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We study the potential of X(3872) at finite temperature in the Born-Oppenheimer approximation
under the assumption that it is a tetraquark. We argue that, at large number of colors, it is a good
approximation to assume that the potential consists in a real part plus a constant imaginary term.
The real part is then computed adapting an approach by Rothkopf and Lafferty and using as input
lattice QCD determinations of the potential for hybrids. This model allows us to qualitatively
estimate at which temperature range the formation of a heavy tetraquark is possible, and to
propose a qualitative picture for the dissociation of the state in a medium. Our approach can be
applied to other suggested internal structures for the X(3872) and to other exotic states. This work
summarizes the results of [1].
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1. Introduction

In nature, there exist quarkonium-like particles whose quantum numbers and properties cannot
be explained by the simple quark-antiquark model. Among them, we focus on the X (3872) [2],
whose internal structure is still a matter of debate. There are two competing models: the tetraquark
and the hadronic molecule. On one hand, the tetraquark is a compact bound state of four quarks,
in our case two heavy and two light. On the other hand, a hadronic molecule is formed by two
heavy-light mesons joint by the strong force analogue of van der Waals interaction.

In order to understand the internal structure of the X (3872), a common approach is to formulate
a theoretical model and then check if it is compatible with the observed properties of the state. These
properties include, for example, its quantum numbers, spectroscopy, and decay channels. Recently,
the X(3872) has been observed in heavy-ion collisions [3]. This opens the possibility to gain
information about the structure of the bound state in a different way. That is, studying how the
presence of the quark-gluon plasma modifies its behavior.

In this manuscript, we are going to discuss the modification to the potential of the X (3872)
at finite temperature. First, let us review briefly the state-of-art of conventional quarkonium in
heavy-ion collisions. In recent years, it has been understood that the potential has both a real and
an imaginary part [4]. The origin of this imaginary part is the inelastic collision of quarkonium
with medium particles. In order to understand the role of the imaginary part in the evolution of the
state of quarkonium the formalism of open quantum system was applied (see [5] for a review). The
approach has been used to obtain phenomenological predictions that agree with observations [6].
Using this framework, it was found that solving the Schrodinger equation with a complex potential
is a good approximation when the binding energy is much smaller than the temperature and when
regeneration effects are not considered. This motivates us to find the potential of the X (3872) at
finite temperature.

2. Theoretical framework

We are going to use the Born-Oppenheimer approximation. We assume that heavy quarks move
non-relativistically around the center-of-mass, with velocity v. The fact that Agcp > E ~ moVv?
(where E is the binding energy) implies that the dynamics of light quarks and gluons is much faster
than that of the evolution of the bound state. In other words, from the point of view of the heavy
quarks, the light particles move very fast. Therefore, the effect of light particles and gluons can be
encoded in a potential computed assuming that the heavy quarks are frozen and separated a given
distance r. This involves a two-step approximation. First, we compute the potential taking the heavy
quarks as static color sources. After this, we solve the Schrodinger equation with that potential.

First, let us discuss the potential at 7 = 0. Ideally, we would like to use a lattice QCD potential
for the tetraquark as a starting point. However, this is not yet available since computations with
dynamical light quarks are expensive. Instead, we use hybrid data and make the approximation that
the tetraquark potential would behave qualitatively similar to the hybrid potential. An hybrid is a
bound state of a quark-antiquark pair in the octet representation with a cloud of gluonic degrees of
freedom such that the whole state is color neutral. Therefore, it is similar to a tetraquark in which
the role of light quarks is played by gluons. Morevover, we assume a single channel approximation,
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where the heavy quarks do not contribute to the spin of the tetraquark. We do not expect that any
of these approximations will change the qualitative picture and a quantitative study is out of the
scope of this manuscript. The hybrid lattice potential that we are going to use is taken from [7]. It
happens that this potential is well fitted by the following formula

A
V(r,0) = 71+A0+A2r2. (1)

Note that the previous formula is accurate for the distances probed in the lattice computation and,
therefore, useful to study whether or not bound state formation is possible. However, eq. (1) is not
valid at large distances in which we know, thanks to effective string theory, that the potential rises
linearly.

