
P
o
S
(
L
A
T
T
I
C
E
2
0
2
4
)
0
0
1

Qubit Regularization of Quantum Field Theories

Shailesh Chandrasekharan𝑎,∗

𝑎Department of Physics, Duke University,
Box 90305, Duke University, Durham, NC 27708, USA

E-mail: sch27@duke.edu

To study quantum field theories on a quantum computer, we must begin with Hamiltonians defined
on a finite-dimensional Hilbert space and then take appropriate limits. This approach can be seen as
a new type of regularization for quantum field theories, which we refer to as qubit regularization. A
related finite-dimensional regularization, known as the D-theory approach, was proposed long ago
as a general framework for all quantum field theories. In this framework, the dimensionality of the
local Hilbert space at each spatial point can increase as needed through an additional flavor index.
To reproduce asymptotically free QFTs, most studies assume that qubit-regularized theories require
extending the local Hilbert space to infinity. However, contrary to this common belief, recent
discoveries in (1+1) dimensions have revealed two examples where asymptotic freedom appears
to emerge within a strictly finite-dimensional local Hilbert space through a novel renormalization
group (RG) flow. These findings motivate further investigation into whether asymptotically free
gauge theories could also emerge within a strictly finite-dimensional local Hilbert space. To
support these explorations, we propose an orthonormal basis called the monomer-dimer-tensor-
network (MDTN) basis and use it to construct new types of qubit-regularized lattice gauge theories.
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1. Introduction

The possibility of using quantum computers to solve quantum field theories (QFTs) provides
an opportunity to investigate how these theories, traditionally constructed on infinite-dimensional
Hilbert spaces, can emerge as limits of finite quantum mechanical systems [1, 2]. This finite-
dimensional, matrix model approach to QFTs holds the potential to reveal deeper insights into the
underlying physics, going beyond its applications in quantum computation.

We refer to this finite-dimensional regularization of QFTs as qubit regularization. While
traditional lattice regularization provides a starting point, the infinite-dimensional local Hilbert
space of bosonic quantum fields requires further regularization. The D-theory proposed such a
finite dimensional formulation for many QFTs including gauge theories nearly two decades ago
[3]. In that approach, an extra dimension (or equivalently a flavor index) was introduced at every
spatial lattice point, allowing for a systematic increase in the local Hilbert space when necessary.
This philosophy has also inspired many recent studies, which often assume that the local Hilbert
space will ultimately need to be extended to infinity to formulate asymptotically free QFTs, such as
Yang-Mills theories and QCD.

Typical asymptotically free QFTs can be viewed as massive theories emerging from a free
(Gaussian) UV fixed point via a marginally relevant coupling. A schematic of the traditional RG
flow in such theories is shown in fig. 1. While constructing lattice theories with infinite-dimensional
local Hilbert spaces that flow to the desired UV Gaussian fixed point is straightforward, achieving
this within a strictly finite Hilbert space is more challenging, as it minimally requires fine-tuning to
reach the critical surface. This fine-tuning approach, largely unexplored, represents a new research
direction motivated by quantum computation.

One of the goals of this talk is to argue for the possibility of a novel non-perturbative RG flow
through which qubit-regularized quantum field theories may recover asymptotically free QFTs.
Specifically, we will discuss two examples of qubit regularization that provide concrete evidence
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Figure 1: Traditional RG flow in the space of lattice models for an asymptotically free QFT with a Gaussian
UV fixed point (FP). It is straightforward to construct lattice models that flow to the Gaussian FP, if the
local Hilbert space is allowed to be infinite-dimensional. However, this becomes challenging with qubit
regularization.
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extensions of dimer models, which are also known to de-
scribe interesting critical phenomena in the ir [23, 24]. All
this evidence shows that Euclidean qubit regularization
is a natural way to recover continuum qfts that emerge
via ir fixed points of lattice models.

A non-trivial question is whether we can also recover
the physics of ultraviolet fixed points (UV-FPs), using
qubit regularization. In particular, can we recover massive
continuum qfts which are free in the UV but contain a
marginally relevant coupling? Examples of such asymp-
totically free (af) theories include two-dimensional spin
models and four dimensional non-Abelian gauge theo-
ries. In the D-theory approach, there is strong evidence
that the physics at the uv scale can indeed be recovered
exponentially quickly as one increases the extent of the
additional dimension [25–29]. Can the Gaussian nature
of the uv theory emerge from just a few discrete and
finite local lattice degrees of freedom, while the same
theory then goes on to reproduce the massive physics in
the ir? For this we will need a special type of quantum
criticality where three length scales, as sketched in Fig. 1,
emerge. There is a short lattice length scale a, where
the non-universal physics depends on the details of the
qubit regularization, followed by an intermediate length
scale `UV � a, where the continuum uv physics sets
in and the required Gaussian theory emerges. Finally,
at long length scales `IR � `UV, the non-perturbative
massive continuum quantum field theory emerges due to
the presence of a marginally relevant coupling in the uv
theory. The qubit regularized theory thus reproduces the
universal continuum qft in the whole region `UV to `IR.
The special quantum critical point must be such that
`UV/a ! 1.

Recently, a quantum critical point with these features
was discovered in an attempt to find a qubit regularization
of the asymptotically free massive non-linear O(3) sigma
model in two space-time dimensions in the Hamiltonian
formulation [30]. Using finite size scaling techniques, it
was shown that the qubit regularized model recovers all
the three scales. In this paper, we report the discov-
ery of yet another example of a quantum critical point
with similar features. In the current case, it is a Eu-
clidean qubit regularization of the asymptotically free
massive continuum quantum field theory that arises as
one approaches the Berezenski-Kosterlitz-Thouless (bkt)
transition from the massive phase [31, 32]. In both these
examples, the qubit regularized model is constructed us-
ing two decoupled theories and the af-qft emerges as
a relevant perturbation at a decoupled quantum critical
point. The coupling between the theories plays the role
of the perturbation that creates the three scales, as illus-
trated in the RG flow shown in Fig. 2. An interesting
feature of this discovery is that there is no need for fine-
tuning to observe some of the universal features of the
bkt transition that have been unattainable in practice

UV-FP

Decoupled FP

marginally
relevant coupling

irrelevant
coupling

quantum critical 
point

qubit regularized model

FIG. 2. An illustration of the RG flow of the qubit regularized
model that reproduces the physics of the asymptotically free
qfts in this paper and in [30]. At the decoupled quantum
critical point, both qubit models describe the physics of a
critical system containing two decoupled theories. However,
when a small non-zero coupling is introduced between the
theories, the long distance physics flows towards the desired
universal physics of the uv-fixed point theory.

with other traditional regularizations [33].

The bkt transition is one of the most widely studied
classical phase transitions, since it plays an important
role in understanding the finite temperature superfluid
phase transition of two-dimensional systems [34]. One
simple lattice model that captures the universal behavior
of the physics close to the phase transition is the classical
two-dimensional XY model on a square lattice given by
the classical action,

S = ��
X

hiji
cos(✓i � ✓j), (1)

where the lattice field 0  ✓i < 2⇡ is an angle associated
to every space-time lattice site i and hiji refers to the
nearest neighbor bonds with sites i and j. The lattice field
naturally lives in an infinite dimensional Hilbert space
of the corresponding one dimensional quantum model.
Using high precision Monte Carlo calculations, the bkt
transition has been determined to occur at the fine-tuned
coupling of �c ⇡ 1.1199(1) [35, 36]. The Villain model
is another lattice model which is friendlier for analytic
calculations and has been used to uncover the role of
topological defects in driving the phase transition [37].
More recently, topological lattice actions which seem to
suppress vortices and anti-vortices but still drive the bkt
transition have also been explored [38].

As one approaches the bkt transition from the massive
phase, the long distance physics of the Eq. (1) is known to
be captured by the sine-Gordon model whose Euclidean

In both these examples, asymptotic freedom 
is recovered via new type of RG flow

Figure 2: This figure illustrates an alternative RG flow, discovered at the critical points of two qubit-
regularized field theories, demonstrating how asymptotically free QFTs with a UV fixed point (FP) can
emerge as a crossover critical phenomenon, while the RG flow at the critical point itself leads to a completely
different decoupled FP.

for these new RG flows. First, we will summarize a recent study [4] demonstrating how the
asymptotically free fixed point of the two-dimensional O(3) model can emerge using a local four-
dimensional Hilbert space in the Hamiltonian formulation. Next, we will review another study
[5] showing how the massive QFT arising at the BKT transition can emerge from a simple four-
dimensional Hilbert space in the Lagrangian formulation. Both examples highlight the possibility
that asymptotic freedom may emerge through new types of RG flows in qubit-regularized theories.

