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A Monte-Carlo simulator has been designed to generate events of a proton-pion scattering
employing a realistic model based on the unified Chew-Mandelstam SAID parametrization
[PRC 86 1 (2012), 015202]. Using the generated data, a partial-wave analysis of the final state of
the system is performed. The energy-dependent partial-wave amplitudes are derived analytically
using the Barrelet Zeros of the moments. This study also discusses the existence of ambiguous
solutions, phase uncertainty and the maximum angular momentum value considered in the data
analysis.
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Barrelet Zeros Extraction in Pion-Nucleon Scattering

1. General outline of the analysis program
For each simulated proton-pion scattering event, two random values are generated, correspond-

ing to the total energy of the system in the center-of-mass frame 𝐸cm and 𝑧 = cos 𝜃, where 𝜃 is
the scattering angle. Given that the simulation is performed in the center-of-mass frame, the two
independent variables 𝑠 = 𝐸2

cm and 𝑧 are enough to fully describe a single event. The acceptance
criterion for the Monte Carlo simulation is defined using the realistic SAID model [1].

The first step towards the data analysis of the system is the division of the full energy range
obtained during the simulation into 𝑛 evenly spaced intervals. Following this, the next step consists
on the calculation of the moments of the system for each energy interval, which are defined as the
coefficients necessary to express the differential cross-section of the scattering as a Fourier-Legendre
series:

d𝜎(𝑠, 𝑧)
dΩ

=

2ℓmax∑︁
𝐿=0

(2𝐿 + 1)𝐻𝐿 (𝑠)𝑃𝐿 (𝑧) (1)

Where 𝑃𝐿 (𝑧) are the angle-dependent Legendre polynomials. From definition (1), the inverse
relation can be extracted, which will allows one to calculate the moments:

𝐻𝐿 (𝑠) =
1
2

∫ 1

−1

d𝜎(𝑠, 𝑧)
d𝑧

𝑃𝐿 (𝑧)d𝑧 ∀ 𝐿 ∈ {0, ..., 2ℓmax} (2)

The partial-wave analysis performed in this program is based on the extraction of roots for
the polynomial

∑ (2ℓ + 1) 𝑎ℓ (𝑠)𝑃ℓ (𝑧) = 0, where 𝑧 is the considered variable and 𝑠 is fixed for
each specific energy interval. These roots are known as the Barrelet Zeros [2] and are considered
extremely valuable, as they allow one to establish a direct and simple analytic relation to the
energy-dependent partial-wave amplitudes:

𝐴 (𝑠, 𝑧) =
ℓmax∑︁
ℓ=0

(2ℓ + 1) 𝑎ℓ (𝑠)𝑃ℓ (𝑧) = 𝑁 (𝑠)
ℓmax∏
𝑖=1

(𝑧 − 𝑧𝑖 (𝑠)) (3)

Where 𝑧𝑖 (𝑠) are the Barrelet Zeros and 𝑁 (𝑠) ∝
��𝑎ℓmax (𝑠)

��. Equivalently to the moments, the
Barrelet Zeros are computed for each energy interval individually, which results in the extraction of
a different set of partial-wave amplitude solutions for each energy value. The relation between the
system’s scattering amplitude and differential cross-section is key for the Barrelet Zeros calculation:

d𝜎 (𝑠, 𝑧)
dΩ

=

2ℓmax∑︁
𝐿=0

(2𝐿 + 1) 𝐻𝐿 (𝑠)𝑃𝐿 (𝑧) =
1

16𝜋2𝑠
|𝐴 (𝑠, 𝑧) |2 =

|𝑁 (𝑠) |2

16𝜋2𝑠

ℓmax∏
𝑖=1

[𝑧 − 𝑧𝑖 (𝑠)] ·
[
𝑧 − 𝑧∗𝑖 (𝑠)

]
(4)

Having obtained the values of the moments of the system 𝐻𝐿 (𝑠) from equation (2), imposing
the equality

∑ (2𝐿 + 1) 𝐻𝐿 (𝑠)𝑃𝐿 (𝑧) = 0 allows one to extract the ℓmax pairs of complex conjugate
roots {𝑧𝑖 (𝑠𝑘), 𝑧∗𝑖 (𝑠𝑘)} (with 𝑖 ∈ {1, . . . , ℓmax}) for each energy bin 𝑘 . This family of roots contains
both the Barrelet Zeros and their complex conjugates, which can not distinguished just from the
root extraction. Consequently, an ambiguity in the Barrelet Zeros is generated, which is further
transmitted to the partial-wave amplitudes. These ambiguities will be further discussed in section 2.

Finally, the energy-dependent partial-wave amplitudes are computed using equation (3) and
the extracted Barrelet Zeros. This concludes the general outline of the analysis program. In the
next sections, some specifics of the program’s operations will be further discussed.
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2. Solution ambguities

During the described process, certain challenges appear in the data analysis: two different
types of ambiguities need to be considered when displaying and discussing the extracted results.

