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Homogeneous nuclear matter is investigated using the ab initio Self-consistent Green’s function
approach with nuclear interactions based on chiral effective field theory. The employed method,
which combines the state-of-the-art algebraic diagrammatic construction approximation at third
order with Gorkov correlations, is capable of computing both the equation of state (EOS) and
single-particle properties of nuclear matter. The EOS calculated with our approach and coupled-
cluster theory are shown to agree very well. The one-nucleon spectral functions and the momentum
distributions are discussed to gain insights into the dynamics of the interacting nuclear matter.
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1. Introduction

Achieving a first-principle description of nuclear phenomena is a long-term endeavor of the-
oretical nuclear physics. At the most fundamental level, nucleons are bound states of quarks, and
thus in principle nuclear physics could be described by quantum chromodynamics (QCD) in terms
of quarks and gluons. However, at present, chiral effective field theory (𝜒EFT) is the widely used
framework for understanding nuclear interactions. 𝜒EFT describes nuclear forces consistently with
the symmetries of the underlying theory of QCD, but in terms of the emergent degrees of freedom,
i.e. nucleons and pions [1–4]. Advanced quantum-mechanical methods to solve the many-nucleon
problem are the second, and equally crucial, pillar of the ab initio approach to nuclear theory [2–
4]. Only the combination of both frameworks enables to provide first-principle predictions with
controlled estimates of the theoretical error [3, 4].

In this contribution, a study of infinite nuclear matter with the Self-consistent Green’s function
(SCGF) many-body method [5–9] is presented. Nuclear matter is a homogeneous and extended
system of interacting nucleons, which constitutes an essential model for neutron stars and a key
microscopic input to astrophysical simulations [10, 11]. Therefore, it is crucial to be able to
accurately predict nuclear matter properties. Also, the equation of state (EOS) (i.e, at zero-
temperature, the energy per nucleon) is very sensitive to the low-energy constants on which chiral
force models depend [12, 13].

In Sec. 2 we introduce the SCGF approach following [5, 7–9]. Predictions for the EOS in
comparison with coupled-cluster theory [14, 15], the single-particle (s.p.) spectral functions (SF),
and the momentum distributions are then reported in Sec. 3. Perspectives are outlined in Sec. 4.

2. Methods

In the SCGF method [5, 6, 16–18], the central object is the one-body (1B) Green’s function
(GF), which is determined by solving the Dyson or Gorkov equations, and whose knowledge allows
to compute the total ground state (g.s.) energy and the g.s. expectation values of all 1B observables,
While this approach is formally exact, the self-energy Σ★(𝜔) entering the Dyson equation must be
approximated, in practice, by an expansion in terms of Feynman diagrams.

Our SCGF variant, see Refs. [7–9], is rooted in the Gorkov framework [16–18], and its key
equation reads:(

𝑇 − 𝜇1 + Σ11(𝜔) Σ12(∞)

(Σ12(∞) )† −(𝑇 − 𝜇1) + Σ22(𝜔)

) ����
𝜔=𝜔𝑞

(
U𝑞

V𝑞

)
= ℏ𝜔𝑞

(
U𝑞

V𝑞

)
. (1)

The unknowns are the excitation energies ℏ𝜔𝑞 and amplitudes U𝑞, V𝑞 (for each eigensolution 𝑞),
which fully determine the GF 𝑔11(𝜔). The chemical potential 𝜇 must be tuned for each fermion
species to ensure the correct number of particles on average. Due to translational invariance, the
GF of homogeneous matter is diagonal in the momentum basis and reads

𝑔11
𝛼 (𝜔) =

∑︁
𝑞

��V𝑞
𝛼

��2
ℏ𝜔 − ℏ𝜔𝑞 − 𝑖𝜂

+
��U𝑞

𝛼

��2
ℏ𝜔 + ℏ𝜔𝑞 + 𝑖𝜂

, (2)
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with
∑

𝑞

��V𝑞
𝛼

��2 + ��U𝑞
𝛼

��2 = 1. Here, 𝛼 denotes the s.p. state with quantum numbers k𝛼 (momentum),
𝑡𝛼 (isospin z-projection), and 𝑠𝛼 (spin z-projection). The Gorkov GF is characterized by pairs of
poles ±ℏ𝜔𝑞, which correspond to energies 𝜖𝑞 = 𝜇 ± ℏ𝜔𝑞 symmetric w.r.t. the chemical potential,
and have weight