To understand this new RG flow in the two examples, consider a qubit regularized quantum
mechanical Hamiltonian acting on a finite local lattice Hilbert space. Such a system typically
depends on a lattice size 𝐿 and a set of couplings 𝑔, with the desired QFT emerging in the limits
𝑔 → 𝑔𝑐 and 𝐿 → ∞. However, the physics of the QFT can be obscured by the implementation
of these limiting procedures. While the traditional RG flow diagram in fig. 1 suggests that setting
𝑔 = 𝑔𝑐 recovers the Gaussian ultraviolet (UV) fixed point, the new examples indicate that, instead,
the lattice theory flows to a completely different fixed point — one we refer to as a decoupled
fixed point, based on the observed physics in these cases. Nevertheless, as 𝑔 approaches 𝑔𝑐, all the
universal physics of the desired UV fixed point can still be recovered as a crossover phenomenon.
Specifically, for small 𝐿, the theory is dominated by the decoupled fixed point; for intermediate 𝐿,
the physics of the desired UV fixed point becomes visible; and for very large 𝐿, the theory exhibits
the universal behavior of the massive QFT. This distinct and novel RG flow is illustrated in fig. 2.
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2. Qubit Regularization of the Asymptotically Free 𝑂 (3) QFT in Two Dimensions

In this section, we review the main results of Ref. [4], which demonstrate how the qubit
regularization of the asymptotically free 𝑂 (3) quantum field theory in two dimensions (2D 𝑂 (3)
QFT) can be achieved using only two qubits per lattice site. We also argue that the RG flow, which
recovers asymptotic freedom in the UV, is given by fig. 2.

The traditional formulations of the 2D 𝑂 (3) QFT begins with an infinite-dimensional local
Hilbert space HTrad at each lattice site, representing a quantum particle constrained to move on
the surface of a unit sphere in three dimensions. The position of the particle is described by the
unit vector ®𝜙, and the corresponding quantum eigenstates | ®𝜙⟩ form a complete basis for the Hilbert
space.

One of the many ways to quantitatively understand the asymptotic freedom of the 2D 𝑂 (3)
QFT is by defining a finite-volume correlation length 𝜉 (𝐿) and computing it as a function of the box
size 𝐿. Using 𝜉 (𝐿), we can then compute the step-scaling function (SSF) 𝑓 (𝑥), where 𝑥 = 𝜉 (𝐿)/𝐿
and 𝑓 (𝑥) = 𝜉 (2𝐿)/𝜉 (𝐿). The function 𝑓 (𝑥) is a nonlinear function and is well defined for all values
of 𝑥, with the limiting values 𝑓 (𝑥 → ∞) = 2 (UV regime) and 𝑓 (𝑥 → 0) = 1 (IR regime).

For one of the many possible definitions of 𝜉 (𝐿) using the correlations of ®𝜙, the SSF was
computed non-perturbatively using the traditional Lagrangian lattice formulation of the 2D 𝑂 (3)
QFT in Ref. [6] and is shown as the black solid line in fig. 3. The perturbative result, starting from
the Gaussian UV fixed point, is also shown as a dashed line.

A key challenge in qubit regularization is to reproduce this SSF of the traditional formulation
using a lattice model with a finite-dimensional Hilbert space. Symmetries can provide valuable
guidance in this process. Since the 2D 𝑂 (3) QFT exhibits 𝑆𝑂 (3) symmetry, it is natural to preserve
this symmetry under qubit regularization. A natural approach is to decompose the traditional local
Hilbert space at each lattice site as a direct sum over the irreducible representations (irreps) of
𝑆𝑂 (3):

HTrad =
⊕

ℓ=0,1,2,...
Hℓ , (1)

where Hℓ denotes the irreducible representation of 𝑆𝑂 (3) with angular momentum ℓ. Each Hilbert
space Hℓ has dimension 2ℓ + 1, with basis states labeled by the standard orbital angular momentum
states |ℓ, 𝑚⟩, where −ℓ ≤ 𝑚 ≤ ℓ.

A simple type of qubit regularization begins with a lattice model defined on a truncated Hilbert
space, constructed using only a few allowed values of ℓ in the sum eq. (1). For example, in Ref. [5],
the qubit-regularized Hilbert space chosen at each lattice site was

H𝑄 = Hℓ=0 ⊕ Hℓ=1. (2)

This four-dimensional space was implemented using two qubits per lattice site. Denoting the
corresponding spin- 1

2 operators as S𝑥,1 and S𝑥,2, the lattice Hamiltonian of the qubit-regularized
model in one spatial dimension is given by

𝐻 =

𝐿−1∑︁
𝑥=0

𝐽 S𝑥,1 · S𝑥+1,1 + S𝑥,1 · S𝑥,2. (3)
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Indeed, the step scaling function is reproduced for L > Lmin(J)!
�� / ��

Universal Step Scaling Function

Figure 3: The SSF of the 2D 𝑂 (3) QFT. The solid black line represents the results obtained in Ref. [6] using
the traditional lattice formulation, while the data points correspond to the Heisenberg comb Hamiltonian
described in eq. (3). For each fixed value of 𝐽, the data for 𝐿 > 𝐿min begins to align with the universal
SSF, and 𝐿min increases with 𝐽, allowing us to access more of the SSF in the UV regime. This figure was
originally published in [4].

This model is referred to as the Heisenberg comb. Using antiferromagnetic spin-spin correlation
functions, 𝜉 (𝐿) can be calculated as a function of 𝐿 and which can then be used to compute the
SSF. As we will argue below, this SSF is exactly the same as the one obtained in the traditional
model in the 𝐽 → ∞ limit, in the appropriate regime of lattice sizes.

It is well known that, in order to reproduce a continuum QFT, the lattice model needs to be
tuned to a critical point. In the Heisenberg comb, 𝐽 = ∞ is one such critical point. When 𝐽 = ∞,
the spins S𝑥,2 decouple from the spins S𝑥,1, which form a spin- 1

2 chain that is known to be critical.
In the infrared (IR), this chain flows to the 𝑘 = 1 Wess-Zumino-Witten (WZW) conformal field
theory.

Thus, at the 𝐽 = ∞ critical point, the Heisenberg comb flows to the 𝑘 = 1 WZW fixed point
along with an infinite number of decoupled spins S𝑥,2. This is the decoupled fixed point shown in
fig. 2. As expected, for very large but finite values of 𝐽 (i.e., 𝐽 ≠ ∞), the model no longer flows to
the decoupled fixed point and instead becomes massive. Interestingly, however, the RG flow takes
it arbitrarily close to the Gaussian UV fixed point.

This flow can be analyzed by computing 𝑥 = 𝜉 (𝐿)/𝐿 and 𝑦 = 𝜉 (2𝐿)/𝜉 (𝐿), and plotting these

5



P
o
S
(
L
A
T
T
I
C
E
2
0
2
4
)
0
0
1

Qubit Regularization of Quantum Field Theories Shailesh Chandrasekharan

points on an (𝑥, 𝑦) graph for various values of 𝐿 at a fixed 𝐽. This allows us to observe the pattern
of the RG flow from the UV to the infrared (IR) as 𝐿 increases.

Using large-scale quantum Monte Carlo algorithms, this behavior can be studied in detail and
is shown in fig. 3 for 𝐽 = 3, 5, 10, and 12 ≤ 𝐿 ≤ 512. For 𝐿 < 𝐿min, the plotted Monte Carlo data
do not exhibit any recognizable scaling pattern. However, when 𝐿 > 𝐿min, they begin to align with
the expected step-scaling function (SSF) for the 2D 𝑂 (3) QFT, represented by the black solid line.

