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1. Introduction

A neutron star is an extremely dense and compact object in the universe. It is primarily
a macroscopic nucleus with a radius of about 10 km, made of nucleons (neutrons and protons)
together with leptons. Naturally, its structure and dynamics have been of great interest in nuclear
physics. The central part of the neutron star with the highest density, called the inner core, may
contain hyperons and possibly a quark matter. In contrast, a region near the surface is called the
crust, where the nuclear matter is composed of nucleons, however, it has prominent inhomogeneous
structures. The crust is roughly divided into two, outer and inner crusts. In the outer crust, neutron-
rich nuclei build a Coulomb lattice, while the nuclei go beyond the neutron dripline and coexist with
free neutrons in the inner crust. A variety of structures are predicted for the inner crust, including
exotic ones such as the presence of deformed nuclei [1], and the pasta phases [2–4]. To cope with
the emergence of various structures in the inner crust, we need computational approaches capable of
studying three-dimensional (3D) non-uniform structure with unbound neutrons in the continuum.

The mean-field approaches, energy density functional methods in nuclear physics, have been
playing a central role in studying heavy nuclei and nuclear matter [5, 6]. The static Hartree-Fock-
Bogoliubov (HFB) calculation requires the self-consistency between the HFB (ground) state and
the HFB Hamiltonian. A standard procedure for the HFB solutions is as follows [7].

1. Diagonalize the HFB Hamiltonian and obtain wave functions (𝑈,𝑉) for the quasiparticle-
energy eigenstates.

2. Calculate the normal 𝜌 and pair densities 𝜅 using the quasiparticle wave functions (𝑈,𝑉),
then, determine the HFB Hamiltonian (potentials).

3. Go back to 1 and repeat the procedure until we reach the self-consistency between the
Hamiltonian and the densities.

For the full 3D unrestricted calculations, finding a self-consistent solution demands successive di-
agonalization of matrices with large dimension 𝑁 . Each diagonalization procedure computationally
costs 𝑂 (𝑁3). Thus, most of the available codes of the HFB calculation utilize some symmetry
restriction on the densities, such as spatial symmetry and time-reversal symmetry, in order to reduce
both the matrix dimension and the number of iteration [8–10]. The HFB program hfodd [11] can
perform unrestricted calculations for finite bound nuclei. However, it is impossible to calculate the
inner crust because it uses the harmonic-oscillator-basis states which are unsuitable for a description
of the free neutrons.

A new approach to the HFB solutions has been proposed in Ref. [12] and extended to the
finite temperature [1]. One of the prominent features of these approaches is that these approaches
do not calculate the quasiparticle wave functions, thus, do not require the diagonalization of the
Hamiltonian matrix. Instead, they utilize the shifted Krylov subspace methods to calculate the
Green’s function 𝐺 (r𝜎, r′𝜎′; 𝑧) where 𝑧 is the complex energy, over which the contour integration
is performed to produce the densities, 𝜌 and 𝜅. It is suited for parallel computing because the Green’s
function 𝐺 (r𝜎, r′𝜎′; 𝑧) is calculable independently for each point (r′, 𝜎′). At finite temperature,
we need to subtract contributions at the Matsubara frequencies, for which Minimum computational
cost is required with the shifted method [1]. This method is presented in Sec. 2.

Another approach, the Fermi operator expansion (FOE) method [13], was tested and adopted
for the calculation of the non-uniform nuclear matter in Ref. [14]. In the FOE method, the Fermi-
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Dirac distribution function is expanded in terms of polynomials. Then, the densities, 𝜌 and 𝜅, are
constructed by multiplication of the mean-field Hamiltonian on adopted basis states. The method
does not use matrix diagonalization and is suitable for parallel computing. In Sec. 3, we present
this FOE method as an efficient solver for the finite-temperature HFB (FT-HFB) problems.