The first type of ambiguity is related to the global phase of the system’s scattering amplitude
𝐴 (𝑠, 𝑧). Given that the only information obtained during the Monte Carlo simulation is d𝜎 (𝑠,𝑧)

dΩ and
d𝜎 (𝑠,𝑧)

dΩ ∝ |𝐴 (𝑠, 𝑧) |2, the general phase of 𝐴 (𝑠, 𝑧) will be unknown. To represent the results for the
different partial-wave amplitudes, a general phase will have to be chosen. Since the focus is placed
in the relative phase between different partial-wave amplitudes, the global phase election can be
subject to the most convenient value for the resolution of the presented equations. Accordingly, a
value for 𝐿 ∈ {0, . . . , ℓmax} can be chosen such that 𝑎𝐿 ∈ R+. Initially, 𝑎ℓmax ∈ R was selected
to facilitate calculations, leading to 𝑎ℓmax ∝

√︁
16𝜋2𝑠 · 𝐻2ℓmax . However, the general consensus is

to choose 𝑎0 ∈ R+. Therefore, before representing the obtained results for 𝑎𝐿 (𝑠), ∀𝐿, 𝑠, a general
phase shift is applied such that 𝑎0 ∈ R+.

The second type of ambiguity arises from the Barrelet Zeros extraction. As previously men-
tioned, a set of ℓmax pairs of complex conjugated roots

{
𝑧𝑖 , 𝑧

∗
𝑖

}
is obtained from the polynomial∑ (2𝐿 + 1) 𝐻𝐿 (𝑠)𝑃𝐿 (𝑧) = 0. For each pair, it is impossible to distinguish which value corresponds

to the original Barrelet Zero and which is its conjugate. All the different possible assignations
generate an ambiguity in the computation of 𝑎𝐿 ,∀𝐿 ∈ {0, . . . , ℓmax}. Specifically, the number of
solutions obtained is 2ℓmax . However, since half of these solutions are the complex conjugates of the
other half, only 2ℓmax−1 are considered as distinct solutions.

3. Variation of ℓmax in the data analysis

Theoretically, the sums presented in expansions (1) and (3) should go from 0 to ∞. However,
when analyzing data in a realistic case, a maximum orbital angular momentum (ℓmax) must be
chosen. Components of higher orbital angular momentum than the fixed maximum are considered
negligible. In an experimental context, the adequate ℓmax that needs to be chosen for the data
analysis is unknown. Therefore, a previous study of the system must be performed and ℓmax must
be determined from the highest non-zero moment 𝐻𝐿 (𝑠) in each specific energy.

Throughout the development of this program, a parallelism with the experimental con-
text was detected. It was observed that adapting ℓmax for the data analysis in each energy
bin is beneficial for higher accuracy results. Thus, considering the adequate value for ℓmax in
𝐴 (𝑠, 𝑧) =

∑ℓmax
ℓ=0 (2ℓ + 1) 𝑎ℓ (𝑠)𝑃ℓ (𝑧) and d𝜎 (𝑠,𝑧)

d𝑧 =
∑2ℓmax

𝐿=0 (2𝐿 + 1) 𝐻𝐿 (𝑠)𝑃𝐿 (𝑧) for each energy
value can positively impact the coherency of the obtained solutions.

This may sound confusing, as the real ℓmax is fixed for all energy bins by the number of
partial-wave amplitudes used during the event simulation. However, the highest order partial-wave
amplitudes are very close to 0 for small energies, which causes a problem in the Barrelet Zeros ex-
traction. Since all solutions for the energy-dependent partial-wave amplitudes 𝑎ℓ (𝑠) are calculated
using the extracted Barrelet Zeros, this possible root alteration poses a big issue.
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Failing to follow this approach in the data analysis can also lead to significantly large error bars
for 𝑎ℓ (𝑠) and introduce unnecessary ambiguities among the potential solutions. The divergence
of the error bars stems from the same analytic limitation discussed in the previous paragraph.
Regarding ambiguities, since the number of solutions obtained for each 𝑎ℓ (𝑠) is 2ℓmax for each
energy value, using a lower maximum orbital momentum in the data analysis will result in fewer
ambiguities among the extracted results.

𝒍𝒎𝒂𝒙 = 𝟐

𝒍𝒎𝒂𝒙 = 𝟑𝒍𝒎𝒂𝒙 = 𝟏

(a) Absolute value of 𝑎1 as a function of 𝑠.

𝒍𝒎𝒂𝒙 = 𝟏

𝒍𝒎𝒂𝒙 = 𝟐

𝒍𝒎𝒂𝒙 = 𝟑

𝐴𝑚𝑏𝑖𝑔𝑢𝑖𝑡𝑦

𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙
𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

(b) Phase of 𝑎1 as a function of 𝑠.

Figure 1: These results are presented choosing a global phase such that 𝑎0 ∈ R+. Error bars are not included
in (b) for visibility purposes. The ambiguity in the extraction of the Barrelet Zeros (𝑧𝑖 , 𝑧∗𝑖 ) is responsible for
the appearance of 2ℓmax−1 different solutions for each value of |𝑎1 (𝑠) | and 2ℓmax for each value of 𝐴𝑟𝑔(𝑎1 (𝑠)).
Size of the simulated set of events used to compute 𝑎1: 108.

As it can be observed in Figure 1, the adaptation of ℓmax in terms of the energy 𝑠 does not
have a significant impact on the solutions’ deviation from their theoretical value. The choice of the
appropriate ℓmax for each energy bin was performed in terms of the value of 𝐻2ℓmax (𝑠), for which a
threshold relative to its maximum value was established.

4. Conclusions

Both the correct choice of ℓ𝑚𝑎𝑥 for each energy interval in the data analysis and a large enough
set of simulated events are essential factors to obtain coherent 𝑎ℓ (𝑠) results. A deep understanding
of the different types of ambiguities that appear throughout the resolution process is also key for
the development of a successful partial-wave analysis of the system.
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