Note also that 𝐿min(𝐽) is a function of 𝐽 and increases with increasing 𝐽. Additionally, the
ratio 𝜉 (𝐿min)/𝐿min also increases, suggesting that as 𝐽 grows, the qubit model captures more of the
ultraviolet (UV) physics of the 2D 𝑂 (3) QFT accurately.

This indicates that the Gaussian UV fixed point of the 2D 𝑂 (3) QFT emerges as a crossover
phenomenon in the Heisenberg comb and can be fully recovered in the 𝐽 → ∞ limit by also
focusing on lattice sizes 𝐿 > 𝐿min(𝐽). The actual RG flow of the Heisenberg comb appears to be
best described by the novel RG flow shown in fig. 2.

3. Qubit regularization of the massive QFT at the BKT critical point

In this section, we review the main results of Ref. [5], which demonstrate how the massive
QFT at the Berezinskii-Kosterlitz-Thouless (BKT) critical point, defined through the traditional XY
model, can be reproduced using a qubit-regularized model with a four-dimensional local Hilbert
space. We also find once again that the RG flow, which recovers the continuum physics of the QFT,
is given by fig. 2.

The traditional XY model is defined using an infinite-dimensional local Hilbert space HTrad at
each lattice site, corresponding to a quantum particle moving on a circle of unit radius. The position
of the particle is described by the angle 0 ≤ 𝜃 < 2𝜋. The action of the model on a two-dimensional
square lattice, representing Euclidean space-time, is given by

𝑆 = 𝛽
∑︁
⟨𝑥𝑦⟩

cos(𝜃𝑥 − 𝜃𝑦), (4)

where 𝛽𝑐 ≈ 1.1199(1) is the Berezinskii-Kosterlitz-Thouless (BKT) critical point [7]. For 𝛽 < 𝛽𝑐,
the lattice model is in a massive phase, where the correlation length grows exponentially as 𝛽 → 𝛽𝑐.
At 𝛽𝑐, the infrared (IR) quantum field theory (QFT) consists of free bosons.

These features motivate the characterization of the massive continuum QFT that emerges from
the lattice XY model in the limit 𝛽 → 𝛽𝑐 as an asymptotically free QFT. We will refer to this theory
as the 2D 𝑂 (2) QFT. As discussed in section 2, we can once again define an SSF for this 2D 𝑂 (2)
QFT by defining 𝜉 (𝐿) through correlations of 𝑒𝑖 𝜃 and 𝑒−𝑖 𝜃 . This SSF was computed in Ref. [5]
and is represented by the solid lines in the four graphs shown in fig. 6. At the BKT critical point,
we expect 𝜉 (𝐿)/𝐿 = 0.7506912 . . . for large values of 𝐿 [7]. However, the traditional model does
not reach this value even when 𝐿 ≈ 2500, as seen in fig. 4. This discrepancy is usually attributed
to slowly varying logarithmic finite volume corrections.

The challenge for qubit regularization is to reproduce the SSF using a lattice model with a
finite-dimensional Hilbert space by appropriately tuning it to a critical point. While several such
models are known to exist, an important feature of the qubit-regularized model studied in Ref. [5]

6
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written in the world-line representation [47], where the
bosons are assumed to be hard-core. The main difference
between our model in this Letter and the one introduced in
[4] is that closed loops on a single bond are now allowed.
Such loops seemed unnatural in the Hamiltonian frame-
work that motivated the previous study, but seem to have
profoundly different features in two dimensions because it
is possible to view the loop configurations as a configu-
ration of close-packed oriented dimers and argue for a
critical point in our model at λ ¼ 0 and a massive phase for
λ > 0. The previous model does not have this property [48].
Using worm algorithms (see Ref. [49]) we study our

model for various values of L and λ. At λ ¼ 0, one gets two
decoupled layers of close-packed dimer models, which is
known to be critical [50–53]. The effect of λ ≠ 0 was
studied several years ago, and it was recognized that there is
a massive phase for sufficiently large values of λ [54,55].
However, the scaling of quantities as λ → 0 was not
carefully explored. Recently, the subject was reconsidered
[56], and the emergence of a long crossover phenomenon
was discovered for small λ as a function of L. However, the
universal properties of this crossover being related to the
UV physics at the BKT transition was not appreciated. In
this Letter, we demonstrate that the observed crossover
phenomena captures the asymptotic freedom of Eq. (2). We
do this by comparing the universal behavior of Eq. (3) with
the traditional XY model Eq. (1) near the massive phase of
the BKT transition [35,57,58].
To compare universal behaviors of Eq. (1) and Eq. (3) we

compute the second moment finite size correlation length
ξðLÞ defined as ξðLÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðχ=FÞ − 1

p
=½2 sinðπ=LÞ% (see

Ref. [59]), where χ ¼ Gð0Þ and F ¼ Gð2π=LÞ are defined
through the two point correlation function

GðpÞ ¼
X

j

eipxhOþ
ðx;τÞO

−
ð0;0Þi: ð4Þ

In the above relation, j is the space-time lattice site with
coordinates ðx; τÞ and Oþ

j , O
−
j are appropriate lattice fields

in the two models. In the XY modelOþ
j ¼ eiθj ,O−

j ¼ e−iθj ,
while in the dimer model Oþ

j ¼ O−
j ¼ ψ̄ jψ j. We demon-

strate that the step-scaling functions [i.e., the dependence of
ξð2LÞ=ξðLÞ on ξðLÞ=L] of the two lattice models show
excellent agreement with each other in the scaling regime
lUV ≫ a, in Fig. 4.
Another interesting universal result at the BKT transition

is the value of the helicity modulus, which can be defined
using the relation, ϒ ¼ hQ2

wi, where Qw is the spatial
winding number of bosonic worldlines. In the XY model
Eq. (1), it is usually defined using a susceptibility of a twist
parameter in the boundary conditions [35]. In our model,
we can easily compute the winding charge Qw in each loop
configuration illustrated in Fig. 3. The universal result
in the massive phase as we approach the BKT transition
is that ϒ ≈ 2=π in the UV up to exponentially small

corrections [35], although in the IR ϒ ¼ 0. While it is
difficult to obtain the UV value in lattice calculations using
the traditional model Eq. (1), in our model, we can see it
emerge nicely at λ ¼ 0.01. We demonstrate this in Fig. 5.
Again, as expected, the value of ϒ when λ ¼ 0 is very
different, since it is a theory of free bosons but at a different
coupling. Using the different value of the coupling gives
ϒ ≈ 0.606 [60]. Our results provide strong evidence that
the AF-QFT at the BKT transition emerges from our dimer
model when we take the limit L → ∞ followed by λ → 0.
The opposite limit leads to the critical theory of the
decoupled dimer model.

FIG. 4. The figure shows the universal step-scaling function
[i.e., ξð2LÞ=ξðLÞ vs ξðLÞ=L] obtained from the XY model Eq. (1)
(solid line) [60] and compares it with data from the model Eq. (3)
at λ ¼ 0.01 (red), 0.2 (blue), 0.4 (purple), and 0.6 (green), for
various lattice sizes shown with different symbols. For small
values of L, our data deviate from the solid line. We define lUV
as the minimum value of L when the data begin to fall on the
solid line. From the figure we estimate lUV ≈ 80 for λ ¼ 0.6
and lUV ≈ 160 for λ ¼ 0.4. For very small λ we expect the
ξðLÞ=L to approach the universal UV prediction of ξðLÞ=L ¼
0.750 691 2… (see Ref. [35]), when L ∼ lUV before beginning to
follow the solid line. We see this at λ ¼ 0.2 and 0.01. Since at
these couplings lUV > 1280, we predict that the data at these
couplings will also eventually follow the solid line, but only for
L ≫ lUV, which we cannot access. To show this feature, in the
inset we plot ξðLÞ=L as a function of L at λ ¼ 0.01. Note that
the data approaches ξðLÞ=L ¼ 0.750 691 2… when L ∼ lUV
as expected. Based on our prediction above, this is only a pla-
teau and that for L ≫ lUV (which we cannot access) ξðLÞ=L
will eventually approach zero. The inset also shows that the
large L behavior of λ ¼ 0 is very different and stabilizes at
ξðLÞ=L ¼ 0.4889ð6Þ. In the inset we also show the data from
[35] in the traditional XY model [Eq. (1)] at two values of β close
to the transition. These data are still far from the universal value
due to logarithmic corrections as explained in [35].
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Figure 4: The plot of 𝜉 (𝐿)/𝐿 as a function of 𝐿 in the traditional XY model (referred to as bXY in the figure)
as compared to the qubit regularized model (referred to as the fXY in the figure). Note that 𝜉 (𝐿)/𝐿 does not
reach the value of 0.7506... expected in the traditional XY model at the BKT transition for 𝛽𝑐 ≈ 1.1199(1)
even at 𝐿 ≈ 2500, while the qubit regularized model recovers this quite accurately when 𝜆 = 0.01 at those
lattice sizes. In contrast, when 𝜆 = 0 the qubit regularized theory is very different since 𝜉 (𝐿)/𝐿 ≈ 0.4889.

is that the BKT critical point can be reached from the massive phase without the need for fine-
tuning. In contrast to section 2, where qubit regularization was implemented within the Hamiltonian
formalism, Ref. [5] achieves it in the Euclidean space-time Lagrangian formulation by replacing
the continuous degree of freedom 𝜃 with a discrete degree of freedom that takes only a finite set
of values. This Lagrangian formulation can also be understood through a transfer-matrix approach
within a finite-dimensional Hilbert space.

