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Hypernuclei provide important information to constrain and test the hyperon-nucleon (YN) and
three-baryon (YNN) interactions. In this contribution, we discuss our recent results obtained using
chiral YN and YNN interactions for light hypernuclei. Based on the results for different orders
of the chiral expansion, the theoretical uncertainty could be reliably determined, which in turn
allows a quantitative estimate of the size of the possible YNN contributions. This estimate is then
compared to first calculations that explicitly take the leading YNN interactions into account.
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chiral SU(2) symmetry of QCD. The symmetry breaking pattern places stringent
constraints on the interaction of the Goldstone bosons. In particular, they do
not interact with hadrons at very low energies in the so-called chiral limit (i.e.,
the limit of massless up and down quarks). If the typical hadronic momenta in-
volved in a process are of the order of the pion mass, one is still sufficiently close
to this non-interacting limit in order for the scattering amplitude to be calculable in
perturbation theory (via the so-called chiral expansion). This method is applicable
in the Goldstone boson and single-baryon sectors and is referred to as chiral per-
turbation theory (ChPT), see [2] for a recent review. On the other hand, the in-
teraction between nucleons does not vanish and, in fact, remains strong in the
above-mentioned limit. Indeed, the appearance of shallow bound=virtual states
signals the failure of perturbation theory already at very low energies. One way
to circumvent this difficulty in the few-nucleon sector is to apply ChPT to the
irreducible part of the amplitude (i.e., the one which does not involve contributions
generated by iterations of the Schr€oodinger equation) which gives rise to the nuclear
forces [3].

In this talk, I discuss some recent developments in chiral EFT for few-nucleon
systems. In Sect. 2, I briefly outline the structure of nuclear forces in few lowest
orders of the chiral expansion. Selected applications to few-nucleon observables
are discussed in Sect. 3. I end with the summary and outlook in Sect. 4.

2 Nuclear forces in chiral EFT

The hierarchy of the nuclear forces in EFT without explicit delta degrees of free-
dom at lowest orders in the chiral expansion is depicted in Fig. 1. The diagrams

Fig. 1 Hierarchy of nuclear forces in chiral EFT based on Weinberg’s power counting [3]. Solid and

dashed lines denote nucleons and pions, respectively. Solid dots, filled circles and filled squares refer

to the leading, subleading and sub-subleading vertices, respectively. The crossed square denotes 2N

contact interactions with 4 derivatives
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Figure 1: Topologies contributing to LO (a) NLO (b) and N2LO (c) YN interactions. The diagrams
contributing to the YNN interaction in N2LO are shown in (d).

1. Introduction

Hypernuclear interactions have gained considerable interest in recent years particularly due
to the fact that the nuclear equation of state (EOS) might be softened when hyperons are present.
Thereby properties of the hyperon-nucleon (YN) and hyperon-nucleon-nucleon (YNN) interactions
significantly influence the densities at which hyperons appear and the extent to which the EOS is
modified [1]. Depending on the interaction used, the EOS becomes inconsistent with the recently
found neutron stars with masses larger than 2𝑀⊙. This is usually referred to as ’hyperon-puzzle‘.

Knowledge on the interactions is also desirable because they offer insights into the flavor
dependence of baryonic interactions which is linked to explicit chiral symmetry breaking and which
can provide a better understanding how symmetries of QCD affect such interactions.

But determining their properties is difficult. Only a few low energy YN scattering data exist
that provide constraints on the overall strength of the interaction. The angular dependence is to
a large extend unknown and the spin dependence is usually determined using the binding energy
of the lightest strange bound system, the 3

Λ
H. Also, the longest-ranged part of ΛN interaction is

driven by Λ-Σ conversion that is tightly related to the strength of possible contributions of YNN
interactions.

Because of this situation, hypernuclei are generally seen as testing ground and as an important
source of information on YN and YNN interactions. Over the years several, especially light,
hypernuclei have been found and their binding energy has been determined [2–4]. Because the
hyperon is not affected by Pauli blocking, there usually exist several bound states with different spins
which gives important information on the spin dependence, so that even the lightest hypernuclei
provide non-trivial constraints. Unfortunately, there is no bound YN state. Therefore, for all
conclusions based on hypernuclei, one has to consider also possible contributions from YNN
interactions and maybe even more-baryon interactions.

2. Hyperon-Nucleon interactions

In the past, models of the YN interaction were mostly based on one-boson exchange and used
flavor-SU(3) symmetry to relate NN, YN and YY interactions to each other (see e.g. [2] and
references therein). Since flavor-SU(3) is broken, all of these interactions require SU(3) symmetry
breaking, and especially physical masses of the exchange bosons have been employed. The models
have the disadvantage that, once the approach has been formulated, there is little freedom to
adjust properties of the interaction when new data appears. It is also not possible to consistently
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Fig. 7 Cross section for Λp as a function of plab. Same description of the curves as in Fig. 1. Data are from Refs. [55] (filled
circles), [56] (filled squares), [68,69] (open triangles), [70] (open squares), [71] (open circles) and [6] (inverted triangles).

pected to be provided by the future E86 experiment at
J-PARC [42].

