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We consider scattering of a quark-antiquark pair from the strong color field of a high energy proton
or nucleus target in the Color Glass Condensate formalism where due to the high energies the
target proton or nucleus is modeled as a shock wave of color. This scattering cross section can
then be convoluted with the wave function of a virtual photon squared to give the differential cross
section for production of a quark-antiquak dĳet (or dihadron) in Deep Inelastic Scattering (DIS).
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1. Introduction

High 𝑝𝑡 particle production in high energy collisions involving at least one hadron/nucleus
based on leading twist collinear factorization formalism [1–3] is very well-understood in perturbative
QCD where some ingredients of this formalism are now known to 4-loop accuracy. In this formalism
only one parton from a given hadron/nucleus participates in the scattering since the projectile and
target hadron are dilute system of partons and double (multiple) scatterings are suppressed by
powers of the large momentum transfer. On the other hand the small 𝑥 =

𝑝𝑡√
𝑠

limit of QCD is just
starting to be explored in depth. In this kinematics one expects collinear factorization based on
twist expansion to break down due to high gluon density effects since contributions of higher twist
corrections are comparable to the leading twist one. In this kinematics the leading QCD dynamics
is the so called gluon saturation [4].

It is known experimentally that at small 𝑥 gluon distribution function rises very fast and that
gluons become the most abundant parton species at small 𝑥. Due to this increase the number of
gluons per unit area becomes large (this is the so-called gluon saturation phenomenon) so that at
some point one must treat them as a collective rather than individual degree of freedom. In this
kinematics where 𝑥 is small it is appropriate to treat small 𝑥 gluons as a classical field rather than
individual partons. In CGC formalism these classical fields are generated by the larger 𝑥 degrees
of freedom generically called color charges. In the McLerran-Venugopalan model [5–7] of CGC
one computes observables at fixed color charge and then averages over these color charges with a
Gaussian distribution. Quantum corrections can then be computed and lead to a renormalization
group equation known as the JIMWLK equation [8–10]. This approach is generically known as the
Color Glass Condensate formalism and it has been applied to many processes involving collisions
of high energy protons and nuclei [11–15]. Dihadron production in DIS at small 𝑥 is believed
to cleanest environment in which to explore QCD dynamics in the kinematics where one expects
to see large gluon density effects. As a matter of fact azimuthal angular correlations in dihadron
production in proton-nucleus collisions at RHIC exhibit properties compatible with what is expected
from gluon saturation dynamics; i.e. the away side peak disappears when the transverse momentum
is low and appear again when the momentum is high. If gluon saturation dynamics is indeed
responsible for the disappearance of the away side peak in dihadron azimuthal angular correlations
at RHIC one expects a qualitatively similar behavior for dihadron azimuthal angular correlations in
DIS at small x [16–22].

2. Dihadron production in DIS at small 𝑥

Quark-antiquark production in DIS at small 𝑥 is essentially a two stage process; the virtual
photon decays into a quark-antiquark pair (called a dipole) long before it reaches the target pro-
ton/nucleus, after which the quark-antiquark dipole multiply scatters on the dense target. The later
part contains all the QCD dynamics while the decay of virtual photon into a quark-antiquark pair is
governed by QED. The produced quark antiquark pair will propagate through the target and multiply
scatter from it. The multiple scattering of a quark (or antiquark) on the target is treated in the eikonal
approximation appropriate for high energy scattering. In this kinematics the projectile parton has
a (infinitely) high energy (𝑝+ for a right moving parton) so that the predominant coupling to the
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target gluon field 𝐴𝜇 is of the form 𝑝 · 𝐴(𝑥) ≃ 𝑝+ 𝐴− (𝑥) and contributions of the other components
of the gluon field are suppressed by powers of center of mass energy. Furthermore, due to the high
energy of the collision the target gluon field 𝐴− (𝑥) becomes independent of 𝑥− coordinate so that
𝐴− (𝑥) = 𝐴− (𝑥+, 𝑥⊥) (this is the usual time dilation effect). With these approximations multiple
scatterings of the parton on a target can be resummed and leads to the following effective propagator
𝑆𝐹 (𝑝, 𝑞) for a quark (and similarly for a antiquark),