��V𝑞
𝛼

��2 (
��U𝑞

𝛼

��2) below (above) the Fermi surface 𝜇. The momentum distribution 𝜌𝛼,
which gives the occupation number for the state 𝛼 in the interacting system, is readily obtained as
𝜌𝛼 =

∑
𝑞

��V𝑞
𝛼

��2. Associated with the GF is the normal spectral function 𝑆11, defined as

𝑆11
𝛼 (𝜔) =

∑︁
𝑞

[��V𝑞
𝛼

��2𝛿(ℏ𝜔 + ℏ𝜔𝑞) +
��U𝑞

𝛼

��2𝛿(ℏ𝜔 − ℏ𝜔𝑞)
]
. (3)

𝑆(k, 𝜔) =
∑︁
𝑞

[��V𝑞

k
��2𝛿(ℏ𝜔 + ℏ𝜔𝑞) (4)

+
��U𝑞

k
��2𝛿(ℏ𝜔 − ℏ𝜔𝑞)

]
. (5)

In our scheme, most of the correlations are encoded in the normal self-energy Σ11(𝜔), which
is approximated using the state-of-the-art algebraic diagrammatic construction scheme [5, 17, 18]
at third order [ADC(3)]. ADC is a powerful way of constructing an approximate self-energy that
respects the analytical structure of the exact Σ∗, and automatically includes contributions to all
orders in perturbation theory. Pairing correlations are taken care of by the anomalous component
of self-energy Σ12(∞) , which here we approximate at first order [8, 9].

Coupled-cluster theory is also a diagrammatic post-Hartree-Fock (HF) expansion method [2,
14, 15]. The CC wave function has the form |Ψ0⟩ = 𝑒𝑇 |Φ0⟩, with |Φ0⟩ being a reference state.
𝑇 , named cluster operator, is a superposition of 𝑛-particle-𝑛-hole excitations. At the doubles level
(CCD), 𝑇 is truncated as 𝑇 ≈ 1

4
∑

𝑎𝑏𝑖 𝑗 𝑡
𝑎𝑏
𝑖 𝑗

𝑐
†
𝑎𝑐

†
𝑏
𝑐 𝑗𝑐𝑖 , with the 2𝑝2ℎ amplitudes 𝑡𝑎𝑏

𝑖 𝑗
determined by

solving the CC equations. Accurate g.s. energies are obtained by adding perturbative triples (3𝑝3ℎ)
corrections to CCD within the CCD(T) approximation [8, 14].

In addition, CC and ADC have been combined in the so-called ADC(3)-D schme [5, 8].
ADC(3)-D consists in inserting the CC amplitudes from a preliminary CCD calculation into the
ADC coupling matrices, and its accuracy has been demonstrated in Ref. [8].

3. Results

We present results from the SCGF and CC methods with the ADC(3), ADC(3)-D, and CCD(T)
truncations (Sec. 2) using the chiralΔNNLOgo(450) interaction from Ref. [12]. Both CC and SCGF
simulate the homogenous system using a cubic unit cell with a finite number of nucleons [8, 14, 19],
Here, we use 𝑁 = 66 neutrons in pure neutron matter (PNM) and 𝐴 = 132 nucleons in symmetric
nuclear matter (SNM) [19]. Periodic boundary conditions (PBCs) typically suffice to obtain the
EOS. For s.p. properties, twist-averaged boundary conditions (TABCs) [9, 14], even though more
demanding computationally, are preferred, as a denser mesh of 𝑘-points is obtained, thus allowing
to better approximate the "true" infinite system.

The EOS of SNM (left) and PNM (right) are reported in Fig. 1. The inset shows the energies
per particle, and an excellent agreement between the three sets of computations is found. The main
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panels investigate the correlation energy per particle, and we can appreciate that predictions are
very similar also on this scale. This confirms that these sophisticated many-body methods describe
nuclear matter accurately [8]. Note also that the inclusion of CC-corrected coupling vertices in
ADC(3)-D leads to very close agreement with CCD(T) [8].
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Figure 1: Correlation energy per particle (main panel) and energy per particle (inset) as a function of
the number density in SNM (left) and PNM (right). Calculations have been performed with the ADC(3),
ADC(3)-D and CCD(T) methods. The ΔNNLOgo (450) interaction from Ref. [12] is employed, and PBCs
are imposed.