The Hilbert space of the traditional model, HTrad, is a direct sum of irreps of the symmetry
group, which in this case is the 𝑂 (2) group. It can be expressed as

HTrad =
⊕

𝑚=0,±1,±2,...
H𝑚, (5)

where H𝑚 corresponds to the angular momentum irreps.
In contrast, the qubit regularization introduced in Ref. [5] uses a four-dimensional local Hilbert

space given by

H𝑄 = H𝑚=0 ⊕ H𝑚=0 ⊕ H𝑚=1 ⊕ H𝑚=−1. (6)
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Mapping to two layers of closed pack dimer model

3

FIG. 3. The left figure shows an illustration of a self-avoiding oriented loop configuration. There are also Fock-vacuum sites,
shown as blue circles, which have a weight �. The oriented loop configuration can also be viewed as a close packed dimer
configurations on two layers, as illustrated on the right. The interlayer dimers would map to the Fock-vacuum sites, while the
intralayer oriented dimers would form closed oriented loops, all which have weight one. The dimers are oriented from even sites
to odd sites on one layer and in the opposite direction on the other layer. This mapping to the dimer model shows that the loop
model is critical when � = 0.

action is given by[39],

S =

Z
dxdt


1

2t
(@µ✓1)

2 +
t

8⇡2
(@µ✓2)

2 � At

4⇡2
cos ✓2

�

(2)

where t � ⇡/2. The field ✓1(x, t) captures the spin-wave
physics while the vortex dynamics is captured by the field
✓2(x, t). The BKT transition in this field theory language
occurs at t = ⇡/2 where the cos ✓2 term becomes marginal
as one approaches the critical point and the physics is
governed by a free Gaussian theory. In this sense, the
long distance physics of the lattice XY model, as � is
tuned to �c from smaller values, is an asymptotically free
massive Euclidean continuum qft.

Qubit regularizations of the classical XY-model have
been explored recently using various quantum spin formu-
lations [40]. Lattice models based on the spin-1 Hilbert
space are known to contain rich phase diagrams [41], and
quantum field theories that arise at some of the critical
points can be di↵erent from those that arise at the bkt
transition. Also, the presence of a marginally relevant
operator at the BKT transition can make the analysis dif-
ficult, especially if the location of the critical point is not
known. In these cases, it becomes a fitting parameter in
the analysis, increasing the di�culty. Since in our model
the location of the critical point is known, our model can
be analyzed more easily.

The model we consider in this work is a variant of the
qubit regularized XY model introduced in Euclidean space
recently [4]. The model can be viewed as a certain limiting
case of the classical lattice XY-model Eq. (1) written in
the world-line representation [42], where the bosons are
assumed to be hard-core. The partition function of our
model is a sum of weights associated with configurations of
oriented self-avoiding loops on a square lattice with Fock-
vacuum sites. An illustration of the loop configuration
is shown as the left figure in Fig. 3. The main di↵erence
between our model in this work and the one introduced

previously is that closed loops on a single bond are now
allowed. Such loops seemed unnatural in the Hamiltonian
framework that motivated the previous study, but seem to
have profoundly di↵erent features in two dimensions [43].
It is also possible to view the loop configurations of our
model as a configuration of closed packed oriented dimers
on two layers of square lattices. The dimer configuration
corresponding to the loop configuration is shown on the
right in Fig. 3. The dimer picture of the partition function
arises as a limiting case of a model involving two flavors
of staggered fermions, introduced to study the physics of
symmetric mass generation [44–46]. In this view point
the inter-layer dimers (or Fock vacuum sites) resemble
t’Hooft vertices (or instantons) in the fermionic theory.
Using this connection, the partition function of our model
can be compactly written as the Grassmann integral

Z =

Z
[d ̄d ] [d�̄d�] exp

⇣
�

X

i

 ̄i i�̄i�i

⌘

⇥ exp
⇣X

hiji

�
 ̄i i ̄j j + �̄i�i�̄j�j

�⌘
(3)

where on each site i of the square lattice we define four
Grassmann variables  ̄i,  i, �̄i and �i. We consider
periodic lattices with L sites in each direction. Using
the fermion bag approach [47], we can integrate the
Grassmann variables and write the partition function
as a sum over dimer configurations whose weight is given
by �NI where NI is the number of instantons (or Fock-
vacuum sites). Thus, � plays the role of the fugacity of
Fock-vacuum sites. It is easy to verify that the action
of our model is invariant under  ̄j j ! ei�j✓ ̄j j and
�̄j�j ! e�i�j✓�̄j�j where �j = ± tracks the parity of
the site j. This U(1) symmetry is connected to the bkt
transition and in order to track it, the dimers are given
an orientation as explained in Fig. 3.

Using worm algorithms (see [49]) we study our model
for various values of L and �. At � = 0, one gets two
decoupled layers of closed packed dimer models, which

worldline configuration
3

FIG. 3. The left figure shows an illustration of a self-avoiding oriented loop configuration. There are also Fock-vacuum sites,
shown as blue circles, which have a weight �. The oriented loop configuration can also be viewed as a close packed dimer
configurations on two layers, as illustrated on the right. The interlayer dimers would map to the Fock-vacuum sites, while the
intralayer oriented dimers would form closed oriented loops, all which have weight one. The dimers are oriented from even sites
to odd sites on one layer and in the opposite direction on the other layer. This mapping to the dimer model shows that the loop
model is critical when � = 0.
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occurs at t = ⇡/2 where the cos ✓2 term becomes marginal
as one approaches the critical point and the physics is
governed by a free Gaussian theory. In this sense, the
long distance physics of the lattice XY model, as � is
tuned to �c from smaller values, is an asymptotically free
massive Euclidean continuum qft.

Qubit regularizations of the classical XY-model have
been explored recently using various quantum spin formu-
lations [40]. Lattice models based on the spin-1 Hilbert
space are known to contain rich phase diagrams [41], and
quantum field theories that arise at some of the critical
points can be di↵erent from those that arise at the bkt
transition. Also, the presence of a marginally relevant
operator at the BKT transition can make the analysis dif-
ficult, especially if the location of the critical point is not
known. In these cases, it becomes a fitting parameter in
the analysis, increasing the di�culty. Since in our model
the location of the critical point is known, our model can
be analyzed more easily.

