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We have generated an updated version of the pΩ potential for low-energy interactions based on
an effective field theory approach at leading order. This potential, together with other potentials
based either on different parametrizations or lattice QCD calculations, have been used to solve
the Schrödinger equation numerically, obtaining the scattering wave functions for different values
of the relative momentum. Using these wave functions, we have computed the pΩ femtoscopic
correlation functions, comparing the results with those published by the ALICE collaboration.
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1. Introduction

A usual choice to study hadronic interactions in the non-perturbative regime of quantum
chromodynamics (QCD) are effective field theories (EFTs) [1]. In these approaches, quarks and
gluons are replaced by hadrons as fundamental degrees of freedom, describing the interactions
among them below certain energy scale. An effective Lagrangian is written in terms of all possible
operators which respect the symmetries of the problem, leading to a systematic expansion in the
momenta of the external particles. To study the dynamics of light baryons and mesons, one can
exploit the baryon chiral perturbation theory (𝜒PT) to derive an effective potential for the baryon-
baryon interaction. In this work we will focus on the proton-Ω baryon (pΩ) pair.

While experimental information of the hadronic interaction is primarily obtained through
scattering experiments, these are really challenging when some of the involved particles are unstable,
as it is the case of hyperons, such as the Ω baryon. Femtoscopy studies [2] have been very helpful
in obtaining relevant information in these cases, where some of the features of the interaction are
mapped in the shape of the pair correlation function 𝐶 ( ®𝑘), where ®𝑘 is the relative momentum in
the center-of-mass frame. This function can be expressed in terms of the scattering wave function
𝜓(®𝑟, ®𝑘) and the so-called source function 𝑆(®𝑟) through the Koonin-Pratt formula [2],

𝐶 ( ®𝑘) =
∫
R3

𝑆(®𝑟) |𝜓(®𝑟, ®𝑘) |2 d®𝑟 . (1.1)

In our approach to the femtoscopy study of the pΩ interaction, we will solve the Schrödinger equation
to obtain the scattering wave functions for appropriate potentials—derived from the EFT or from
numerical calculations, such as lattice QCD (LQCD)—and we will compare it to the experimental
pΩ, obtained by the ALICE collaboration using high-energy pp collisions at the Large Hadron
Collider [3]. This work is a summary of [4], whose results were presented at this conference. All
data plotted in it can be found in https://github.com/Marc-PiM/Masters_thesis_plot_data (2024).

2. Effective potential, scattering wave-function and correlation functions

After writing down the baryon 𝜒PT Lagrangian we apply the Weinberg power-counting [1] to
organize the diagrams of the pΩ interaction. Keeping only the leading order (LO) terms, we end
up with the diagrams shown in Fig. 1: (a) contact terms without derivative couplings, (b) and (c)
one-meson-exchange diagrams, restricted to the pseudoscalar 𝜂 and scalar 𝜎 mesons. These are the
lightest exchanged mesons allowed by charge, isospin and strangeness conservation at each vertex.

Ω− p

Ω− p

(a) Contact diagram.

Ω− p

𝜂

Ω− p

(b) 𝜂 meson exchange diagram.

Ω− p

𝜎

Ω− p

(c) 𝜎 meson exchange diagram.

Figure 1: Feynman diagrams contributing to the pΩ scattering at LO in the EFT.

The spin operators allowed in the contact term are the unit operator, 1̂, and the product of the
spins of the baryons, ®S · ®𝜎. We regularize the contact terms using a Gaussian ansatz, introducing
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the regulator 𝛿 =
√

2/𝑚𝜔 , where the ultraviolet scale is set by the 𝜔 meson mass, which is the first
vector meson absent in our calculation. Finally, at each vertex we incorporate a form factor (FF),
𝐹Λ( ®𝑞) = Λ2/(Λ2 + ®𝑞 2), which depends on the cut-off parameter Λ, to be fixed.

Performing a Fourier transformation to coordinate space, we obtain the elastic pΩ potentials,

𝑉̂el
ct =

(
𝐶0

0 + 𝐶1
0
®S · ®𝜎

) 𝑒−(𝑟/𝛿 )2

𝜋3/2𝛿3 ,

𝑉̂el
𝜂 = 𝐶p𝜂p̄𝐶Ω𝜂Ω̄

𝑚𝜂
2

3

(
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2
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2 − 𝑚𝜂

2

)2 [
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(𝑚𝜂

2 − Λ𝜂
2)Λ𝜂

8𝜋𝑚𝜂
2 𝑒−Λ𝜂𝑟

]
®S · ®𝜎 ,

𝑉̂el
𝜎 = −𝐶p𝜎p̄𝐶Ω𝜎Ω̄

(
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2
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2
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+ 𝑚𝜎

2 − Λ𝜎
2

8𝜋Λ𝜎

𝑒−Λ𝜎𝑟

]
, (2.1)

where ®S · ®𝜎 = {−5/2, 3/2} for the 3𝑆1 and 5𝑆2 channels, respectively; the couplings 𝐶p𝜂p̄ ≈
2.17 · 10−3 MeV−1 and 𝐶Ω𝜂Ω̄ ≈ 2.36 · 10−2 MeV−1 are obtained from the baryon 𝜒PT [5], and
𝐶p𝜎p̄ ≈ 8.71 is estimated from the Walecka-Serot model [6]. The remaining parameters of the
model, 𝐶0

0 , 𝐶1
0 , 𝐶Ω𝜎Ω̄, Λ𝜂 and Λ𝜎 , are fitted under different approaches summarized in Table 1.

