PROCEEDINGS

OF SCIENCE

Qubit Regularization of Quantum Field Theories

Shailesh Chandrasekharan®*

“Department of Physics, Duke University,
Box 90305, Duke University, Durham, NC 27708, USA

E-mail: sch27@duke.edu

To study quantum field theories on a quantum computer, we must begin with Hamiltonians defined
on a finite-dimensional Hilbert space and then take appropriate limits. This approach can be seen as
anew type of regularization for quantum field theories, which we refer to as qubit regularization. A
related finite-dimensional regularization, known as the D-theory approach, was proposed long ago
as a general framework for all quantum field theories. In this framework, the dimensionality of the
local Hilbert space at each spatial point can increase as needed through an additional flavor index.
To reproduce asymptotically free QFTs, most studies assume that qubit-regularized theories require
extending the local Hilbert space to infinity. However, contrary to this common belief, recent
discoveries in (1+1) dimensions have revealed two examples where asymptotic freedom appears
to emerge within a strictly finite-dimensional local Hilbert space through a novel renormalization
group (RG) flow. These findings motivate further investigation into whether asymptotically free
gauge theories could also emerge within a strictly finite-dimensional local Hilbert space. To
support these explorations, we propose an orthonormal basis called the monomer-dimer-tensor-

network (MDTN) basis and use it to construct new types of qubit-regularized lattice gauge theories.

The 41st International Symposium on Lattice Field Theory (LATTICE2024)
28 July - 3 August 2024
Liverpool, UK

*Speaker

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/


mailto:sch27@duke.edu
https://pos.sissa.it/

Qubit Regularization of Quantum Field Theories Shailesh Chandrasekharan

1. Introduction

The possibility of using quantum computers to solve quantum field theories (QFTs) provides
an opportunity to investigate how these theories, traditionally constructed on infinite-dimensional
Hilbert spaces, can emerge as limits of finite quantum mechanical systems [1, 2]. This finite-
dimensional, matrix model approach to QFTs holds the potential to reveal deeper insights into the
underlying physics, going beyond its applications in quantum computation.

We refer to this finite-dimensional regularization of QFTs as qubit regularization. While
traditional lattice regularization provides a starting point, the infinite-dimensional local Hilbert
space of bosonic quantum fields requires further regularization. The D-theory proposed such a
finite dimensional formulation for many QFTs including gauge theories nearly two decades ago
[3]. In that approach, an extra dimension (or equivalently a flavor index) was introduced at every
spatial lattice point, allowing for a systematic increase in the local Hilbert space when necessary.
This philosophy has also inspired many recent studies, which often assume that the local Hilbert
space will ultimately need to be extended to infinity to formulate asymptotically free QFTs, such as
Yang-Mills theories and QCD.

Typical asymptotically free QFTs can be viewed as massive theories emerging from a free
(Gaussian) UV fixed point via a marginally relevant coupling. A schematic of the traditional RG
flow in such theories is shown in fig. 1. While constructing lattice theories with infinite-dimensional
local Hilbert spaces that flow to the desired UV Gaussian fixed point is straightforward, achieving
this within a strictly finite Hilbert space is more challenging, as it minimally requires fine-tuning to
reach the critical surface. This fine-tuning approach, largely unexplored, represents a new research
direction motivated by quantum computation.

One of the goals of this talk is to argue for the possibility of a novel non-perturbative RG flow
through which qubit-regularized quantum field theories may recover asymptotically free QFTs.
Specifically, we will discuss two examples of qubit regularization that provide concrete evidence
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Figure 1: Traditional RG flow in the space of lattice models for an asymptotically free QFT with a Gaussian
UV fixed point (FP). It is straightforward to construct lattice models that flow to the Gaussian FP, if the
local Hilbert space is allowed to be infinite-dimensional. However, this becomes challenging with qubit
regularization.
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Figure 2: This figure illustrates an alternative RG flow, discovered at the critical points of two qubit-
regularized field theories, demonstrating how asymptotically free QFTs with a UV fixed point (FP) can
emerge as a crossover critical phenomenon, while the RG flow at the critical point itself leads to a completely
different decoupled FP.

for these new RG flows. First, we will summarize a recent study [4] demonstrating how the
asymptotically free fixed point of the two-dimensional O(3) model can emerge using a local four-
dimensional Hilbert space in the Hamiltonian formulation. Next, we will review another study
[5] showing how the massive QFT arising at the BKT transition can emerge from a simple four-
dimensional Hilbert space in the Lagrangian formulation. Both examples highlight the possibility
that asymptotic freedom may emerge through new types of RG flows in qubit-regularized theories.