The model we consider in this work is a variant of the
qubit regularized XY model introduced in Euclidean space
recently [4]. The model can be viewed as a certain limiting
case of the classical lattice XY-model Eq. (1) written in
the world-line representation [42], where the bosons are
assumed to be hard-core. The partition function of our
model is a sum of weights associated with configurations of
oriented self-avoiding loops on a square lattice with Fock-
vacuum sites. An illustration of the loop configuration
is shown as the left figure in Fig. 3. The main di↵erence
between our model in this work and the one introduced

previously is that closed loops on a single bond are now
allowed. Such loops seemed unnatural in the Hamiltonian
framework that motivated the previous study, but seem to
have profoundly di↵erent features in two dimensions [43].
It is also possible to view the loop configurations of our
model as a configuration of closed packed oriented dimers
on two layers of square lattices. The dimer configuration
corresponding to the loop configuration is shown on the
right in Fig. 3. The dimer picture of the partition function
arises as a limiting case of a model involving two flavors
of staggered fermions, introduced to study the physics of
symmetric mass generation [44–46]. In this view point
the inter-layer dimers (or Fock vacuum sites) resemble
t’Hooft vertices (or instantons) in the fermionic theory.
Using this connection, the partition function of our model
can be compactly written as the Grassmann integral

Z =

Z
[d ̄d ] [d�̄d�] exp
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where on each site i of the square lattice we define four
Grassmann variables  ̄i,  i, �̄i and �i. We consider
periodic lattices with L sites in each direction. Using
the fermion bag approach [47], we can integrate the
Grassmann variables and write the partition function
as a sum over dimer configurations whose weight is given
by �NI where NI is the number of instantons (or Fock-
vacuum sites). Thus, � plays the role of the fugacity of
Fock-vacuum sites. It is easy to verify that the action
of our model is invariant under  ̄j j ! ei�j✓ ̄j j and
�̄j�j ! e�i�j✓�̄j�j where �j = ± tracks the parity of
the site j. This U(1) symmetry is connected to the bkt
transition and in order to track it, the dimers are given
an orientation as explained in Fig. 3.

Using worm algorithms (see [49]) we study our model
for various values of L and �. At � = 0, one gets two
decoupled layers of closed packed dimer models, which

closed packed dimer configurations

Singlets are mapped to inter-layer dimers

Figure 5: Illustration of configurations 𝐶 that define the qubit-regularized model in eq. (7). Each worldline
configuration (left) can be uniquely mapped to a close-packed dimer configuration (right), as explained in
the text. The coupling 𝜆 is the fugacity of the empty sites in the worldline viewpoint or, equivalently, the
fugacity of the inter-layer dimers in the dimer viewpoint.

Unlike HTrad, the qubit-regularized Hilbert space includes two 𝑚 = 0 states, in addition to the states
with angular momentum 𝑚 = +1 and 𝑚 = −1. As we will see, one of the 𝑚 = 0 states can be
interpreted as a Fock vacuum state, while the other represents a bound state of 𝑚 = +1 and 𝑚 = −1.
Consequently, this bound state still has a total angular momentum of zero.

The lattice model in this finite-dimensional Hilbert space can be described by the partition
function

𝑍 =
∑︁
𝐶

𝜆𝑁𝐼 , (7)

where 𝐶 represents worldline configurations of hardcore bosons carrying angular momentum +1
or −1 on a square lattice. An illustration of a configuration 𝐶 is shown on the left side of fig. 5.
These configurations naturally take the form of closed, oriented loops that do not touch. In addition
to sites containing particles, some sites can be empty, representing the absence of any particle and
thus interpreted as Fock vacuum states. The quantity 𝑁𝐼 in eq. (7) denotes the number of these
empty sites in the configuration 𝐶.

With some effort, we can construct a transfer matrix for the partition function in eq. (7), which
has a four-dimensional local Hilbert space. To understand this, note that each lattice site is either
empty or occupied by a particle with angular momentum 𝑚 = +1 or 𝑚 = −1, forming three distinct
orthonormal states in the transfer matrix formulation. However, an additional state is required to
describe loops that form across a single bond connecting neighboring sites. Each such pair of sites
is interpreted as containing a bound state of two bosons with opposite angular momentum. These
𝑚 = 0 states constitute the fourth orthonormal basis state of the Hilbert space.

As explained in Ref. [5], the partition function in eq. (7) can also be viewed as a fermionic
version of the XY model and is therefore referred to as the 𝑓 𝑋𝑌 model, in contrast to the traditional
model, which is called the 𝑏𝑋𝑌 model.

Interestingly, every worldline configuration 𝐶 can be uniquely mapped to a configuration of
close-packed oriented dimers on two layers of square lattices. To illustrate this mapping, the
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FIG. 6: Plot of the universal step-scaling function obtained from the bXY model (solid line) and the data from the
fXY model at � = 0.01, 0.2, 0.4, and 0.6 for various lattice sizes. This is the data we show in the main paper. We can
see that `UV ⇡ 80 at � = 0.6, `UV ⇡ 160 at � = 0.4 and `UV > 1280 for � = 0.2 and 0.01.

form we obtain the solid line shown in Fig. 7 for the bXY
model, which is also the line we use in the main paper
to compare with the our fXY model data. In Fig. 6 we
show the data shown in the main paper, but by separating
the various � values for clarification. We notice that the
Monte Carlo data for each � do not fall on the solid curve
for small values of L but do so for su�ciently large values
of L. We can define `UV for each � as the minimum
value of L when the data begin to fall on the solid curve.

From Fig. 6 we notice that `UV ⇡ 80 for � = 0.6, and
`UV ⇡ 160 for � = 0.4. For �  0.2 we notice that
`UV > 1280, implying that we will need much larger
lattices beyond our current resources to see the data at
these couplings to fall on the solid curve. Indeed in Fig. 6
we only see the data for these couplings approach the UV
prediction of ⇠(L)/L = 0.7506912... as explained in [5].
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Figure 6: Step-scaling function (SSF) of the 2D 𝑂 (2) QFT, defined by tuning the traditional XY model to
the BKT critical point from the massive phase. The solid line corresponds to the SSF obtained from the
traditional XY model, while the data shown are from the qubit-regularized model described by eq. (7). For
𝜆 = 0.4, 0.6, the data for 𝐿 > 𝐿min begins to follow the universal SSF of the 2D 𝑂 (2) QFT. For 𝜆 = 0.2, 0.01,
𝐿min is larger than the lattice sizes explored. These figures were originally published as supplementary
material in [5].

worldline configuration shown on the left of fig. 5 is mapped to the dimer configuration shown on
the right side of fig. 5. Note that the dimers are always oriented from even sites to odd sites. Since
nearest-neighbor sites always have opposite parity, the site on the bottom layer has the opposite
parity compared to the corresponding site on the top layer. Empty sites are mapped to inter-layer
dimers that connect the two layers.

In Ref. [5], correlation functions of creation and annihilation operators for particles with
angular momentum 𝑚 = +1 and 𝑚 = −1 were used to compute 𝜉 (𝐿) as a function of 𝐿, which was
then used to determine the SSF. The critical point of the qubit-regularized model that reproduces
the SSF of the 2D𝑂 (2) QFT is found at 𝜆 = 0. However, the RG flow through which this is achieved
is once again described by fig. 2.

At 𝜆 = 0, there are no inter-layer dimers, and the partition function given in eq. (7) describes the
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statistical mechanics of two decoupled layers of close-packed dimers. Such a system is known to be
critical, describing free massless bosons. For large values of 𝐿, one obtains 𝜉 (𝐿)/𝐿 ≈ 0.4889(6),
as seen in fig. 4. This differs from the expected value at the BKT transition, where 𝜉 (𝐿)/𝐿 ≈
0.7506912..., as explained above. Thus, the RG flow of the qubit-regularized model leads to a
decoupled fixed point at 𝜆 = 0 rather than the desired BKT UV fixed point.

On the other hand, notice in fig. 4 that when 𝜆 = 0.01, we observe 𝜉 (𝐿)/𝐿 ≈ 0.7506912... on
lattice sizes of 𝐿 ≈ 1000. This result can be understood by examining the SSF at different values
of 𝜆, which are plotted in fig. 6. When 𝜆 = 0.6 and 0.4, the data behaves similarly to what we
discussed in section 2. For 𝐿 < 𝐿min, the data does not follow the SSF of the 2D 𝑂 (2) QFT, but for
𝐿 > 𝐿min, it begins to align with the desired curve.

On the other hand, when 𝜆 = 0.2 and 0.01, it appears that 𝐿min is larger than the largest lattice
sizes we have studied. However, in these cases, 𝜉 (𝐿)/𝐿 approaches the BKT value of 0.7506912....
This approach is most likely a crossover phenomenon, and for sufficiently large values of 𝐿, the
data will eventually begin to follow the expected SSF of the 2D 𝑂 (2) QFT.