In Fig. 2, the SF (3) is shown for SNM (left) and PNM (right). 𝑆11 is represented as a two-
dimensional map as a function of the momentum 𝑘 = |k𝛼 | (horizontal axis) and the energy ℏ𝜔

(vertical axis). Poles 𝜖𝑞 are denoted by dots, and a color scale is used to represent the value of the
strengths

��V𝑞
𝛼

��2 (
��U𝑞

𝛼

��2) for energies below (above) the Fermi level 𝜇. The strong correlations that
characterize SNM are manifest in the increased fragmentation of the SF at momenta 𝑘 > 1.5 fm−1.
In both SNM and PNM, the dominant peaks, as well as HF energies (crosses), follow a roughly
parabolic trend as a function of 𝑘 , which is driven by the kinetic energy ∼ 𝑘2. The SNM spectrum
is highly fragmented and shows a wealth of satellite peaks, especially for large 𝑘 and ℏ𝜔. In
PNM, where correlations are weaker, the background is fainter and the primary branch dominates
well into the high-momentum region. In both cases, states close to the Fermi momentum feature
a single dominant pole with

��V𝑞
𝛼

��2 ≃ 1 for 𝑘 < 𝑘𝐹 or
��U𝑞

𝛼

��2 ≃ 1 for 𝑘 > 𝑘𝐹 . Our ab initio
calculations thus validate microscopically the picture of Landau quasi-particle excitations at the
Fermi surface [20, 21].

Finally, momentum distributions 𝜌(𝑘) in SNM (left) and PNM (right) with both PBCs (circles)
and TABCs (empty squares) are shown in Fig. 3. While in a HF picture states below (above)
the Fermi momentum are completely occupied (empty), in the interacting system hole states (𝑘 <

𝑘𝐹) are partially depleted. The depletion is much larger in SNM, due to stronger correlations.
Conversely, a momentum tail appears above 𝑘𝐹 , with particle states being partially populated, while
a finite discontinuity across the Fermi surface is preserved also in the presence of interactions.

4. Conclusions and perspectives

We have investigated infinite nuclear matter using the ADC-SCGF ab initio method. We
have studied both the EOS, which agrees very well with coupled-cluster [8], and single-particle

4

https://orcid.org/0000-0001-7743-1982


P
o
S
(
Q
N
P
2
0
2
4
)
1
8
0

P
o
S
(
Q
N
P
2
0
2
4
)
1
8
0

Ab initio Green’s functions approach for homogeneous nuclear matter F. Marino

0 1 2
k (fm 1)

50

0

50

100
 (M

eV
)

kF|U|2

|V|2

HF energies 0.0

0.2

0.4

0.6

|U|2

0.0

0.2

0.4

0.6

|V|2

0 1 2
k (fm 1)

50

25

0

25

50

75

100

125

 (M
eV

)

kF|U|2

|V|2

HF energies 0.0

0.2

0.4

0.6

0.8

|U|2

0.0

0.2

0.4

0.6

0.8

|V|2

Figure 2: Two-dimensional representation of the spectral function for SNM (left) and PNM (right) as a
function of the momentum 𝑘 and the energy ℏ𝜔. Calculations are performed at 𝜌 = 0.16 fm−3 with ADC(3)
employing TABCs with theΔNNLOgo (450) interaction. The Fermi momentum 𝑘𝐹 and the chemical potential
𝜇 are marked by dotted and dashed lines. The squared amplitudes

��U𝑞
𝛼

��2 (
��V𝑞

𝛼

��2) are shown for poles above
(below) the Fermi level. The color scale is shown next to each plot. HF s.p. energies are represented by
crosses. For SNM, the neutron part of the SF is displayed.
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Figure 3: Momentum distributions 𝜌(𝑘) as a function of 𝑘/𝑘𝐹 for SNM (left) and PNM (right) at density
𝜌 = 0.16 fm−3. Calculations performed with ADC(3) with PBC (circles) and TABC (empty squares) are
compared. Note that different scales are used on the vertical axis for points below and above the discontinuity.

properties. We plan to apply ADC to superfluid neutron matter, quasi-particle properties (effective
mass, lifetimes), and momentum distributions across densities and isospin asymmetries.
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