To understand this new RG flow in the two examples, consider a qubit regularized quantum
mechanical Hamiltonian acting on a finite local lattice Hilbert space. Such a system typically
depends on a lattice size L and a set of couplings g, with the desired QFT emerging in the limits
g — gc and L — oo. However, the physics of the QFT can be obscured by the implementation
of these limiting procedures. While the traditional RG flow diagram in fig. 1 suggests that setting
g = g, recovers the Gaussian ultraviolet (UV) fixed point, the new examples indicate that, instead,
the lattice theory flows to a completely different fixed point — one we refer to as a decoupled
fixed point, based on the observed physics in these cases. Nevertheless, as g approaches g, all the
universal physics of the desired UV fixed point can still be recovered as a crossover phenomenon.
Specifically, for small L, the theory is dominated by the decoupled fixed point; for intermediate L,
the physics of the desired UV fixed point becomes visible; and for very large L, the theory exhibits
the universal behavior of the massive QFT. This distinct and novel RG flow is illustrated in fig. 2.
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2. Qubit Regularization of the Asymptotically Free O(3) QFT in Two Dimensions

In this section, we review the main results of Ref. [4], which demonstrate how the qubit
regularization of the asymptotically free O(3) quantum field theory in two dimensions (2D O(3)
QFT) can be achieved using only two qubits per lattice site. We also argue that the RG flow, which
recovers asymptotic freedom in the UV, is given by fig. 2.

The traditional formulations of the 2D O(3) QFT begins with an infinite-dimensional local
Hilbert space Hrraq at each lattice site, representing a quantum particle constrained to move on
the surface of a unit sphere in three dimensions. The position of the particle is described by the
unit vector J; and the corresponding quantum eigenstates |$) form a complete basis for the Hilbert
space.

One of the many ways to quantitatively understand the asymptotic freedom of the 2D O(3)
QFT is by defining a finite-volume correlation length £ (L) and computing it as a function of the box
size L. Using £(L), we can then compute the step-scaling function (SSF) f(x), where x = £(L)/L
and f(x) = £(2L)/&(L). The function f(x) is a nonlinear function and is well defined for all values
of x, with the limiting values f(x — o0) =2 (UV regime) and f(x — 0) = 1 (IR regime).

For one of the many possible definitions of £(L) using the correlations of q;, the SSF was
computed non-perturbatively using the traditional Lagrangian lattice formulation of the 2D O(3)
QFT in Ref. [6] and is shown as the black solid line in fig. 3. The perturbative result, starting from
the Gaussian UV fixed point, is also shown as a dashed line.

A key challenge in qubit regularization is to reproduce this SSF of the traditional formulation
using a lattice model with a finite-dimensional Hilbert space. Symmetries can provide valuable
guidance in this process. Since the 2D O(3) QFT exhibits SO (3) symmetry, it is natural to preserve
this symmetry under qubit regularization. A natural approach is to decompose the traditional local
Hilbert space at each lattice site as a direct sum over the irreducible representations (irreps) of
SO(3):

7'(Trad = Hl’ > ( 1 )

where H, denotes the irreducible representation of SO(3) with angular momentum ¢. Each Hilbert
space Hy has dimension 2¢ + 1, with basis states labeled by the standard orbital angular momentum
states |£, m), where —€ < m < {.

A simple type of qubit regularization begins with a lattice model defined on a truncated Hilbert
space, constructed using only a few allowed values of ¢ in the sum eq. (1). For example, in Ref. [5],
the qubit-regularized Hilbert space chosen at each lattice site was

WQ =Hp—o ® Hp-;. 2)

This four-dimensional space was implemented using two qubits per lattice site. Denoting the
corresponding spin-% operators as Sy ; and Sy », the lattice Hamiltonian of the qubit-regularized
model in one spatial dimension is given by

~

H = JSx1-Sx+1,1 + Sx.1-Sx2. 3)
0

=
Il
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Figure 3: The SSF of the 2D O(3) QFT. The solid black line represents the results obtained in Ref. [6] using
the traditional lattice formulation, while the data points correspond to the Heisenberg comb Hamiltonian
described in eq. (3). For each fixed value of J, the data for L > Lp;, begins to align with the universal
SSF, and Ly, increases with J, allowing us to access more of the SSF in the UV regime. This figure was

originally published in [4].

