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1. Continuum Schwinger function method

The Higgs boson (HB) mechanism is widely known as the mass-generating process within the
Standard Model. However, this mechanism produces just 1% of the Universe’s visible mass which
is constituted by nuclei, the mass of each such nucleus is basically the sum of the masses of the
nucleons they contain, and only 9 MeV of a nucleon’s mass, 𝑚𝑁 = 940 MeV, is directly generated
by the Higgs boson coupling. Nature has then another very effective mass-generating mechanism.
Today, this is called emergent hadron mass (EHM) [1, 2] and it basically collects three pillars within
the continuum Schwinger function method (CSM): the running gluon and quark masses as well as
the existence of a well-defined infrared process-independent effective strong coupling constant.

The gluon propagator in Landau gauge assumes the totally transverse form

𝑖Δ𝜇𝜈 (𝑞) = −𝑖𝑃𝜇𝜈 (𝑞)Δ(𝑞2) , 𝑃𝜇𝜈 (𝑞) = 𝑔𝜇𝜈 − 𝑞𝜇𝑞𝜈/𝑞2 , (1)

where the scalar form factor Δ(𝑞2) is related to the all-order gluon self-energy. Lattice-QCD
simulations [3, 4] have recently confirmed [5, 6] that this form factor saturates in the deep infrared
(see left panel of Fig. 1) indicating gluon mass generation. A demonstration of how this occurs at
the level of the gluon Dyson-Schwinger Equation (DSE) is given in Ref. [7]. The transition from
a massless to a massive gluon propagator can be implemented as Δ−1(𝑞2) = 𝑞2𝐽 (𝑞2) + 𝑚2(𝑞2),
where 𝐽 (𝑞2) is the gluon’s dressing function and 𝑚2(𝑞2) is the momentum dependent gluon mass,
dynamically generated by the Schwinger mechanism [8, 9]. This can be summarize as follows:
the vacuum polarization of a gauge boson that is massless at the level of the original Lagrangian
may develop a massless pole, whose residue can be identified with 𝑚2(0). The origin of the
aforementioned poles is due to purely non-perturbative dynamics. They act as composite Nambu-
Goldstone bosons which are colored, massless and have a longitudinal coupling. These features
maintain gauge invariance and makes them disappear from any on-shell 𝑆-matrix element.
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Figure 1: Left panel: The quenched lattice gluon propagator Δ(𝑞2) and an adapted solution. Middle panel:
Solutions of the quark DSE (gap equation) for 𝑀 (𝑝2), obtained using the current-quark mass that best fit
lattice-QCD results; and the (red) lowest solid curve represents the gap equation’s solution in the chiral limit.
Right panel: Process-independent effective charge, calculated by combining results from continuum and
lattice studies of QCD’s gauge sector.
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Figure 2: Poincaré-covariant Faddeev equation: a homogeneous linear integral equation for the matrix-
valued function Ψ, being the Faddeev amplitude for a baryon of total momentum 𝑃 = 𝑝𝑞 + 𝑝𝑑 , which
expresses the relative momentum correlation between the dressed-quarks and -diquarks within the baryon.
The (purple) highlighted rectangle demarcates the kernel of the Faddeev equation: single line, dressed-quark
propagator; double line, diquark propagator; and Γ, diquark correlation amplitude.

The dressed-quark propagator in Landau gauge can be written in the following form:

𝑆 𝑓 (𝑝) = −𝑖𝛾 · 𝑝 𝜎 𝑓

𝑉
(𝑝2) + 𝜎

𝑓

𝑆
(𝑝2) = 1/[𝑖𝛾 · 𝑝 𝐴 𝑓 (𝑝2) + 𝐵 𝑓 (𝑝2)] . (2)

It is known that for light-quarks the wave function renormalization, 𝑍 𝑓 (𝑝2) = 1/𝐴 𝑓 (𝑝2), and
dressed-quark mass, 𝑀 𝑓 (𝑝2) = 𝐵 𝑓 (𝑝2)/𝐴 𝑓 (𝑝2), receive strong momentum-dependent corrections
at infrared momenta [10]: 𝑍 𝑓 (𝑝2) is suppressed and 𝑀 𝑓 (𝑝2) enhanced (see middle panel of
Fig. 1). These features are an expression of dynamical chiral symmetry breaking (DCSB) which
has long been argued to provide the key to understanding the pion, Nature’s most fundamental
Nambu-Goldstone boson, with its unusually low mass and structural peculiarities [11, 12].