𝑆𝐹 (𝑝, 𝑞) ≡ (2𝜋)4 𝛿4(𝑝 − 𝑞) 𝑆0
𝐹 (𝑝) + 𝑆

0
𝐹 (𝑝) · 𝜏𝐹 (𝑝, 𝑞) · 𝑆

0
𝐹 (𝑞) (1)

where 𝑆0
𝐹
(𝑝) is the free Fermion propagator and dot represents a contraction of color indices.

Furthermore, the interaction part of the propagator 𝜏𝐹 is defined as

𝜏𝐹 (𝑝, 𝑞) ≡ (2𝜋)𝛿(𝑝+ − 𝑞+)/𝑛
∫

𝑑2𝑧𝑡 𝑒
𝑖 (𝑝𝑡−𝑞𝑡 ) ·𝑧𝑡

[
𝜃 (𝑝+) [𝑉 (𝑧𝑡 ) − 1] − 𝜃 (−𝑝+)

[
𝑉†(𝑧𝑡 ) − 1

] ]
(2)

and 𝑉 (𝑧𝑡 ) is the path-ordered exponential known as the Wilson line which resums all the ekional
multiple scatterings of the quark from the target. Using these effective propagators for the quark
and antiquark the production cross section (for one quark flavor) can be written as

𝑑𝜎𝛾∗𝐴→𝑞�̄�𝑋

𝑑2p 𝑑2q 𝑑𝑦1 𝑑𝑦2
=

𝑒2𝑄2(𝑧1𝑧2)2𝑁𝑐

(2𝜋)7 𝛿(1 − 𝑧1 − 𝑧2)
∫

𝑑8x [𝑆122′1′ − 𝑆12 − 𝑆1′2′ + 1]

𝑒𝑖p·x1′1𝑒𝑖q·x2′2

[
4𝑧1𝑧2𝐾0( |x12 |𝑄1)𝐾0( |x1′2′ |𝑄1) +

(𝑧2
1 + 𝑧

2
2)

x12 · x1′2′

|x12 | |x1′2′ |
𝐾1( |x12 |𝑄1)𝐾1( |x1′2′ |𝑄1)

]
(3)

where 𝑄2 is virtuality of the photon, (p, 𝑦1) and (q, 𝑦2) are the transverse momentum and rapidity
of the produced quark and antiquark while 𝑧1,2 are the longitudinal momentum fractions of the
quark and antiquark with respect to the photon. The first (second) term inside the square bracket
gives the contribution of the longitudinally (transversely) polarized photon. 𝑆12 and 𝑆122′1′ are the
so called dipole and quadrupole which contain the dynamics of gluon saturation and satisfy the
JIMWLK evolution equation. This equation has been used to study dihadron correlations in 𝑒 𝑝 and
𝑒 𝐴 collisions which will take place in the proposed Electron-Ion Collider. Using this expression
with suitable initial conditions for the dipole and quadrupole one can show that the away side peak
does disappear as expected from gluon saturation physics. While Leading Order approximations
in QCD may be expected to yield qualitatively accurate results a truly quantitative study of gluon
saturation requires going beyond Leading Order accuracy and including higher order corrections.

Next to Leading order (NLO) corrections to the Leading Order (LO) results require radiation
of a gluon by either the quark or antiquark. The radiated gluon may be absorbed by the quark or
antiquark in the amplitude already or be produced as a final state. The first case corresponds to
virtual corrections while the second case corresponds to real corrections. In principle this radiation
and absorption can be done by the same or different quark (antiquark) and either before and after
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scattering from the target. Here we show some of the real corrections

𝑑𝜎𝐿
1×1

𝑑2p 𝑑2q 𝑑𝑦1 𝑑𝑦2
=

2𝑒2𝑔2𝑄2𝑁2
𝑐𝑧

3
2(1 − 𝑧2)2(𝑧2

1 + (1 − 𝑧2)2)
(2𝜋)10𝑧1

∫
𝑑𝑧

𝑧

∫
𝑑10𝑥 𝐾0( |x12 |𝑄2)𝐾0( |x1′2′ |𝑄2)