This model is referred to as the Heisenberg comb. Using antiferromagnetic spin-spin correlation
functions, £(L) can be calculated as a function of L and which can then be used to compute the
SSF. As we will argue below, this SSF is exactly the same as the one obtained in the traditional
model in the J — oo limit, in the appropriate regime of lattice sizes.

It is well known that, in order to reproduce a continuum QFT, the lattice model needs to be
tuned to a critical point. In the Heisenberg comb, J = oo is one such critical point. When J = oo,
the spins Sy » decouple from the spins Sy |, which form a spin—% chain that is known to be critical.
In the infrared (IR), this chain flows to the k¥ = 1 Wess-Zumino-Witten (WZW) conformal field
theory.

Thus, at the J = oo critical point, the Heisenberg comb flows to the £ = 1 WZW fixed point
along with an infinite number of decoupled spins S ». This is the decoupled fixed point shown in
fig. 2. As expected, for very large but finite values of J (i.e., J # 00), the model no longer flows to
the decoupled fixed point and instead becomes massive. Interestingly, however, the RG flow takes
it arbitrarily close to the Gaussian UV fixed point.

This flow can be analyzed by computing x = £(L)/L and y = £(2L)/&é(L), and plotting these
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points on an (x, y) graph for various values of L at a fixed J. This allows us to observe the pattern
of the RG flow from the UV to the infrared (IR) as L increases.

Using large-scale quantum Monte Carlo algorithms, this behavior can be studied in detail and
is shown in fig. 3 for J = 3,5,10, and 12 < L < 512. For L < Ly, the plotted Monte Carlo data
do not exhibit any recognizable scaling pattern. However, when L > L, they begin to align with
the expected step-scaling function (SSF) for the 2D O(3) QFT, represented by the black solid line.

Note also that Ly, (J) is a function of J and increases with increasing J. Additionally, the
ratio & (Lmin) / Lmin also increases, suggesting that as J grows, the qubit model captures more of the
ultraviolet (UV) physics of the 2D O(3) QFT accurately.

This indicates that the Gaussian UV fixed point of the 2D O(3) QFT emerges as a crossover
phenomenon in the Heisenberg comb and can be fully recovered in the J — oo limit by also
focusing on lattice sizes L > Lpin(J). The actual RG flow of the Heisenberg comb appears to be
best described by the novel RG flow shown in fig. 2.

3. Qubit regularization of the massive QFT at the BKT critical point

In this section, we review the main results of Ref. [5], which demonstrate how the massive
QFT at the Berezinskii-Kosterlitz-Thouless (BKT) critical point, defined through the traditional XY
model, can be reproduced using a qubit-regularized model with a four-dimensional local Hilbert
space. We also find once again that the RG flow, which recovers the continuum physics of the QFT,
is given by fig. 2.

The traditional XY model is defined using an infinite-dimensional local Hilbert space FHryaq at
each lattice site, corresponding to a quantum particle moving on a circle of unit radius. The position
of the particle is described by the angle 0 < 6 < 2x. The action of the model on a two-dimensional
square lattice, representing Euclidean space-time, is given by

S=8 Z cos(0x — 6y), 4

(xy)

where 8. ~ 1.1199(1) is the Berezinskii-Kosterlitz-Thouless (BKT) critical point [7]. For 8 < S,
the lattice model is in a massive phase, where the correlation length grows exponentially as 8 — S..
At B, the infrared (IR) quantum field theory (QFT) consists of free bosons.

These features motivate the characterization of the massive continuum QFT that emerges from
the lattice XY model in the limit 8 — S, as an asymptotically free QFT. We will refer to this theory
as the 2D O(2) QFT. As discussed in section 2, we can once again define an SSF for this 2D O(2)
QFT by defining £(L) through correlations of e’ and e~?¢. This SSF was computed in Ref. [5]
and is represented by the solid lines in the four graphs shown in fig. 6. At the BKT critical point,
we expect £(L)/L = 0.7506912 . .. for large values of L [7]. However, the traditional model does
not reach this value even when L = 2500, as seen in fig. 4. This discrepancy is usually attributed
to slowly varying logarithmic finite volume corrections.