Next, we must discuss how to extend this potential to finite temperature. We are going to study
separately the real and the imaginary part of the potential. For the real part of the potential, we
use the approach developed in [8]. There, the authors were able to reproduce the static potential of
quarkonium at finite temperature using as input the lattice potential at 7 = 0. The real part of the
potential is obtained from the following convolution

Vvac (p) )

2
e(p, mp) @

ReV(p) =Re (

where € is the medium permittivity in the HTL approximation, mp is the Debye mass and V. is
the potential at 7 = 0. In our case, starting from eq. (1), we obtain the following real part of the
potential at finite temperature
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Now, let us discuss the imaginary part of the potential. In the case of conventional quarkonium, it
has the following properties. At short distances, the imaginary potential goes like 7> because the
medium sees quarkonium as a small dipole. At long distances, the heavy quarks are not correlated,
so the imaginary part of the potential is equal to —i times the decay width of a single heavy quark.
Between these two limits, we expect that the imaginary part of the potential is a smoothly increasing
function. Indeed, the imaginary potential of quarkonium computed in the HTL approximation
fulfills these properties. ImV = —CpaT¢(rmp), where ¢ is a monotonically increasing function
between 0 and 1. Knowing this, it is easy to infer how the imaginary part of the potential of a
tetraquark would behave. In this case, the heavy quarks are in an octet state. When r — 0, the
medium sees the heavy quark pair as a non-relativistic heavy gluon, and the imaginary part of the
potential will be —i/2 times the decay width of a heavy gluon. At large distances, the two quarks
are uncorrelated, similar to the color singlet case. At intermediate distances, we expect that the
imaginary part of the potential is a smooth function that interpolates between these two extreme
regimes. However, in the large N, limit, the decay width of a heavy gluon is equal to that of two
heavy quarks. Therefore, we can take the imaginary part of the potential to be a constant. Finally,
we have to make an educated guest of the size of this constant. We choose the following

T
[=AT+A—. 4
mp
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The rationale for this formula is the following. We expect that the same parameters that are involved
in the real part of the potential also appear here, except Ag that can be absorved by a redefinition of
the heavy quark mass. The rest is fixed by dimensional analysis. Obviously, this is just an educated
guest that will allow us to establish the qualitative importance of the effect.

3. Results

3.1 Dissociation temperature

1.0

0.0 0.1 0.2 0.3 0.4 0.5
mp (GeV)

Figure 1: Square root of the mean square radius /{(r2) of the X(3872) as a function of the Debye mass.

The dissociation temperature is the temperature above which the bound state no longer exists
in the medium. It is obtained by solving the Schrodinger equation using the complex potential.
Since in our case the imaginary part is a constant, it factors out and does not affect the solution.
The result that we found is that the dissociation temperature is around 7; ~ 250 MeV. In fig. 1,
we plot \/@ against the Debye mass. We observe, that as the temperature approaches T,; (note
that mp (Tz) ~ 2T;) the mean radius of the wave function starts to rise very quickly, signaling the
dissapearance of the bound state.

3.2 Survival probability and nuclear modification factor

The survival probability can be computed using the following formula

S(l) —e /’0 I'(T(7),7)dt ' (5)

Note that in our case the survival probability takes a particularly simple form because the decay
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Figure 2: Prediction for R44 of X(3872) at LHCb conditions. The dashed line considers only cold nuclear
matter effects, following the model discussed in [9]

width is a constant that does not depend on the form of the wave function. Using this formula, we
can compute the nuclear modification factor, R 44, once we know how the temperature seen by the
bound state changes with time and position. To do this we follow the lines of [9]. We consider a
Bjorken expansion starting at #+ = 0.6 fm and finishing at the time at which the temperature goes
below 175 MeV, close to the phase transition. The initial temperature at a given point is computed
using a model that takes into account shadowing. If this temperature is larger than 7, then the state
is not formed. Otherwise, we compute the survival probability. The results obtained following this
procedure can be seen in fig. 2, where we have considered the range of p, and pseudo-rapidity that
LHCb can cover for this observale. We observe a strong suppression and only a mild influence of
cold nuclear matter effects. We note that, at the moment, we have not yet considered recombination
effects.

4. Conclusions

In this manuscript, we have studied exotic quarkonia in heavy-ion collisions with the aim of
sheding light on their internal structure. We have developed a qualitative model for the potential of
the X(3872). Our results indicate that, for this state, suppression is dominated by screening while
only a mild contribution from the imaginary part of the potential is observed.
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