The most up-to-date result for QCD’s effective charge is drawn in the right panel of Fig. 1. It
was obtained [13, 14] by combining contemporary results from continuum analyses of QCD’s gauge
sector and lattice-QCD configurations generated with three domain-wall fermions at the physical
pion mass [15, 16] to obtain a parameter-free prediction. The most notable features of the point-wise
behavior of the effective charge are [17]: (i) there is no Landau pole that afflicts perturbative QCD,
(ii) this coupling saturates to a large, finite value at 𝑄2 = 0 recovering QCD’s conformal character
of the classical theory and (iii) it resolves the problem of Gribov copies. Significantly, too, 𝛼̂(𝑘) is
practically identical to the effective charge 𝛼𝑔1 , for which data is plentiful. Thus, with 𝛼̂(𝑘), one
has in hand an excellent candidate for that long-sought running coupling which characterises QCD
interactions at all momentum scales.

Once the three pillars that support the CSM paradigm of EHM has been sketched, phenomenol-
ogists and theoreticians are engaged in identifying their observable consequences. The challenge
for experimentalists is to test and measure this body of predictions so that the boundaries of the
Standard Model may finally be drawn [18].

2. Baryon bound state problem

The problem of solving the Poincaré-covariant Faddeev equation can be transformed into that
of solving the linear, homogeneous matrix equation depicted in Fig. 2. This is because studying
baryons as three-quark bound-states [21, 22] has shown the appearance of soft (non-pointlike)
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Figure 3: (Black) solid points are the computed masses for the ground- and first-excited state of the
octet (left-panel) and decuplet (right-panel) baryons [19]. The vertical riser indicates the response of our
predictions to a coherent ±5% change in the mass-scales that appear in the baryon bound-state equation. The
horizontal axis lists a particle name with a subscript that indicates whether it is ground-state (𝑛 = 0) or first
positive-parity excitation (𝑛 = 1). (Green) diamonds are empirical Breit-Wigner masses take from Ref. [20],
the estimated uncertainty in the location of a resonance’s Breit-Wigner mass is indicated by an error bar.

fully-interacting diquark correlations within baryons, whose characteristics are greatly influenced
by DCSB [23]. Note that a baryon described by Fig. 2 can be interpreted as a Borromean bound-
state where the binding energy is given by two main contributions [24, 25]: One part is expressed
in the formation of tight diquark correlations, the second one is generated by the quark exchange
depicted in the highlighted rectangle of the Fig. 2. This exchange ensures that no quark holds
a special place because each one participates in all diquarks to the fullest extent allowed by the
baryon’s quantum numbers. The continual rearrangement of the quarks also guarantees that the
wave function complies with the fermionic nature of a baryon.

Figure 3 shows the computed masses of octet and decuplet baryons and their first positive-parity
excitations [19]. It is apparent that the theoretical values are uniformly larger than the corresponding
empirical ones. This is because our results should be viewed as those of a given baryon’s dressed-
quark core, whereas the empirical values include all contributions, including meson-baryon final-
state interactions (MB FSIs), which typically generate a measurable reduction [26]. This was
explained and illustrated in a study of the nucleon, its parity-partner and their radial excitations [27];
and has also been demonstrated using a symmetry-preserving treatment of a vector× vector contact
interaction [21, 22]. Identifying the difference between our predictions and experiment as the result
of MB FSIs, then one finds that such effects are fairly homogeneous across the spectrum. Namely,
they act to reduce the mass of ground-state octet and decuplet baryons and their first positive-parity
excitations by roughly 0.23(6) GeV.

It is worth noting the emergence of a Σ−Λ mass-splitting despite the fact that we have assumed
isospin symmetry, i.e. mass-degenerate 𝑢- and 𝑑-quarks, described by the same propagator, so that
all diquarks in an isospin multiplet are degenerate. Whilst theΛ0 and Σ0 baryons are associated with
the same combination of valence-quarks, their spin-flavor wave functions are different: the Λ0

𝐼=0
contains more of the lighter 𝐽 = 0 diquark correlations than the Σ0

𝐼=1. It follows that the Λ0 must be
lighter than the Σ0. Therefore, our result agrees with the prediction of the Gell-Mann–Okubo mass
formula.
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Figure 4: Figures adapted from Ref. [19]. Top panel: Relative strengths of various diquark components
within the indicated baryon’s Faddeev amplitude. Bottom panel: Baryon rest-frame quark-diquark orbital
angular momentum fractions of ground and first-excited octet baryons.

It is interesting now to dissect the baryon’s wave function in various ways and thereby sketch
the character of the quark cores that constitute the ground-state octet and decuplet baryons, and
their first positive-parity excitations. We begin by exposing their diquark content. Isoscalar-scalar
and isovector-pseudovector diquarks are the only ones needed to describe the octet and decuplet
baryons. Since the 𝐼 = 3/2 baryons has only isovector-pseudovector diquark content, top panel of
Fig. 4 shows the relative size of each diquark contribution to the wave function of octet baryons. As
one can see, both scalar and axial-vector diquarks are important in all cases and thus the suppression
of one of them makes the calculation unrealistic. Moreover, the nucleon and its first positive-parity
excitation possess very similar diquark content.