The challenge for qubit regularization is to reproduce the SSF using a lattice model with a
finite-dimensional Hilbert space by appropriately tuning it to a critical point. While several such
models are known to exist, an important feature of the qubit-regularized model studied in Ref. [5]
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Figure 4: The plot of £(L)/L as a function of L in the traditional XY model (referred to as bXY in the figure)
as compared to the qubit regularized model (referred to as the XY in the figure). Note that £(L)/L does not
reach the value of 0.7506... expected in the traditional XY model at the BKT transition for 8. ~ 1.1199(1)
even at L ~ 2500, while the qubit regularized model recovers this quite accurately when A = 0.01 at those
lattice sizes. In contrast, when A = 0 the qubit regularized theory is very different since £(L)/L =~ 0.4889.

is that the BKT critical point can be reached from the massive phase without the need for fine-
tuning. In contrast to section 2, where qubit regularization was implemented within the Hamiltonian
formalism, Ref. [5] achieves it in the Euclidean space-time Lagrangian formulation by replacing
the continuous degree of freedom 6 with a discrete degree of freedom that takes only a finite set
of values. This Lagrangian formulation can also be understood through a transfer-matrix approach
within a finite-dimensional Hilbert space.

The Hilbert space of the traditional model, Hry,g, is a direct sum of irreps of the symmetry
group, which in this case is the O(2) group. It can be expressed as

7—[Trad = @ ﬂm, (5)
m=0,+1,+2,...

where H,, corresponds to the angular momentum irreps.
In contrast, the qubit regularization introduced in Ref. [5] uses a four-dimensional local Hilbert
space given by

Ho = Hin=0 ® Hin=0 & Hmu=1 & Hm=-1. (6)
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worldline configuration closed packed dimer configurations

Figure 5: Illustration of configurations C that define the qubit-regularized model in eq. (7). Each worldline
configuration (left) can be uniquely mapped to a close-packed dimer configuration (right), as explained in
the text. The coupling A is the fugacity of the empty sites in the worldline viewpoint or, equivalently, the
fugacity of the inter-layer dimers in the dimer viewpoint.

Unlike Hryag, the qubit-regularized Hilbert space includes two m = 0 states, in addition to the states
with angular momentum m = +1 and m = —1. As we will see, one of the m = O states can be
interpreted as a Fock vacuum state, while the other represents a bound state of m = +1 and m = —1.
Consequently, this bound state still has a total angular momentum of zero.

The lattice model in this finite-dimensional Hilbert space can be described by the partition
function

Z= Z ANt (7
C

where C represents worldline configurations of hardcore bosons carrying angular momentum +1
or —1 on a square lattice. An illustration of a configuration C is shown on the left side of fig. 5.
These configurations naturally take the form of closed, oriented loops that do not touch. In addition
to sites containing particles, some sites can be empty, representing the absence of any particle and
thus interpreted as Fock vacuum states. The quantity N; in eq. (7) denotes the number of these
empty sites in the configuration C.

With some effort, we can construct a transfer matrix for the partition function in eq. (7), which
has a four-dimensional local Hilbert space. To understand this, note that each lattice site is either
empty or occupied by a particle with angular momentum m = +1 or m = —1, forming three distinct
orthonormal states in the transfer matrix formulation. However, an additional state is required to
describe loops that form across a single bond connecting neighboring sites. Each such pair of sites
is interpreted as containing a bound state of two bosons with opposite angular momentum. These
m = 0 states constitute the fourth orthonormal basis state of the Hilbert space.

As explained in Ref. [5], the partition function in eq. (7) can also be viewed as a fermionic
version of the XY model and is therefore referred to as the f XY model, in contrast to the traditional
model, which is called the b XY model.

Interestingly, every worldline configuration C can be uniquely mapped to a configuration of
close-packed oriented dimers on two layers of square lattices. To illustrate this mapping, the
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Figure 6: Step-scaling function (SSF) of the 2D O(2) QFT, defined by tuning the traditional XY model to
the BKT critical point from the massive phase. The solid line corresponds to the SSF obtained from the
traditional XY model, while the data shown are from the qubit-regularized model described by eq. (7). For
A =0.4,0.6, the data for L > L, begins to follow the universal SSF of the 2D O(2) QFT. For 4 = 0.2,0.01,
Lnin is larger than the lattice sizes explored. These figures were originally published as supplementary
material in [5].

worldline configuration shown on the left of fig. 5 is mapped to the dimer configuration shown on
the right side of fig. 5. Note that the dimers are always oriented from even sites to odd sites. Since
nearest-neighbor sites always have opposite parity, the site on the bottom layer has the opposite
parity compared to the corresponding site on the top layer. Empty sites are mapped to inter-layer
dimers that connect the two layers.