Transport properties of the free neutrons in the inner crust of neutron stars have been of great
interest, linked to various phenomena observed in pulsars. In particular, one of the most impressive
phenomena, the pulsar glitch, is supposed to take place in the inner crust. The neutron stars are
observed as the pulsar that emits electromagnetic radiation with a regular interval. This interval can
be regarded as a rotational period of the neutron star which gradually increases because it loses the
angular momentum by the radiation. However, occasionally, we observe a sudden decrease in the
rotational period, that is the pulsar giltch. The first pulsar glitch was observed about half a century
ago, however, its origin and mechanism are still under debate. One of the unsolved questions is
whether the inner crust can carry enough amount of angular momentum which is consistent with
the magnitude of the observed glitch. The mobility of the free neutrons has a direct consequence on
this issue. In Sec. 4, we discuss the transport properties of the free neutrons, such as the effective
mass and effects of the superfluidity.

2. HFB Green’s function with shifted Krylov subspace method

In the FT-HFB theory, the partition function for the grand canonical ensemble with the tem-
perature 𝑇 , the volume 𝑉 , and the chemical potential 𝜇 is given by

𝑍HFB(𝑇,𝑉, 𝜇) = 𝑒−𝛽 (𝐸0−𝜇𝑁0 )
∏
𝑘>0

(
1 + 𝑒𝛽𝐸𝑘

)
, (1)

where 𝐸0 is the energy of the HFB ground state |0⟩ with the average particle number𝑁0. 𝑘 > 0 means
the quasiparticle states with positive eigenenergies 𝐸𝑘 > 0 of the HFB Hamiltonian 𝐻HFB [7]. Using
the density matrix operator �̂�HFB ≡ 𝑒−𝛽�̂�

′/𝑍HFB(𝑇,𝑉, 𝜇), where �̂�′ ≡ 𝐸0 − 𝜇𝑁0 +
∑

𝑘>0 𝐸𝑘𝑎
†
𝑘
𝑎𝑘

where 𝑎
†
𝑘

(𝑎𝑘) are the quasiparticle creation (annihilation) operators, the normal one-body and the
pair densities are given by

𝜌(𝜉, 𝜉′) ≡ Tr
[
�̂�HFB�̂�

†(𝜉′)�̂�(𝜉)
]
, 𝜅(𝜉, 𝜉′) ≡ Tr

[
�̂�HFB�̂�(𝜉′)�̂�(𝜉)

]
, (2)

where 𝜉 represents the coordinate and spin, (r, 𝜎). The generalized density can be written as

𝑅(𝜉, 𝜉′) ≡
(
𝜌(𝜉, 𝜉′) 𝜅(𝜉, 𝜉′)

−𝜅∗(𝜉, 𝜉′) 1 − 𝜌∗(𝜉, 𝜉′)

)
= Tr

[(
�̂�(𝜉)
�̂�†(𝜉)

)
�̂�HFB

(
�̂�†(𝜉′) �̂�(𝜉′)

)]
,

=
∑︁
𝑘≷0

(
𝑈𝑘 (𝜉)
𝑉𝑘 (𝜉)

)
𝑓𝑇 (𝐸𝑘)

(
𝑈𝑘 (𝜉′)
𝑉𝑘 (𝜉′)

)†
, (3)

where 𝑓𝑇 (𝑥) = (1 + 𝑒𝛽𝑥)−1 is the Fermi-Dirac function. (𝑈𝑘 , 𝑉𝑘)𝑇 are the quasiparticle wave
functions with the eigenenergies 𝐸𝑘 . The negative-energy solutions (𝑘 < 0) can be obtained from
the positive-energy ones (𝑘 > 0) as

𝐻HFB

(
𝑈𝑘

𝑉𝑘

)
= 𝐸𝑘

(
𝑈𝑘

𝑉𝑘

)
,

(
𝑈−𝑘
𝑉−𝑘

)
=

(
𝑉∗
𝑘

𝑈∗
𝑘

)
, 𝐸−𝑘 = −𝐸𝑘 . (4)
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Figure 1: Beta-equilibrium state calculated with a box size of (45 fm)3 and the neutron chemical potential
𝜇𝑛 = 14 MeV, at the temperature 𝑘𝐵𝑇 = 200 keV.

The Green’s function (resolvent) 𝐺 (𝑧) with a complex energy 𝑧 is defined as a solution of the
following equation.