All of this is once again consistent with the RG flow described by fig. 2, which shows that
asymptotically free UV fixed points can be recovered as a crossover criticality. Furthermore, the
qubit-regularized model was able to recover the physics of the BKT critical point more easily than
the traditional model, without the need for fine-tuning.

4. Qubit Regularization of Gauge Theories

In the two examples of qubit regularization discussed in the previous sections, asymptotically
free QFTs emerged via a four-dimensional local Hilbert space through a novel RG flow that did not
require fine-tuning. Can asymptotically free QFTs in higher dimensions, particularly non-Abelian
gauge theories in 3+1 dimensions, also be formulated via qubit regularization with a small, finite-
dimensional local Hilbert space? If this is possible, will these theories emerge through standard
RG flows, as depicted in fig. 1, or will they emerge via exotic flows, such as the one illustrated in
fig. 2? Answers to these questions have the potential to provide deeper insights into non-Abelian
gauge theories, extending beyond the original motivation of studying these theories in the context
of quantum computation.

In this section, we build upon the discussion in sections 2 and 3 by constructing new qubit-
regularized gauge theories. While the foundations for our work were established years ago within
the D-theory approach [8, 9], several new ideas for qubit regularization continue to emerge (see,
for example, [10, 11] and references therein). Very little is known about quantum critical points
and RG flows in qubit-regularized gauge theories. If, as commonly expected, the number of RG
fixed points in higher dimensions is small, then recovering traditional gauge theories through qubit
regularization may be relatively straightforward. However, the possibility of undiscovered exotic
RG fixed points cannot be ruled out — an intriguing prospect in its own right. In any case, the first
step in this pursuit is to construct qubit-regularized gauge theories and identify quantum critical
points within them.

Qubit regularization of lattice gauge theories is providing new insights into the formulation of
gauge theories themselves, encouraging us to view the physical Hilbert space of the theory through
the lens of irreps of the gauge symmetry (see Ref. [12]). Building on this perspective, in this section,
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FIG. 1. A pictorial representation of basis states in the sub-
space Hω in the form of an oriented dimer on the link con-
necting the sites x and y (left) and in the subspace Hs in the
form of a monomer on the site x (right). The orientation of
the dimer is defined such that under a gauge transformation
at x (left site) the link states transform as given by Eq. (5),
while a gauge transformation on y (right site) it transforms as
given by Eq. (6). The site transforms as given by the irrep
on the monomer.

With this notation, the full Hilbert space of the tradi-
tional theory is then the direct product of local Hilbert
spaces at every link and at every site Hfull = →ωHω→sHs.
However, the physical Hilbert space Hphys of the theory
is the subspace of Hfull that is invariant under gauge
transformations defined at every lattice site. These local
gauge transformation act on the local site Hilbert space
through the irrep of SU(N) associated to the sites. For
example, the fermion annihilation operator can be given
the transformation property

e→ihaGa

ω†
j |0↑ =

∑

k

(eihaT a
f )jkω

†
k|0↑, (4)

which means a single fermion on the site transforms ac-
cording to the fundamental representation. Each link
subspace Hε, on the other hand, is in fact an irrep of
SUL(N) ↓ SUR(N) with conjugate representations asso-
ciated with the two sites of the link. If we associate ε to
SUL(N) then we must associate ε with SUR(N). Then,
the gauge transformation associated with the left site acts
on the basis state of the link

∣∣Dε
ij

〉
as

e→ihaLa ∣∣Dε
ij

〉
=

∑

k

(eihaT a
ω )ik

∣∣Dε
kj

〉
(5)

and that associated with the right site as

e→ihaRa ∣∣Dε
ij

〉
=

∑

k

(e→ihaT a
ω )kj

∣∣Dε
ik

〉
, (6)

where T a
ε are the Hermitean generators of the SU(N)

group in the irrep ε.
These transformations can now be used to identify the

gauge-invariant subspace of the local Hilbert space Hg
s

associated with each site. The full Hilbert space Hg
s is

a direct product of link spaces Hω connected to the site
and the site Hilbert space Hs. The gauge transformation
identify the singlet subspace of this space, and we use
ϑs = 1, 2.., D(Hg

s) to label basis elements in this space,
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FIG. 2. A pictorial representation of a basis state in the
Hilbert space of traditional lattice gauge theory, involving four
links and a site. In this illustration the site (monomer) label
ωs specifies the site irrep, while the four links (dimers) belong
to irreps ω1, ω2, ω3 and ω4. The local site Hilbert space is
Hg

s = ω1 → ω3 → ω2 → ω4 → ωs and the physical Hilbert space
is obtained by projecting on to SU(N) singlets of Hg

s .

where D(Hg
s) is the dimension of this singlet subspace.

In Fig. 2 we illustrate four links connected to one site.
The physical Hilbert space Hphys is the gauge invariant
subspace within the product space

Hg
s = ε1 → ε2 → ε3 → ε4 → εs. (7)

Thus, for each monomer-dimer configuration [{εs}, {εω}]
labeled by link irreps εω and site irreps εs on the lat-
tice, we can construct the states |{εs}, {εω}, {ϑs}↑ as an
orthonornal basis of Hphys. It is easy to see that local
gauge-invariant operators connect basis states that change
neighboring εl, εs and ϑs, and conversely any such local
operation can be implemented by local gauge-invariant
opearators. Note that in pure lattice gauge theory with
no matter fields, all matter irreps are chosen to be εs = 1,
and the orthonormal basis states spanning Hphys are given
by |[{εω}, {ϑs}]↑. We can also introduce nonpropagating
matter fields with εs ↔= 1 only at specific lattice sites x
and y, which will change the orthonormal basis states
spanning Hphys to |{εω}, {ϑs};εx, εy↑.

The dimension of the physical Hilbert space for a fixed
configuration of monomers and dimers [{εs}, {εω}] on a
finite lattice is finite and is given by

∑

ϑs

↗{εs}, {εω}, {ϑs} |{εs}, {εω}, {ϑs}↑ =
∏

s

D(Hg
s)

(8)

which means the dimension of Hphys is formally given by

dim(Hphys) =
∑

[{εs},{εε}]

∏

s

D(Hg
s), (9)

<latexit sha1_base64="sn+FZRvFPsowGB89qhtSimMWOYY="></latexit>Hg
s = Vω̄1

→ Vω2 → Vω̄3
→ Vω4 → Vωs

Figure 7: A dimer-tensor is associated with an oriented link and is represented by the irrep label 𝜆 and the
indices 𝑖, 𝑗 , as shown at the top of the left figure. It represents the basis states |𝐷𝜆

𝑖 𝑗
⟩. Under 𝑆𝑈 (𝑁) gauge

transformations, the index 𝑖 transforms as 𝑉𝜆 and is associated with the left lattice site, while the index 𝑗

transforms as𝑉𝜆̄ and is associated with the right lattice site. The monomer-tensor is associated with a site and
is represented by the irrep label 𝜆 as shown at the bottom of the left figure. It represents the basis states |𝜓𝜆

𝑘
⟩,

with index 𝑘 transforming as 𝑉𝜆 under 𝑆𝑈 (𝑁) gauge transformations. On each lattice site, the 𝑆𝑈 (𝑁) gauge
transformations act on the Hilbert space denoted as H𝑔

𝑠 , constructed with irreps 𝑉𝜆’s from the links and the
site associated with the site. An example is shown in the figure on the right. The index 𝛼𝑠 = 1, 2, . . . ,D𝑔

𝑠

labels the singlet irreps of H𝑔
𝑠 .

we will first construct an orthonormal basis for the physical Hilbert space of traditional lattice gauge
theories that is well-suited for qubit regularization. We will develop a pictorial representation
of these basis states and argue that they can be interpreted as a monomer-dimer-tensor-network
(MDTN). We will then use the MDTN basis state perspective to guide us in constructing new
types of qubit-regularized lattice gauge theories that can capture the physics of confinement and
deconfinement.