In Ref. [5], correlation functions of creation and annihilation operators for particles with
angular momentum m = +1 and m = —1 were used to compute £(L) as a function of L, which was
then used to determine the SSF. The critical point of the qubit-regularized model that reproduces
the SSF of the 2D O(2) QFT is found at A = 0. However, the RG flow through which this is achieved
is once again described by fig. 2.

At A = 0, there are no inter-layer dimers, and the partition function given in eq. (7) describes the
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statistical mechanics of two decoupled layers of close-packed dimers. Such a system is known to be
critical, describing free massless bosons. For large values of L, one obtains £(L)/L ~ 0.4889(6),
as seen in fig. 4. This differs from the expected value at the BKT transition, where £(L)/L =~
0.7506912..., as explained above. Thus, the RG flow of the qubit-regularized model leads to a
decoupled fixed point at A = O rather than the desired BKT UV fixed point.

On the other hand, notice in fig. 4 that when A = 0.01, we observe £(L)/L ~ 0.7506912... on
lattice sizes of L ~ 1000. This result can be understood by examining the SSF at different values
of A, which are plotted in fig. 6. When A = 0.6 and 0.4, the data behaves similarly to what we
discussed in section 2. For L < Ly, the data does not follow the SSF of the 2D O (2) QFT, but for
L > Ly, it begins to align with the desired curve.

On the other hand, when 4 = 0.2 and 0.01, it appears that L, is larger than the largest lattice
sizes we have studied. However, in these cases, £ (L) /L approaches the BKT value of 0.7506912....
This approach is most likely a crossover phenomenon, and for sufficiently large values of L, the
data will eventually begin to follow the expected SSF of the 2D O(2) QFT.

All of this is once again consistent with the RG flow described by fig. 2, which shows that
asymptotically free UV fixed points can be recovered as a crossover criticality. Furthermore, the
qubit-regularized model was able to recover the physics of the BKT critical point more easily than
the traditional model, without the need for fine-tuning.

4. Qubit Regularization of Gauge Theories

In the two examples of qubit regularization discussed in the previous sections, asymptotically
free QFTs emerged via a four-dimensional local Hilbert space through a novel RG flow that did not
require fine-tuning. Can asymptotically free QFTs in higher dimensions, particularly non-Abelian
gauge theories in 3+1 dimensions, also be formulated via qubit regularization with a small, finite-
dimensional local Hilbert space? If this is possible, will these theories emerge through standard
RG flows, as depicted in fig. 1, or will they emerge via exotic flows, such as the one illustrated in
fig. 27 Answers to these questions have the potential to provide deeper insights into non-Abelian
gauge theories, extending beyond the original motivation of studying these theories in the context
of quantum computation.

In this section, we build upon the discussion in sections 2 and 3 by constructing new qubit-
regularized gauge theories. While the foundations for our work were established years ago within
the D-theory approach [8, 9], several new ideas for qubit regularization continue to emerge (see,
for example, [10, 11] and references therein). Very little is known about quantum critical points
and RG flows in qubit-regularized gauge theories. If, as commonly expected, the number of RG
fixed points in higher dimensions is small, then recovering traditional gauge theories through qubit
regularization may be relatively straightforward. However, the possibility of undiscovered exotic
RG fixed points cannot be ruled out — an intriguing prospect in its own right. In any case, the first
step in this pursuit is to construct qubit-regularized gauge theories and identify quantum critical
points within them.

Qubit regularization of lattice gauge theories is providing new insights into the formulation of
gauge theories themselves, encouraging us to view the physical Hilbert space of the theory through
the lens of irreps of the gauge symmetry (see Ref. [12]). Building on this perspective, in this section,

10
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Figure 7: A dimer-tensor is associated with an oriented link and is represented by the irrep label A and the
indices i, j, as shown at the top of the left figure. It represents the basis states Iij). Under SU(N) gauge
transformations, the index i transforms as V, and is associated with the left lattice site, while the index j
transforms as V; and is associated with the right lattice site. The monomer-tensor is associated with a site and
is represented by the irrep label A as shown at the bottom of the left figure. It represents the basis states Wﬁ),
with index & transforming as V,; under SU(N) gauge transformations. On each lattice site, the SU(N) gauge
transformations act on the Hilbert space denoted as HE, constructed with irreps V,’s from the links and the
site associated with the site. An example is shown in the figure on the right. The index a; = 1,2,..., D}
labels the singlet irreps of H.