(𝑧𝐼 − 𝐻HFB)𝐺 (𝑧) = 𝐼 . (5)

We can prove that the generalized density can be obtained by performing the contour integration
over a closed path 𝐶 (boundary of a region 𝑆) on the complex energy plane [1].

𝑅 =
1

2𝜋𝑖

∮
𝐶

𝑓𝑇 (𝑧)𝐺 (𝑧)d𝑧 + 1
𝛽

∑︁
𝑖𝜔𝑛∈𝑆

𝐺 (𝑖𝜔𝑛), (6)

where 𝑖𝜔𝑛 ≡ 𝑖(2𝑛 + 1)𝜋/𝛽 are the Matsubara frequencies on the imaginary axis. The generalized
density 𝑅 contains all the necessary information to construct the HFB Hamiltonian.

The main computational task is to solve Eq. (5) for many complex energy 𝑧 on the contour
𝐶 and at the Matsubara frequencies 𝑧 = 𝑖𝜔𝑛. To achieve this, we use the shifted conjugate-
orthogonal conjugate-residual (COCR) method [1]. The shifted algorithm allows us to obtain 𝐺 (𝑧)
simultaneously for different 𝑧 values with a minimum effort, by iteratively solving Eq. (5) for a
single value of 𝑧. The method is applied to liquid-gas and shape phase transitions in finite nuclei
and the inner-crust structures of neutron stars [1].

The numerical calculation is performed with 3D coordinate mesh space withΔ𝑥 = Δ𝑦 = Δ𝑧 = 1
fm assuming the periodic boundary condition for the 3D cubic box. With a given chemical potential
for neutrons 𝜇𝑛, the proton chemical potential is determined by the charge neutral and the beta
equilibrium conditions, assuming the uniform electron density. Using the Skyrme energy density
functional of SLy4, an equilibrium state with the face-centered configuration (fcc) is obtained at
𝜇𝑛 = 11 MeV. In a 3D box of (45 fm)3 at the temperature 𝛽−1 = 200 keV, there are four deformed Se
nuclei with 136 protons and about 4,000 superfluid neutrons. This is shown in Ref. [1]. Increasing
the neutron chemical potential to 𝜇𝑛 = 14 MeV, a completely different structure emerges, which is
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shown in Fig. 1. The fcc structure is destroyed and the slab nuclei with holes appear. Since the box
size is not optimized, we cannot say that these exotic phases exist in the inner crust. Nevertheless,
the calculation suggests that unknown structures may appear in the crust region, implying the
importance of the 3D unrestricted calculations.

3. Fermi operator expansion (FOE) method

The generalized density of Eq. (3) can be rewritten as

𝑅 =
∑︁
𝑘≷0

(
𝑈𝑘

𝑉𝑘

)
𝑓𝑇 (𝐸𝑘)

(
𝑈𝑘

𝑉𝑘

)†
= 𝑓𝑇 (𝐻HFB)

∑︁
𝑘≷0

(
𝑈𝑘

𝑉𝑘

) (
𝑈𝑘

𝑉𝑘

)†
= 𝑓𝑇 (𝐻HFB). (7)

Here, we use the completeness relation(
𝑈𝑘

𝑉𝑘

) (
𝑈𝑘

𝑉𝑘

)†
= 𝐼, 𝐼: Identity matrix (8)

Therefore, the generalized density matrix is identical to the Fermi-Dirac function 𝑓𝑇 (𝑥) whose
argument 𝑥 is replaced by the HFB Hamiltonian matrix 𝐻HFB.

The FOE method utilizes a polynomial expansion for the Fermi-Dirac function 𝑓𝑇 (𝑥) in the
section 𝑥min < 𝑥 < 𝑥max. Here, we use the Chebyshev polynomials 𝑇𝑛 (𝑦) (𝑛 = 0, 1, · · · ), where
𝑦 = (𝑥 − 𝑥+)/𝑥− with 𝑥± = (𝑥max ± 𝑥min)/2. Note that the Chebyshev polynomials 𝑇𝑛 (𝑦) are defined
in the section of −1 < 𝑦 < 1.

