budapest-Wuppertal data has been
discussed [111].

We are now in the situation
where estimates of the CEP location
from different methods are available,
including Functional Renormaliza-
tion group calculations (FRG) [112],
a generalized FRG approach [113],
Dyson-Schwinger (DSE) equations
[114] and Black Hole engineering
(BHE) [115, 116]. They all seem to
cluster in a narrow range of the QCD phase diagram, favouring )24? ≈ 110 MeV and `24? ≈ 600
MeV, see Fig. 10. A naive continuum estimate from Lee-Yang scaling in QCD, based on #g = 6, 8
[101] falls also in that region. These estimates are also consisting with the curvature estimates
for the crossover line from lattice QCD, albeit a second order estimate of the crossover line is
already ambiguous above `� > 400. They are also consistent with the constraints obtained from
the estimated convergence radius [70] and improved equation of state [96].

6. Summary and outlook

The structure of the QCD phase diagram is largely determined by chiral symmetry breaking and
deconfinement. These two phenomena are intimately intertwined and in particular the latter is not yet
fully understood. The influence of various different control parameter on chiral and deconfinement
transitions is discussed in a increasingly quantitative manor and the phase diagram is understood as
a multi-dimensional object. Important control parameter are the quark masses, chemical potentials,
the external magnetic fields and number of flavors, motivated by phenomenological considerations
in cosmology, astro and heavy ion physics.

In the vicinity of a second order transition the phenomena of universal critical scaling is
expected and has been observed in lattice QCD data of the chiral order parameter. Applying
knowledge from universal scaling can help to further refine our understanding of the phase diagram
and to determine none universal parameter such as the position of the phase transition. However,
current computations also enter the precision to check the universality class of the phase transition.
Universal scaling in the vicinity of the QCD critical point can also be discussed in terms of the
universal position of the Lee-Yang edge singularity. Recent lattice estimates on the QCD critical
point are based on this method and are located in the same region of the QCD phase diagram as

14
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Functional Renormalization Group (FRG), Dyson-Schwinger (DSE), and Black Hole Engineering
(BHE) calculations of the critical point location, i.e. at )24? ≈ 110 MeV and `24? ≈ 600 MeV.

As the beam energy scan program II at RHIC has just been concluded and a smoking gun signal
of the QCD critical point is not been detected, we are now awaiting first beams with the Compressed
Baryonic Matter (CBM) detector at the Facility for Anti-proton and Ion Research (FAIR), which
are expected in 2028 [117].
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