we will first construct an orthonormal basis for the physical Hilbert space of traditional lattice gauge
theories that is well-suited for qubit regularization. We will develop a pictorial representation
of these basis states and argue that they can be interpreted as a monomer-dimer-tensor-network
(MDTN). We will then use the MDTN basis state perspective to guide us in constructing new
types of qubit-regularized lattice gauge theories that can capture the physics of confinement and
deconfinement.

Traditional lattice gauge theories contain quantum gauge degrees of freedom on the oriented
links of the lattice and quantum matter degrees of freedom on the sites. The traditional link Hilbert
space, 7—[;“‘“‘, is that of a quantum particle moving on the surface of the SU(N) manifold. As
explained in Ref. [12], if A labels an irrep of SU(N), and V, denotes the corresponding Hilbert
space with dimension d,, we can use the Peter-Weyl theorem to write

F{Tred = ED Vi, ®Vy,. (®)
A¢

where V,, ® V3, is a d/zlf -dimensional subspace spanned by orthonormal basis states |Df; ), where
i,j =1,2,...,d,,, and each SU(N) irrep A, appears exactly once in the direct sum. Here, A,
denotes the conjugate representation of A,. In the orthonormal basis states |ij” ) associated with
the oriented link, the index i corresponds to degrees of freedom transforming under V;, associated
with the left lattice site, while j corresponds to those transforming under V;, associated with the
right lattice site. Collectively, the basis states |Dl/.l].‘ ) can be interpreted as a fensor associated with
an oriented dimer on the link. A pictorial representation of this dimer-tensor is illustrated in fig. 7
(left).

11



Qubit Regularization of Quantum Field Theories Shailesh Chandrasekharan

SU(3)

Figure 8: Pictorial representation of the MDTN basis states on honeycomb lattices in SU(2) (left) and SU(3)
(right) lattice gauge theories in the ASQR scheme. The monomer-tensors with 45 = 1 have not been shown
for convenience. Two sites x and y do contain matter fields with A; # 1. In the SU(2) case, 43 = 2 at both
sites, while in the SU(3), we have A, = 3 and A, = 3.

Similarly, the traditional Hilbert space of matter degrees of freedom, ™4, can be decomposed
in terms of irreps V,_, spanned by the basis states |wzs) fork =1,2,...,d,,. For afixed A, these
basis states can be also be viewed as a tensor associated with a monomer on the site. A pictorial
representation of this monomer-tensor is also illustrated in fig. 7.

For every fixed set of dimer-tensors on links {1,} and monomer-tensors on sites {1}, the
physical Hilbert space of the lattice gauge theory is obtained by projecting onto the subspace of
gauge-invariant states. This is commonly referred to as imposing Gauss’s law. This projection
can be achieved by constructing the Hilbert space H3 at each lattice site, on which the gauge
transformations act. This space is the direct product of all irreps V, associated with the site. An
illustration of ¥ is shown in fig. 7. The gauge-invariant singlet subspace is obtained by appropriate
tensor contractions (or fusion rules) on the indices of the V;’s contained in H¢. If the dimension
of this singlet space is denoted as D (H?E), we can use an index ay = 1,2, ..., D(HE) to label the
different orthonormal basis states of the physical Hilbert space on that site.

We observe that an orthonormal basis of the physical Hilbert space of a traditional SU(N)
lattice gauge theory can be constructed using the set of monomer and dimer tensors labeled {1,}
and {A,}, along with the set {a,} that denotes the fusion rules used to construct the gauge-invariant
states. We denote this orthonormal basis of a traditional lattice gauge theory as [{A¢}, {45}, {as})
and represent it pictorially as a monomer-dimer-tensor network (MDTN). For more details on the
MDTN basis states, we refer the reader to Ref. [13], that should be published shortly.