𝑓𝑇 (𝑥) = 𝑓𝑇 (𝑥+ + 𝑥−𝑦) ≈
𝑀∑︁
𝑛=0

𝑎𝑛

1 + 𝛿𝑛0
𝑇𝑛 (𝑦), (9)

where 𝑀 is the maximum degree. Since the function 𝑓𝑇 (𝑥) approaches to the step function 𝜃 (−𝑥)
at the 𝑇 = 0 limit, a larger value of 𝑀 is required for a lower temperature. In the present case, we
expand the Fermi-Dirac operator on the right-hand side of Eq. (7), that can be done by replacing the
variable 𝑥 in Eq. (9) by 𝐻HFB. The upper (lower) limits of the argument are given by the maximum
(minimum) quasiparticle energy, 𝑥max = 𝐸max (𝑥min = 𝐸min), in the adopted model space. Because
of the symmetric property of the quasiparticle energies of Eq. (4), we should take 𝑥min = −𝑥max.

The Chebyshev polynomials are orthogonal with respect to the weight of 1/
√

1 − 𝑥2.∫ 1

−1
𝑇𝑛 (𝑥)𝑇𝑚(𝑥)

𝑑𝑥
√

1 − 𝑥2
= 𝑁𝑛𝛿𝑛𝑚, (10)

with the normalization constants 𝑁0 = 𝜋 and 𝑁𝑛 = 𝜋/2 (𝑛 ≠ 0). The coefficients in Eq. (9) are

𝑎𝑛 =
2
𝜋

∫ 1

−1
𝑇𝑛 (𝑦) 𝑓𝑇 (𝑥+ + 𝑥−𝑦)

𝑑𝑦√︁
1 − 𝑦2

. (11)

The factor of (1 + 𝛿𝑛0)−1 in Eq. (9) is introduced to simplify the expression of Eq. (11).
The densities are calculated using the recursive relation for the Chebyshev polynomials:

𝑇𝑛+1(𝑦) = 2𝑦𝑇𝑛 (𝑦) − 𝑇𝑛−1(𝑦), 𝑛 ≥ 1. (12)
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Let us define the dimensionless Hamiltonian 𝐻𝑦 ≡ (𝐻HFB − 𝑥+)/𝑥− and | 𝑗⟩ as a unit vector that the
𝑗 th row in the HFB state (𝑈,𝑉)𝑇 is unity and all the others are zero. Starting from | 𝑗0⟩ = | 𝑗⟩ and
| 𝑗1⟩ = 𝐻𝑦 | 𝑗⟩, a series of the states are calculated using the recursive relation (12):

| 𝑗𝑛+1⟩ = 2𝐻𝑦 | 𝑗𝑛⟩ − | 𝑗𝑛−1⟩ , 𝑛 = 1, · · · , 𝑀 − 1. (13)

The matrix elements 𝑅𝑖 𝑗 of Eq. (7) are calculated as

⟨𝑖 | 𝑅 | 𝑗⟩ = ⟨𝑖 | 𝑓𝑇 (𝐻HFB) | 𝑗⟩ ≈
𝑀∑︁
𝑛=0

𝑎𝑛

1 + 𝛿𝑛0
⟨𝑖 | 𝑗𝑛⟩ . (14)

From this expression, it is obvious that the calculation can be easily parallelized by assigning the
calculation of 𝑅𝑖 𝑗 with different 𝑗 to different processors, because one can independently compute
⟨𝑖 | 𝑅 | 𝑗⟩ for each ket state | 𝑗⟩ using Eqs. (13) and (14).