Traditional lattice gauge theories contain quantum gauge degrees of freedom on the oriented
links of the lattice and quantum matter degrees of freedom on the sites. The traditional link Hilbert
space, HTrad

ℓ
, is that of a quantum particle moving on the surface of the 𝑆𝑈 (𝑁) manifold. As

explained in Ref. [12], if 𝜆 labels an irrep of 𝑆𝑈 (𝑁), and 𝑉𝜆 denotes the corresponding Hilbert
space with dimension 𝑑𝜆, we can use the Peter-Weyl theorem to write

HTrad
ℓ =

⊕
𝜆ℓ

𝑉𝜆ℓ ⊗ 𝑉𝜆̄ℓ , (8)

where 𝑉𝜆ℓ ⊗ 𝑉𝜆̄ℓ is a 𝑑2
𝜆ℓ

-dimensional subspace spanned by orthonormal basis states |𝐷𝜆ℓ
𝑖 𝑗
⟩, where

𝑖, 𝑗 = 1, 2, . . . , 𝑑𝜆ℓ , and each 𝑆𝑈 (𝑁) irrep 𝜆ℓ appears exactly once in the direct sum. Here, 𝜆̄ℓ
denotes the conjugate representation of 𝜆ℓ . In the orthonormal basis states |𝐷𝜆ℓ

𝑖 𝑗
⟩ associated with

the oriented link, the index 𝑖 corresponds to degrees of freedom transforming under 𝑉𝜆ℓ associated
with the left lattice site, while 𝑗 corresponds to those transforming under 𝑉𝜆̄ℓ associated with the
right lattice site. Collectively, the basis states |𝐷𝜆ℓ

𝑖 𝑗
⟩ can be interpreted as a tensor associated with

an oriented dimer on the link. A pictorial representation of this dimer-tensor is illustrated in fig. 7
(left).
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Every physical basis state of a lattice gauge 

theory in irrep formulation can be viewed as a 
configuration of monomers and dimers

4

x

y

FIG. 3. Illustration of a dimer configuration [{ωω}, {εs};
ωx, ωy] in a pure lattice gauge theory with heavy matter fields
at x and y. Projections of the configuration shown belong
to the physical Hilbert space HQ

phys for SU(2) on an 32-site
honeycomb lattice with periodic boundary conditions. Blue
circles represent singlets and red circles represent doublets.
Sites labeled as x and y contain heavy matter fields in the
ωs = 2 irrep. N ([{ωω}, {εs};ωx, ωy]) = 4 in this example since
Ds(Hg

s) = 2 at the two sites with matter fields, and there is a
unique singlet projection at all other sites.

which is infinite even on a finite lattice since the number
of link irreps is infinite on every link2. Qubit regulariza-
tion [5] refers to the idea that this can be made finite
by restricting the link Hilbert space to a finite subset
Q = {ω1, ω2, ...} of irreps of SU(N) and still hope to
recover the continuum physics of the traditional model
by choosing Q appropriately.Thus, the physical Hilbert

space of a qubit regularized lattice gauge theory HQ
phys,

is spanned by the same basis states |{ωs}, {ωω}, {εs}→ as
the traditional theory, but with ωω ωω ↑ Q. On a finite
lattice the physical Hilbert space of a qubit regularized

theory HQ
phys, is finite dimensional,

dim(HQ
phys) = TrQ

phys

( )
=

∑

[{εs},{εω}] ↑ Q

N ([{ωs}, {ωω}]) .

(10)

2 The site irreps are finite for finite number of species of matter
that fermionic, hard-core bosonic, or are otherwise bounded in
number.

x

y

FIG. 4. Illustration of a dimer, similar to Fig. 3, whose pro-
jections belong to HQ

phys for SU(3) on an 32-site honeycomb
lattice with periodic boundary conditions. Blue circles rep-
resent singlets, red circles represent the irrep ω = 3, while
yellow circles represent the irrep ω = 3. Sites labeled as x
and y contain heavy matter fields with ωx = 3 and ωy = 3.
Again N ([ωω, ωs]) = 4 in this example since Ds(Hg

s) = 2 at
the two sites with matter fields, and there is a unique singlet
projection at all other sites.

In the above sum the superscipt Q reminds us that
[{ωs}, {ωω}] lies in the qubit regularized space.

A simple qubit regularization that was introduced in
[5], restricts Q to all the Anti-Symmetric (as) represen-
tations of SU(N) that are described by single column
Young diagrams. We will refer to this as the as-scheme
of qubit regularization. In this scheme, the link Hilbert
space of SU(2) lattice gauge theory is restricted to irreps

Q = {1, 2} with dim(HQ
ω ) = 5, and for SU(3) the irreps

are restricted to ω = {1, 3, 3̄} with dim(HQ
ω ) = 19. In

Fig. 3 we show an illustration of an SU(2) monomer-dimer
configuration in the as-scheme on a honeycomb lattice

in two spatial dimensions that projects to HQ
phys. In this

illustration we have introduced two sites x and y with
heavy matter fields where ωs = 2. In Fig. 4 we show a
similar illustration for SU(3). In this case the site x has
a heavy matter field in the ωs = 3 irrep while on site y
the matter field is in the ωs = 3 irrep. In this work we
will show that the confinement-deconfinement features of
the traditional theory at finite temperatures is recovered
even in models with this simple qubit regularization.

In the condensed matter literature monomer dimer
models have often been studied and connections to gauge
theories have been observed [21, 26, 27]. The above dis-
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circles represent singlets and red circles represent doublets.
Sites labeled as x and y contain heavy matter fields in the
ωs = 2 irrep. N ([{ωω}, {εs};ωx, ωy]) = 4 in this example since
Ds(Hg

s) = 2 at the two sites with matter fields, and there is a
unique singlet projection at all other sites.

which is infinite even on a finite lattice since the number
of link irreps is infinite on every link2. Qubit regulariza-
tion [5] refers to the idea that this can be made finite
by restricting the link Hilbert space to a finite subset
Q = {ω1, ω2, ...} of irreps of SU(N) and still hope to
recover the continuum physics of the traditional model
by choosing Q appropriately.Thus, the physical Hilbert

space of a qubit regularized lattice gauge theory HQ
phys,

is spanned by the same basis states |{ωs}, {ωω}, {εs}→ as
the traditional theory, but with ωω ωω ↑ Q. On a finite
lattice the physical Hilbert space of a qubit regularized
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phys, is finite dimensional,
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=

∑
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2 The site irreps are finite for finite number of species of matter
that fermionic, hard-core bosonic, or are otherwise bounded in
number.
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lattice with periodic boundary conditions. Blue circles rep-
resent singlets, red circles represent the irrep ω = 3, while
yellow circles represent the irrep ω = 3. Sites labeled as x
and y contain heavy matter fields with ωx = 3 and ωy = 3.
Again N ([ωω, ωs]) = 4 in this example since Ds(Hg

s) = 2 at
the two sites with matter fields, and there is a unique singlet
projection at all other sites.

In the above sum the superscipt Q reminds us that
[{ωs}, {ωω}] lies in the qubit regularized space.

A simple qubit regularization that was introduced in
[5], restricts Q to all the Anti-Symmetric (as) represen-
tations of SU(N) that are described by single column
Young diagrams. We will refer to this as the as-scheme
of qubit regularization. In this scheme, the link Hilbert
space of SU(2) lattice gauge theory is restricted to irreps

Q = {1, 2} with dim(HQ
ω ) = 5, and for SU(3) the irreps

are restricted to ω = {1, 3, 3̄} with dim(HQ
ω ) = 19. In

Fig. 3 we show an illustration of an SU(2) monomer-dimer
configuration in the as-scheme on a honeycomb lattice

in two spatial dimensions that projects to HQ
phys. In this

illustration we have introduced two sites x and y with
heavy matter fields where ωs = 2. In Fig. 4 we show a
similar illustration for SU(3). In this case the site x has
a heavy matter field in the ωs = 3 irrep while on site y
the matter field is in the ωs = 3 irrep. In this work we
will show that the confinement-deconfinement features of
the traditional theory at finite temperatures is recovered
even in models with this simple qubit regularization.

In the condensed matter literature monomer dimer
models have often been studied and connections to gauge
theories have been observed [21, 26, 27]. The above dis-

SU(3)

Figure 8: Pictorial representation of the MDTN basis states on honeycomb lattices in 𝑆𝑈 (2) (left) and 𝑆𝑈 (3)
(right) lattice gauge theories in the ASQR scheme. The monomer-tensors with 𝜆𝑠 = 1 have not been shown
for convenience. Two sites 𝑥 and 𝑦 do contain matter fields with 𝜆𝑠 ≠ 1. In the 𝑆𝑈 (2) case, 𝜆𝑠 = 2 at both
sites, while in the 𝑆𝑈 (3), we have 𝜆𝑦 = 3 and 𝜆𝑥 = 3̄.