Qubit-regularized lattice gauge theories can be constructed using the MDTN basis states by
simply restricting the values of A, on the links in [{A,}, {4}, {@s}). While more complex qubit
regularization schemes are possible, in Ref. [12], a simple qubit regularization scheme was proposed
by restricting 1, to the anti-symmetric irreps of SU(N). We refer to this as the anti-symmetric qubit
regularization (ASQR) scheme. In fig. 8, we illustrate a monomer-dimer-tensor-network basis state
for both SU(2) and SU (3) gauge theories in the ASQR scheme. We will argue in the next section that

12
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Figure 9: Plot of y as a function of the lattice size L, showing the confinement-deconfinement transition
as a function of g on the diamond lattice (d = 3) in qubit-regularized lattice gauge theory within the ASQR
scheme. The left plot shows results for the SU(2) gauge theory, which is consistent with the 3D Ising
transition, while the right plot shows the transition in the SU(3) gauge theory, which is first order.

even the simple ASQR scheme is able to capture the finite-temperature confinement-deconfinement
physics of traditional lattice gauge theories.

5. Confinement-Deconfinement Transitions

Using the MDTN basis states [{A¢}, {45}, {as}), we can explore lattice gauge theories from
a new perspective. In particular, by employing them, we can construct new local Hamiltonians
that are free of the sign problem, eliminating the need to resort to the original Kogut-Susskind
approach [14], which often suffers from sign problems due to the introduction of Clebsch-Gordan
coeflicients.

A key question is whether these non-traditional Hamiltonians can host quantum critical points
where continuum non-Abelian gauge theories emerge through interesting RG flows. A small but
significant first step toward this goal is to recover the finite-temperature physics of traditional SU(N)
lattice gauge theories, which exhibit a confined phase at low temperatures and a deconfined phase
at high temperatures. In d spatial dimensions, these classical transitions are known to follow the
order-disorder physics of Zy spin models, where the low-temperature confined phase corresponds
to the disordered phase, while the high-temperature deconfined phase corresponds to the ordered
phase [15].

To recover classical transitions, it is usually sufficient to begin with a classical Hamiltonian
in which every MDTN basis state is an eigenstate. A simple choice is H &) = > E;, where
Eel{Ae}, (A}, {ag}y = (1= 1{A¢}, {45}, {as}). The energy associated with each MDTN basis
state is then given by E({A¢}, {As}, {as}) = 2 (1 = 4,,1)-
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To study the finite-temperature confinement-deconfinement phase transition using this classical
Hamiltonian in the ASQR scheme, we focus on the pure gauge theory with 4; = 1 on all lattice
sites. Additionally, we also consider a system with two sites, x and y, where heavy matter fields are
introduced so that A, and A, belong to either the fundamental or anti-fundamental irrep of SU(N).
Let Z and Z*>Y) denote the corresponding partition functions in the pure gauge sector and with
heavy matter fields at x and y. Using these, we define the susceptibility as

1 7(x.y)
X=7g ; ©)

where L is the spatial lattice volume. In the thermodynamic limit, y is expected to approach a

constant in the confined phase and scale with L¢ in the deconfined phase.

We computed y as a function of lattice size L for d = 2 (honeycomb lattice) and d = 3 (diamond
lattice) using loop Monte Carlo algorithms [16]. Our results for the phase transitions align with
expectations from traditional lattice gauge theories. For instance, in SU(2) gauge theories, the
confined-to-deconfined phase transition is second order and belongs to the Ising universality class.
In SU(3) gauge theories, the transition follows the three-state Potts model in d = 2, while in d = 3,
it is first order. In fig. 9, we present our results for the d = 3 case in SU(2) (left) and SU(3) (right)
gauge theories. Further details can be found in [13].

6. Conclusions

Qubit regularization of quantum field theories, while initially motivated by quantum computing,
offers new opportunities to gain deeper insights beyond the realm of quantum computing. We have
already uncovered new RG flows that can exactly recover asymptotic freedom in qubit-regularized
models with a finite local Hilbert space. Additionally, we have learned how to formulate lattice
gauge theories using the irreps of the gauge symmetry. These orthonormal basis states, which we
refer to as MDTN basis states, encourage us to rethink gauge theories from a fresh perspective that
extends beyond the perturbative approach introduced long ago.

The new Hamiltonians can be constructed to be sign-problem-free, unlike the traditional
approaches, which suffer from these issues related to Clebsch-Gordan coefficients. Recent work in
one dimension already shows hints that the string tension can slowly be tuned to zero within these
new quantum Hamiltonians [13]. The exploration of quantum critical points and RG flows in these
new qubit-regularized gauge theories in higher dimensions promises to be a fruitful and compelling
research direction for the future.
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