4. Pulsar glitches and transport properties of superfluid neutrons

The pulsar glitch has been regarded as a signature of the superfluid neutrons inside the neutron
stars [15]. The rotational frequency of charged components, which are observed by the electromag-
netic radiation, gradually becomes smaller in time. However, that of the superfluid neutrons remains
the same as the vortices in the superfluid are pinned to the crust nuclei. Thus, the spin difference
between these two components increases. At a threshold spin lag, the vortices are no longer pinned
and their angular momenta are suddenly transferred to the crust, which is observed as the glitch
[16]. This glitch scenario has many features superior to others, however, there remain some issues
to be solved, such as the magnitude of the pinning interaction between the vortex and the nucleus,
and the location of the superfluid where the angular momenta are stored. Let us discuss the second
issue here. The most natural (promising) candidate for the glitch location is the inner crust, since
both the crust nuclei and the superfluid neutrons are present. Then, the question is how much
angular momentum can be stored in the superfluid neutrons of the inner crust. The answer requires
the knowledge on transport properties of the superfluid neutrons. Especially, the nondissipative
entrainment effects are known to provide a strong impact on the glitch scenario [17, 18]. In fact,
Chamel [19] predicted that effective neutron mass 𝑚∗

𝑛 in the inner crust is significantly larger than
the bare neutron mass 𝑚𝑛, which indicates the reduced mobility of the neutrons due to the Bragg
scattering from the crust nuclei.

Let us assume that the charged (crust) component rotates with the rotational frequency Ω and
the neutron superfluid does with Ω𝑛. A rotating two-component fluid model provides the ratio of
moments of inertia, 𝐼𝑛/𝐼, where 𝐼 and 𝐼𝑛 are those of the entire neutron star and the superfluid
neutron component, respectively [17].

𝐼𝑛

𝐼
≈ 2𝜏𝑐A

⟨𝑚∗
𝑛⟩

𝑚𝑛

, where A =
1
𝑡obs

(∑︁
𝑖

ΔΩ𝑖

Ω

)
(15)

where 𝜏𝑐 = −Ω/(2 ¤Ω) is the characteristic age of the pulsar which is observed as a change in the
pulsar period. The quantity A can be determined by the glitch observation: ΔΩ/Ω is the relative
magnitude of the glitch which are summed over several glitches during period 𝑡obs. The observation
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data tell us that the superfluid neutrons in the inner crust are not enough to explain 𝐼𝑛/𝐼 in Eq. (15),
if the average effective mass ⟨𝑚∗

𝑛⟩ is several times larger than the bare mass [17, 18]. The band
calculation [19] seems to suggest a conflict with the observed glitch data in the present scenario.

Δ [ MeV ]

ns/n

Figure 2: Superfluid ratio 𝑛𝑠/𝑛 for the system with
𝜇𝑛 = 3 MeV for a one-dimensional potential model.
The green line represents the ratio of neutrons in the
unbound orbits to the entire neutrons. See text for
details.

To settle the problem, it is desirable to per-
form the self-consistent band calculation for
the inner crust of neutron stars with modern
EDFs. In Ref. [20], the “anti-entrainment” ef-
fect ⟨𝑚∗

𝑛⟩ /𝑚𝑛 < 1 was suggested for the slab
phase. In addition, there is an argument that the
effect of the Bragg scattering would be hindered
by the pairing (superfluidity) of the neutrons
[21]. We show here a result of a simple poten-
tial model calculation to demonstrate the effect
of the pairing. The potential is assumed to be
a Woods-Saxon shape and the depth is taken
as 50 MeV, which simulates that obtained by
the self-consistent calculation for the slab phase
at the baryon density 𝜌𝐵 = 0.07 fm−3 [20].
The simple constant pairing gap Δ is adopted.
The superfluid neutron ratio which is the in-
verse of the effective mass, 𝑛𝑠/𝑛 = 𝑚𝑛/⟨𝑚∗

𝑛⟩
is shown in Fig. 2. The effective mass is large
⟨𝑚∗

𝑛⟩ /𝑚𝑛 ≈ 3 at Δ = 0, while it is approxi-
mately unity ⟨𝑚∗

𝑛⟩ ≈ 𝑚𝑛 at Δ ≳ 1 MeV. Although the calculation is still in the preliminary stage,
this suggests the importance of the superfluidity for the accurate estimation of the effective mass.

The full 3D self-consistent calculations with the band theory are highly desired to settle the
controversial issues related to the pulsar gliches. Further developments and investigations toward
this goal are under progress.
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