Δ
(3)
11′ [𝑆122′1′ − 𝑆12 − 𝑆1′2′ + 1] 𝑒𝑖p· (x′1−x1 )𝑒𝑖q·x2′2𝑒

𝑖 𝑧
𝑧1

p·x1′1

𝑑𝜎𝐿
2×2

𝑑2p 𝑑2q 𝑑𝑦1 𝑑𝑦2
=

2𝑒2𝑔2𝑄2𝑁2
𝑐𝑧

3
1(1 − 𝑧1)2(𝑧2

2 + (1 − 𝑧1)2)
(2𝜋)10𝑧2

∫
𝑑𝑧

𝑧

∫
𝑑10x𝐾0( |x12 |𝑄1)𝐾0( |x1′2′ |𝑄1)

Δ
(3)
22′ [𝑆122′1′ − 𝑆12 − 𝑆1′2′ + 1]𝑒𝑖q·x2′2𝑒𝑖p·x1′1𝑒

𝑖 𝑧
𝑧2

q·x2′2

+ · · · · · · (4)

where the radiation kernel Δ(3)
𝑖 𝑗

is

Δ
(3)
𝑖 𝑗

=
x3𝑖 · x3 𝑗

x2
3𝑖x

2
3 𝑗

(5)

with similar expressions for the virtual corrections. In general these expressions contain divergences
which must be dealt with before one can extract meaningful predictions from them. There are 4
categories of divergences; UV divergences when the loop momenta 𝑘𝜇 → ∞, these divergences
appear in the virtual corrections and cancel among each other. The second category is soft diver-
gences which happen when 𝑘𝜇 → 0, these divergences appear in both real and virtual contributions
and cancel between real and virtual corrections. The next category is rapidity divergences which
appear at finite k when 𝑧 → 0. These can be shown to lead to rapidity evolution of the dipoles
and quadrupoles appearing in the cross section according to JIMWLK evolution equation. The last
category of divergences is collinear divergences which appear when the radiated gluon becomes
collinear to its parent, i.e. when the radiation angle 𝜃 → 0 at finite k. These are absorbed into
the bare parton-hadron fragmentation function and lead to its DGLAP evolution which can also be
recast as renormalization of the bare fragmentation function. The final result can be symbolically
written as

𝑑𝜎𝛾∗𝐴→ℎ1ℎ2𝑋 = 𝑑𝜎𝐿𝑂 ⊗ JIMWLK + 𝑑𝜎𝐿𝑂 ⊗ 𝐷ℎ1/𝑞 (𝑧ℎ1 , 𝜇
2)𝐷ℎ2/�̄� (𝑧ℎ2 , 𝜇

2) + 𝑑𝜎finite
𝑁𝐿𝑂 (6)

where the first term means the dipoles and quadrupoles appearing in the Leading Order cross section
evolve with JIMWLK equation while in the second term the fragmentation functions appearing in
the Leading Order cross section evolve with DGLAP evolution equation. The last part is the
genuine Next to Leading Order correction to the cross section. The resulting expressions can then
be used to investigate inclusive dihadron production in DIS at small 𝑥. Nevertheless it is well-known
that in the back to back limit of dihadron production one becomes sensitive to so called Sudakov
effects. Its is not too difficult to include these effects in general, specially for single inclusive hadron
production [23–26].

While our results can be used to investigate dihadron (dĳet) production in DIS at small 𝑥 it is
important to note that the proposed Electron-Ion Collider (EIC) [27] will have a large phase space
in 𝑥. It is therefore important to formulate a more general approach which includes both collinear
factorization at large 𝑥 (i.e. high 𝑝𝑡 ) and the Color Glass Condensate formalism at small 𝑥 (i.e. low
𝑝𝑡 ). Some preliminary steps in this direction are taken for example in [28–31].
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