Results for ΛN phase shift in the S- and P -waves
are shown in Figs. 8 and 9. Like in case of ΣN dis-
cussed above, the predictions for the 1S0 and 3S1 par-
tial waves are strongly constrained by fitting the cross
section data. And, as already mentioned, like in our
previous works [38,39,76] the empirical binding energy

of the hypertriton 3
ΛH is used as a further constraint.

Thereby we can exploit the fact that the spin-singlet
and triplet amplitudes contribute with different weights
to the Λp cross section and to the 3

ΛH binding energy,
see Eq. (9) in [39]. Without that feature it would not be
possible to fix the relative strength of the spin-singlet
and spin-triplet S-wave components of the Λp interac-
tion. A more detailed discussion on the hypertriton will
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Fig. 1 Cross section for Σ+p scattering as a function of plab. Results are shown for the SMS NLO (dash-dotted) and N2LO
(solid) Y N potentials with cutoff 550 MeV. The dashed line corresponds to an alternative fit at N2LO, see text. The cyan band is
the result for NLO19 [39]. The dotted line is the result for NLO19(600) with readjusted C3SD1

, see text. Data are from the E40
experiment [9] for the momentum regions 440 → 550 and 550 → 650 MeV/c, respectively, and from Refs. [58,64].

experiments. Such data could also help to pin down the
P -wave contributions more reliably since higher partial
waves should be much less important. For completeness,
let us mention that the fitting ranges considered for es-
tablishing the SMS NN potential are plab ! 480 MeV/c
at NLO and plab ! 540 MeV/c at N2LO [31].

The predictions by NLO19 are definitely at odds
with the E40 experiment. However, it should be said

that the pronounced rise of the cross section for back-
ward angles, excluded by the data, is mainly due to an
accidental choice of the LEC C3SD1

in the ΣN I = 3/2
contact interaction in [38,39]. Its value can be easily re-
adjusted, without any change in the overall quality of
those Y N potentials. Pertinent results, for NLO19(600)
as example, are indicated by dotted lines in Fig. 1.

(b)

Figure 2: Comparison of the results of the SMS NLO (black, dashed-dotted line), the SMS N2LO (red, solid
line), an alternative version of the SMS N2LO (red, dashed line) at Λ = 550 MeV to results for different
cutoffs of the older NLO19 interaction (cyan band) for the Λ𝑝 cross section (a) and the differential Σ+𝑝 cross
section (b). In (b), a refitted NLO19 interaction at Λ = 600 MeV (blue, dotted line) is shown, too.

construct YNN and higher-body forces. This motivates to use chiral effective field theory (ChEFT)
to consistently formulate YN and YNN interactions based on the symmetries of QCD. For this,
interactions are expanded in terms of the ratio of a typical, low momentum and the chiral symmetry
breaking scale Λ𝜒 ≈ 600 − 700 MeV. The non-perturbative character of the interaction is taken
into account by solving a Schrödinger or Lippmann-Schwinger equation for the chiral interaction.
Using symmetries of QCD constrains the couplings of the exchange bosons to the baryons and
allows one to systematically expand the interactions. The interactions require regularization which
is usually performed using momentum cutoff functions. In the newest version of the interaction,
the semi-local momentum space (SMS) regularization has been employed [5]. The size of YNN
forces strongly depend on the degrees of freedom taken into account. We explicitly include Λ-Σ
conversion. In this case, the YNN force only appears in next-to-next-to-leading order (N2LO) in
the chiral expansion.

In Fig. 2, the results for the new SMS interactions [5] are compared to the ones of the older
NLO19 interaction [6]. The agreement with the data is in all cases excellent, similar as for the older
interactions. The new data for Σ+𝑝 scattering [7] was not available when the NLO19 interaction was
fitted. The slight deviations for the differential cross sections for this interaction can be remedied
by a refit mostly affecting the 𝜀1 phase. This is shown as the alternative NLO19 interaction. Note
also that we have devised an alternative fit for the SMS interaction that gives a better description of
the Σ+𝑝 cross section at 𝑝𝑙𝑎𝑏 = 500 MeV/c but not for other momenta.

Importantly, the available YN data and the 3
Λ
H separation energy well constrain the 𝑠-wave

interactions including its spin dependence. 𝑝-waves and higher partial waves and 𝑠-𝑑 transitions are
not that well constrained, but can be easily readjusted to take upcoming data into account. However,
since 𝑠-wave interactions drive the properties of light hypernuclei, the chiral forces are already well
suited for predictions for such hypernuclei.