The bottom panel of Fig. 4 expose the rest-frame orbital angular momentum content of octet
baryons. Every one of the systems considered is primarily 𝑆-wave in nature, since they are not
generated by the Faddeev equation unless 𝑆-wave components are contained in the wave function.
Besides, 𝑃-wave components play a measurable role in octet ground-states and their first positive-
parity excitations; they are attractive in ground-states and repulsive in the excitations. Regarding
decuplet systems, just note that notable attraction is provided by 𝐷-waves.

It is important to highlight that a possible way to evade the effects of MB FSIs as well as to
assess the impact of various diquark and rest-frame orbital angular momentum components in the
baryon’s wave function is studying electromagnetic elastic and transition form factors of nucleon
and Δ resonances [28–31]. A few of which will be sketched below.

5



P
o
S
(
Q
N
P
2
0
2
4
)
0
4
8

Origins and impacts of dynamical diquark correlations Jorge Segovia

0 5 10 15 20

-1.0

-0.5

0.0

0.5

1.0

0 5 10 15 20
-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

Figure 5: Ratios of Sachs form factors, 𝜇𝑁𝐺
𝑁
𝐸
(𝑥)/𝐺𝑁

𝑀
(𝑥). Left panel is the proton case whereas the right

panel shows the neutron. A detailed explanation about experimental data can be found in Ref. [32] and
references therein.

3. The 𝛾∗p → N(940), N(1440) Transitions

We are going to review herein the calculation of the nucleon’s elastic form factors and the
so-called equivalent Dirac and Pauli form factors of the 𝛾∗𝑁 (940) → 𝑁 (1440) reaction. This
section is mostly based on the work presented in Refs. [32, 33].

The vertex sufficient to express the interaction of a photon with a baryon generated by the
Faddeev equation in Fig. 2 is described elsewhere [34]. It is a sum of six terms, depicted in the
Appendix C of Ref. [34], with the photon probing separately the quarks and diquarks in various
ways, so that diverse features of quark dressing and the quark-quark correlations all play a role in
determining the form factors.

Data on 𝑅
𝑝

𝐸𝑀
(𝑄2) = 𝜇𝑝𝐺

𝑝

𝐸
(𝑄2)/𝐺 𝑝

𝑀
(𝑄2), obtained using polarisation transfer reactions at

JLab, show a trend toward zero with increasing momentum-transfer-squared. We depict this ratio
and its analogue for the neutron in Fig. 5. As shown in Ref. [24, Fig. 4], these form factors are very
sensitive to those scalar-diquark components of the nucleon’s rest-frame Faddeev wave function
that carry nonzero quark+diquark orbital angular momentum. Consequently, the appearance and
location of a zero in 𝑅𝑁

𝐸𝑀
(𝑄2) measures the strength of both quark-quark and angular momentum

correlations within the nucleon. Both are expressions of EHM.

The equivalent Dirac and Pauli form factors of the 𝛾∗𝑝 → 𝑅+ transition are displayed in
Fig. 6. The results obtained using QCD-derived propagators and vertices agree with the data
on 𝑥 = 𝑄2/𝑚2

𝑁
≳ 2. The contact-interaction result simply disagrees both quantitatively and

qualitatively with the data. Therefore, experiment is evidently a sensitive tool with which to chart
the nature of the quark-quark interaction and hence discriminate between competing theoretical
hypotheses. The disagreement between the QCD-kindred result and data on 𝑥 ≲ 2 is due to meson-
cloud contributions that are expected to be important on this domain. An inferred form of that
contribution is provided by the dotted (green) curves in Fig. 6. They are small already at 𝑥 = 2 and
vanish rapidly thereafter so that the quark-core prediction remain as the explanation of the data.
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Figure 6: The Dirac transition form factor (left panel) and the Pauli one (right panel). In both panels,
solid (black) curve, QCD-kindred prediction; dot-dashed (red) curve, contact-interaction result; dotted
(green) curve, inferred meson-cloud contribution; and dashed (blue) curve, anticipated complete result. See
Ref. [35] for references on experimental data.

4. Summary

We have highlighted the importance of the emergent hadron mass mechanism and its role in
generating the visible mass of the universe. The review includes an analysis of gluon and quark
propagators as well as the effective color strength between quarks, antiquarks and gluons. Therewith,
we have described baryon bound states within the named quark-diquark picture of the Poincaré-
covariant Faddeev equation, where diquark correlations are produced due to the peculiarities of the
strong force. In identifying their observable consequences, we have computed the lowest-lying octet
and decuplet baryons, offering a comprehensive understanding of their internal structure trough their
diquark content and rest-frame orbital angular momentum components; finally, the electromagnetic
form factors of the nucleon and its first radial excitation have been shown as examples to avoid
MB FSIs soft contributions and illuminate the so-called dressed-quark core of nucleon resonances.
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