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We present preliminary results of an improved pion-pion scattering dispersive analysis that in-
cludes: a refined treatment of inelasticities, the introduction of G-waves, the extension of Forward
Dispersion Relations as constraints up to 1.6 GeV, and data description up to roughly 1.8 GeV.
Additionally, we impose Roy-like dispersion relations. As a result, we obtain three reliable so-
lutions corresponding to three different datasets. From the Forward Dispersion Relation output,
we extract resonance pole parameters in a parameterization-independent way using continued
fractions.
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1. Introduction

Pions are the lightest hadrons and therefore they appear very frequently in final states in many
hadronic processes. For this reason, a precise and reliable description of the 𝜋𝜋 → 𝜋𝜋 interactions
is important in order to describe their rescattering in other processes. This has become specially
relevant recently due to the high statistics for hadronic observables reached by several collaborations
such as ALICE, Babar, Belle or LHCb. Furthermore, lattice-QCD has brought a refreshed interest
in pion-pion interaction. Another reason for improving the 𝜋𝜋 scattering description lies on light
meson spectroscopy, as it belongs to the non-perturbative QCD regime. Moreover, some open
questions remain regarding the existence of glueballs or the nature of the lightest scalar resonances.

The experimental data for 𝜋𝜋 → 𝜋𝜋 were obtained in the 70’s [1–8], as indirect measurements
extracted from 𝜋𝑁 → 𝜋𝜋𝑁 ′, making use of several approximations. Thus, the datasets usually
present incompatibilities among themselves and large systematic errors. In addition, there are
several solutions for the same experiment [1–4], which are incompatible from 0.9 GeV or 1.4 GeV,
depending on the partial wave. Therefore, a meticulous analysis of all these datasets is necessary.

Furthermore, for many of the resonances produced in 𝜋𝜋 below 2 GeV, the uncertainties of
their parameters (mass, width and coupling) are dominated by models employed to describe meson-
meson scattering data, usually by means of superpositions of different versions of Breit-Wigner
parameterizations. Thus, it is necessary to provide pole parameters for those resonances in a
model-independent way. This can be achieved by imposing dispersive constraints and the use of
analytic continuation methods. Dispersive constraints, such as Forward Dispersion Relations (FDR)
or Roy-like dispersion relations for the partial waves, are consequence of fundamental principles
such as analyticity and causality, and they have been successfully applied to scattering data (for
𝜋𝜋 see [9] and references therein). For 𝜋𝜋 data the dispersive constraints of unsconstrained fits
are generally not satisfied within errors, so they allow us to decide among different datasets and
solutions. Given a dispersive description of scattering data, the resonance parameters can be
obtained from the output of the FDR using analytic continuation methods [10]. We use continued
fractions [11] to extract from our novel dispersive analysis the pole parameters of the lightest
resonances produced in 𝜋𝜋 → 𝜋𝜋 process.

2. Improving 𝜋𝜋 dispersive amplitude analyses

Here we report on our current work [12] to improve previous 𝜋𝜋 → 𝜋𝜋 dispersive amplitude
analyses provided by some of us [9, 13], in order to obtain a better precision above 0.9 GeV, and to
extract in a model-independent way the resonances produced in 𝜋𝜋 below 2 GeV. Particularly, in
[9] a set of parameterizations was provided for partial waves with angular momenta ℓ ≤ 3. They
describe the data, fulfilling FDR up to 1.4 GeV, Roy [14] and GKPY [9] dispersion relations up
to 1.1 GeV for S and P partial waves. This was possible by performing a Constrained Fit to Data
(CFD) to simultaneously describe the data and satisfy the dispersive constraints within uncertainties.
Afterwards, in [13], parameterizations for S0 and P partial waves were provided up to 1.8 GeV,
known as Global parameterizations (they are global in the sense that they describe the datasets up to
the highest energies available) for data solutions I, II and III (see [1–4]). Those parameterizations
were obtained as fits to the CFD parameterizations up to 1.4 GeV, and phenomenological fits to the
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three datasets above that energy. Pole parameters for the 𝑓0(500), 𝑓0(980), 𝑓0(1370), 𝑓0(1500),
𝑓2(1270) and 𝜌(770) were obtained from those dispersive analysis in [10, 15].
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Figure 1: Some of the 𝜋𝜋 dispersive analysis improvements for precision at high energies [12]: inclusion
of the G0-wave (left), new global P-wave (center) and better matching at higher energies with Regge
parameterizations (right). These are preliminary results for the so-called Solution I.