𝐶0
0 (MeV−2) 𝐶1

0 (MeV−2) 𝐶Ω𝜎Ω̄ Λ𝜂 (MeV) Λ𝜎 (MeV)
Florit 5.00 · 10−3 1.00 · 10−3

Reduced Florit 1.25 · 10−3 0.25 · 10−3

No FF −8.06(6) · 10−6 −1.61(2) · 10−6 0.8858(2)
Fixed FF 1.133(5) · 10−5 2.267(9) · 10−6 1.882(8) 900 1200
Free FF 6.59(6) · 10−6 1.32(2) · 10−6 2.58(3) 917.4(7) 622(6)

Table 1: Parameter sets used in this work for the different approaches (left column). The blank cells
correspond to constants not appearing in the corresponding model.

The “Florit” and “Reduced Florit” choices [5] use no 𝜎 exchange nor form factors, and are
based on a simple scaling down of the couplings in the strangeness 𝑆 = −1,−2 sectors [5]. The
remaining 3 choices fit the 5𝑆2 potential given in the LQCD results of Ref. [7]: “No FF” uses no
form factors at all, “Fixed FF” keeps fixed the values of Λ𝜂 ,Λ𝜎 and fits the remaining parameters,
and “Free FF” leaves free all parameters in the fit. The resulting potentials are shown in Fig. 2.
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(b) 5𝑆2 channel, fit parametrizations.

Figure 2: pΩ strong potentials (without Coulomb forces), for the different parametrizations used in Tab. 1.
For comparison we include the 5𝑆2 potential taken from LQCD [7].
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From the results in Fig. 2 we disregard the “No FF” fit, since it does not compare well with
the LQCD potential. Our best fit corresponds to the “Free FF” one. After solving the Schrödinger
equation, this potential presents bound states in both the 5𝑆2 and 3𝑆1 elastic channels with binding
energies of 𝐸 = −2.13 MeV and 𝐸 = −0.48 MeV, respectively.

Using the parametrizations for the pΩ potential given in Tab. 1, we obtain the 𝑠−wave scattering
states by numerically solving the Schrödinger equation. The results are summarized in Fig. 3, where
we observe great similarity between the LQCD and our best fit’s, “Free FF”, wave functions.
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Figure 3: pΩ 𝐿 = 0 wave functions from the different parametrizations and the LQCD potential of Ref. [7],
together with the corresponding Bessel and Coulomb wave functions, for comparison.

In order to compute the femtoscopy correlation functions, we assume that the strong interaction
only affects the 𝐿 = 0 partial wave. In this way, the Koonin-Pratt formula (1.1) reduces to

𝐶 ( ®𝑘) =
∫
R3

𝑆(®𝑟) |ΦC(®𝑟, ®𝑘) |2 d®𝑟 + 4𝜋
∫ ∞

0
𝑆(𝑟) [|𝑢0(𝑟, 𝑘) |2 − |𝐹0(𝑘, 𝑟)/𝑘 |2] d𝑟 , (2.2)

where ΦC(®𝑟, ®𝑘) is the complete Coulomb wave function, and 𝐹0(𝑘, 𝑟) the regular Coulomb function
with 𝐿 = 0. The Fortran 90 implementation is described in detail in Ref. [4].
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Figure 4: Correlation functions for the considered pΩ potentials, together with the ALICE data from Ref. [3].

In Fig. 4 we show the spin-averaged correlation functions for the potentials considered, and
compare with the ALICE experimental data extracted in [3]. We use a Gaussian source with radius
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𝑟0 = 0.95 fm. Our best fit, the “Free FF” parametrization, is able to describe the experimental
data, getting a slight overestimation in the low-momentum region, and an underestimation around
𝑘 = 150 MeV due to the effect of the bound states, not present in the experimental data.

3. Conclusions and Outlook

Using the “Free FF” fit of the 5𝑆2 pΩ potential we have also predicted the 3𝑆1 potential, which
was absent in [7]. As for the pΩ correlation function, the “Free FF” fit slightly improves over the
results from [7] when compared with ALICE data [3]. Our result overestimates the data in the
low-momentum region (as opposed to the results in [3] using the LQCD potential) since we added
the contribution of the 3𝑆1 channel. This fact, together with additional higher partial waves, leaves
room for possible negative contributions of the inelastic channels, as opposed to the conclusions
in [3]. Future work will concentrate on including higher partial waves, but also the inelastic coupled
channels, to test this claim. Using the same EFT we can also study the femtoscopy correlation
functions of other baryon-baryon systems, like the pΞ− or ΩΩ systems.
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