3. Uncertainty of Λ separation energies

The probably most important advantage of chiral baryon-baryon interactions is the possibility
to obtain reliable uncertainty estimates by using the residual cutoff dependence or by using different

3
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(a) (b)

Figure 3: Separation energies for various hypernuclei (a) and spectrum of 7
Λ

Li (b) compared to the spectrum
of the core nucleus 6Li.

chiral orders. With the new interactions up to order N2LO available, the latter approach is preferable.
It is based on the expectation that any observable 𝑋 can be expanded in terms of the chiral
expansion parameter 𝑄. The 𝐾-th order approximation of the observable can then be written as
𝑋𝐾 = 𝑋𝑟𝑒 𝑓

∑𝐾
𝑘=0 𝑐𝑘𝑄

𝑘 where 𝑋𝑟𝑒 𝑓 is a typical value of the observable that in practice can be
taken from the LO result, from experiment, or taking other choices. The coefficients 𝑐𝑘 are of
order 1 and their distribution is assumed to be independent of 𝑘 . Following Meledenz et al. [8, 9],
one can use the available coefficients 𝑐𝑘 for 𝑘 ≤ 𝐾 from calculations to obtain the probability
distribution for all 𝑐𝑘 and use this to get the distribution for the contribution of higher orders
𝛿𝑋𝐾 = 𝑋𝑟𝑒 𝑓

∑∞
𝑘=𝐾+1 𝑐𝑘𝑄

𝑘 .
For the separation energies of light hypernuclei, this was done in Ref. [10]. Although the

N2LO interaction was incomplete in this study, the results allow one to estimate the uncertainties.
At order NLO, they are at the same time estimates of possible YNN force contributions. We
obtained 68% degree of believe intervals of 15 keV for 3

Λ
H, approximately 240 keV for 4

Λ
He and

900 keV for 5
Λ
He. This indicates that the YNN force contribution is negligible for 3

Λ
H. For 𝐴 = 4

and 𝐴 = 5 hypernuclei, the NLO uncertainty is significant so that it will be necessary to include
these interactions in future calculations.

4. Chiral hyperon-nucleon-nucleon interactions

Chiral YNN interactions have been formulated already in [11] and applied to nuclear matter
in [12–14]. The leading YNN interactions are shown in Fig. 1(d). Of course, in principle, all
mesons from the lightest octet contribute to the 1- and 2-boson exchange diagrams. Because of the
large masses of 𝐾 and 𝜂 mesons, we do not take these exchanges into account but assume that they
can effectively be taken into account by contact interactions. The number of low energy constants
(LECs) that need to be determined is nevertheless very large so that they cannot be uniquely fixed
from the available data on hypernuclei. Therefore, we use resonance saturation due to decuplet
baryons assuming that the corresponding parts of the YNN interactions are enhanced. Under
this assumption, the strength of the YNN force can be related to the octet-decuplet-pion coupling
constant and the octet-decuplet contact interactions. The former one is constrained by large 𝑁𝑐
symmetry and latter one involves two LECs 𝐺1 and 𝐺2 to be determined from data. A detailed
calculation reveals that the ΛNN interaction only depends on the linear combination 𝐺1 + 3𝐺2. We
have now implemented these interactions [15] and successfully benchmarked them [16].

4
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Attempts to determine the two LECs by fitting the 0+ and 1+ states of 4
Λ
He failed. Both energies

where only sensitive to the linear combination 𝐺1 + 3𝐺2 although also the Σ component was taken
into account in the YNN interactions. We have therefore added, additionally to the terms that
contribute for decuplet saturation, the term𝐶′

2 ®𝜎Λ · ( ®𝜎1+ ®𝜎2) (1− ®𝜏1 · ®𝜏2) to the ΛNN force [15]. The
additional constant was then adjusted so that the splitting of the 0+ and 1+ states were reproduced.
Fig. 3 summarizes the results of the calculations. The figure also includes the chiral uncertainties
estimated as described in Sec. 3. For the calculation without chiral YNN interactions, we assume
NLO error bars. For the ones including YNN interactions, we take the smaller N2LO error bars.
For the separation energies, we show results excluding and including the 𝐶′

2 term. The additional
term improves the description for the 0+ state of 4

Λ
by construction. For the other hypernuclei, both

calculations lead to very similar predictions that are generally in good agreement with experiment.
Also for the excitation energies of 7

Λ
Li, the results with and without 𝐶′

2 term are very similar.
Therefore, we only show the ones including this term. The spectrum is significantly improved by
the YNN force contribution. The splitting of the lowest states becomes larger in agreement with
experiment and the ordering of the higher states is corrected. Clearly, the YNN interactions lead to
a consistent description of the light hypernuclei.

5. Conclusions

We have presented calculations for light hypernuclei for realistic chiral YN and YNN interac-
tions. Due to the scarcity of the data, unique fits of all available LECs are not possible. The fits
however do describe the available YN data very well. Including the YNN interaction also the light
nuclei can be well described. Since chiral interactions are now availabe up to order N2LO, we are
also able to obtain reliable estimates of our theory uncertainty.

The inclusion of the YNN interaction leads to a significant improvement of separation and
excitation energies. In the near future, we plan further studies with different cutoff values to
confirm the estimates of the theoretical uncertainties. Also studies of contribution of the fitted YNN
interactions to nuclear matter will be important to see whether the complete chiral interactions can
help to understand the ’hyperon puzzle‘.
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