Similarly, the traditional Hilbert space of matter degrees of freedom,HTrad
𝑠 , can be decomposed

in terms of irreps 𝑉𝜆𝑠
, spanned by the basis states |𝜓𝜆𝑠

𝑘
⟩ for 𝑘 = 1, 2, . . . , 𝑑𝜆𝑠

. For a fixed 𝜆𝑠, these
basis states can be also be viewed as a tensor associated with a monomer on the site. A pictorial
representation of this monomer-tensor is also illustrated in fig. 7.

For every fixed set of dimer-tensors on links {𝜆ℓ} and monomer-tensors on sites {𝜆𝑠}, the
physical Hilbert space of the lattice gauge theory is obtained by projecting onto the subspace of
gauge-invariant states. This is commonly referred to as imposing Gauss’s law. This projection
can be achieved by constructing the Hilbert space H𝑔

𝑠 at each lattice site, on which the gauge
transformations act. This space is the direct product of all irreps 𝑉𝜆 associated with the site. An
illustration ofH𝑔

𝑠 is shown in fig. 7. The gauge-invariant singlet subspace is obtained by appropriate
tensor contractions (or fusion rules) on the indices of the 𝑉𝜆’s contained in H𝑔

𝑠 . If the dimension
of this singlet space is denoted as D(H𝑔

𝑠 ), we can use an index 𝛼𝑠 = 1, 2, . . . ,D(H𝑔
𝑠 ) to label the

different orthonormal basis states of the physical Hilbert space on that site.
We observe that an orthonormal basis of the physical Hilbert space of a traditional 𝑆𝑈 (𝑁)

lattice gauge theory can be constructed using the set of monomer and dimer tensors labeled {𝜆ℓ}
and {𝜆𝑠}, along with the set {𝛼𝑠} that denotes the fusion rules used to construct the gauge-invariant
states. We denote this orthonormal basis of a traditional lattice gauge theory as |{𝜆ℓ}, {𝜆𝑠}, {𝛼𝑠}⟩
and represent it pictorially as a monomer-dimer-tensor network (MDTN). For more details on the
MDTN basis states, we refer the reader to Ref. [13], that should be published shortly.

Qubit-regularized lattice gauge theories can be constructed using the MDTN basis states by
simply restricting the values of 𝜆ℓ on the links in |{𝜆ℓ}, {𝜆𝑠}, {𝛼𝑠}⟩. While more complex qubit
regularization schemes are possible, in Ref. [12], a simple qubit regularization scheme was proposed
by restricting 𝜆ℓ to the anti-symmetric irreps of 𝑆𝑈 (𝑁). We refer to this as the anti-symmetric qubit
regularization (ASQR) scheme. In fig. 8, we illustrate a monomer-dimer-tensor-network basis state
for both 𝑆𝑈 (2) and 𝑆𝑈 (3) gauge theories in the ASQR scheme. We will argue in the next section that
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SU(2) SU(3)

Figure 9: Plot of 𝜒 as a function of the lattice size 𝐿, showing the confinement-deconfinement transition
as a function of 𝛽 on the diamond lattice (𝑑 = 3) in qubit-regularized lattice gauge theory within the ASQR
scheme. The left plot shows results for the 𝑆𝑈 (2) gauge theory, which is consistent with the 3D Ising
transition, while the right plot shows the transition in the 𝑆𝑈 (3) gauge theory, which is first order.

even the simple ASQR scheme is able to capture the finite-temperature confinement-deconfinement
physics of traditional lattice gauge theories.

5. Confinement-Deconfinement Transitions

Using the MDTN basis states |{𝜆ℓ}, {𝜆𝑠}, {𝛼𝑠}⟩, we can explore lattice gauge theories from
a new perspective. In particular, by employing them, we can construct new local Hamiltonians
that are free of the sign problem, eliminating the need to resort to the original Kogut-Susskind
approach [14], which often suffers from sign problems due to the introduction of Clebsch-Gordan
coefficients.

A key question is whether these non-traditional Hamiltonians can host quantum critical points
where continuum non-Abelian gauge theories emerge through interesting RG flows. A small but
significant first step toward this goal is to recover the finite-temperature physics of traditional 𝑆𝑈 (𝑁)
lattice gauge theories, which exhibit a confined phase at low temperatures and a deconfined phase
at high temperatures. In 𝑑 spatial dimensions, these classical transitions are known to follow the
order-disorder physics of 𝑍𝑁 spin models, where the low-temperature confined phase corresponds
to the disordered phase, while the high-temperature deconfined phase corresponds to the ordered
phase [15].

To recover classical transitions, it is usually sufficient to begin with a classical Hamiltonian
in which every MDTN basis state is an eigenstate. A simple choice is 𝐻 (Ê) =

∑
ℓ Êℓ , where

Êℓ |{𝜆ℓ}, {𝜆𝑠}, {𝛼𝑠}⟩ = (1− 𝛿𝜆,1) |{𝜆ℓ}, {𝜆𝑠}, {𝛼𝑠}⟩. The energy associated with each MDTN basis
state is then given by E({𝜆ℓ}, {𝜆𝑠}, {𝛼𝑠}) =

∑
ℓ (1 − 𝛿𝜆ℓ ,1).
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To study the finite-temperature confinement-deconfinement phase transition using this classical
Hamiltonian in the ASQR scheme, we focus on the pure gauge theory with 𝜆𝑠 = 1 on all lattice
sites. Additionally, we also consider a system with two sites, 𝑥 and 𝑦, where heavy matter fields are
introduced so that 𝜆𝑥 and 𝜆𝑦 belong to either the fundamental or anti-fundamental irrep of 𝑆𝑈 (𝑁).
Let 𝑍 and 𝑍 (𝑥,𝑦) denote the corresponding partition functions in the pure gauge sector and with
heavy matter fields at 𝑥 and 𝑦. Using these, we define the susceptibility as

𝜒 =
1
𝐿𝑑

∑︁
𝑥,𝑦

𝑍 (𝑥,𝑦)

𝑍
, (9)

where 𝐿𝑑 is the spatial lattice volume. In the thermodynamic limit, 𝜒 is expected to approach a
constant in the confined phase and scale with 𝐿𝑑 in the deconfined phase.

We computed 𝜒 as a function of lattice size 𝐿 for 𝑑 = 2 (honeycomb lattice) and 𝑑 = 3 (diamond
lattice) using loop Monte Carlo algorithms [16]. Our results for the phase transitions align with
expectations from traditional lattice gauge theories. For instance, in 𝑆𝑈 (2) gauge theories, the
confined-to-deconfined phase transition is second order and belongs to the Ising universality class.
In 𝑆𝑈 (3) gauge theories, the transition follows the three-state Potts model in 𝑑 = 2, while in 𝑑 = 3,
it is first order. In fig. 9, we present our results for the 𝑑 = 3 case in 𝑆𝑈 (2) (left) and 𝑆𝑈 (3) (right)
gauge theories. Further details can be found in [13].

6. Conclusions

Qubit regularization of quantum field theories, while initially motivated by quantum computing,
offers new opportunities to gain deeper insights beyond the realm of quantum computing. We have
already uncovered new RG flows that can exactly recover asymptotic freedom in qubit-regularized
models with a finite local Hilbert space. Additionally, we have learned how to formulate lattice
gauge theories using the irreps of the gauge symmetry. These orthonormal basis states, which we
refer to as MDTN basis states, encourage us to rethink gauge theories from a fresh perspective that
extends beyond the perturbative approach introduced long ago.

The new Hamiltonians can be constructed to be sign-problem-free, unlike the traditional
approaches, which suffer from these issues related to Clebsch-Gordan coefficients. Recent work in
one dimension already shows hints that the string tension can slowly be tuned to zero within these
new quantum Hamiltonians [13]. The exploration of quantum critical points and RG flows in these
new qubit-regularized gauge theories in higher dimensions promises to be a fruitful and compelling
research direction for the future.
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