However, aiming at precision also above 0.9 GeV, several features of those 𝜋𝜋 dispersive
amplitude analyses could be improved. First, it is necessary to include the G0 and G2-waves (see
Fig. 1) in order to describe the interaction up to higher energies. Second, we must build global
parameterizations for S2, D0, D2, F-waves up to 1.8/2 GeV (for isospin 𝐼 = 2 data reaches 2
GeV, but for the rest of the partial waves, data do not reach such high energy) improving the data
description in certain regions, specially regarding the inelasticities. Furthermore, the P-wave global
parameterization has to be improved as well, opening the inelasticity at the 𝜋𝜔 instead of the 𝐾𝐾
threshold (as done in [13]), and describing the data at higher energies more precisely, as seen in
Fig. 1. Finally, the matching of the partial-wave amplitudes with the Regge regime implemented in
[9] has to be improved and extended to higher energies (Fig. 1) for two of the amplitudes to impose
FDR up to higher energies and to avoid the appearance of artifacts.

Including the new global parameterizations, which describe data up to higher energies, and the
improved matching with the Regge regime at higher energies for two of the three amplitudes allow
us to impose their FDR up to 1.6 GeV (for one of them, the matching with Regge must remain at
1.4 GeV to avoid artifacts). Additionally, we impose Roy and GKPY dispersion relations up to 1.1
GeV, performing a constrained fit to data with penalty functions of the form

𝑑2
𝑖
=

𝑁𝑖∑︁
𝑘=1

(
𝑑𝑘
𝑖

Δ𝑑𝑘
𝑖

)2

, (1)

where 𝑖 runs over the three FDR and six Roy-like dispersion relations, 𝑑𝑘
𝑖

is the difference of the
direct and dispersive real parts at the energies 𝑒𝑘

𝑖
on an uniform grid of 𝑁𝑖 points. These penalty

functions have associated weights so that the final fit has 𝑑2
𝑖
≤ 1 (uniformly in the whole energy
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regions) for all the dispersion relations. Preliminary results for the Solution I (we study the three
most-reliable solutions for the datasets at high energies) can be seen in Fig. 2.
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Figure 2: Preliminary results [12] for the Solution I: fulfillment of the Forward (upper row), Roy (central
row) and GKPY (lower row) dispersion relations. The continuous line corresponds to the real part of the
dispersion relation obtained from dispersive integrals, the dashed line is calculated directly from the global
parameterizations, whereas the band is the error in their difference, attached to the "direct" one for illustration.

3. Resonance determination

With the aim of obtaining pole parameters in a model and parameterization-independent way,
we perform an analytic continuation of the output of the FDR from a real segment to the complex
plane. For this purpose, we use a robust and general method: continued fractions

𝐶𝑁 (𝑠) = 𝑎0

/(
1 + 𝑎1 (𝑠 − 𝑠1)

1 + 𝑎2 (𝑠−𝑠2 )
. . .𝑎𝑁−1 (𝑠−𝑠𝑁−1 )

)
, (2)

and the procedure is to interpolate the FDR output calculated at 𝑁 equally-spaced points in a real
segment. Since Eq. (2) is a Padé approximant of order ((𝑁 − 1)/2, (𝑁 − 1)/2) (we choose odd 𝑁
for technical reasons), it can hold poles and reproduce resonances in the complex plane. For their
errors we vary 𝑁 , the real segment and the parameters of our global parameterizations, and perform
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a weighted mean. The preliminary results for Solution I are stable against 𝑁 , as seen in Fig. 3
for the 𝜌(1450) (which we now find due to precision improvements at high energies). Preliminary
results for mass, width (defined as √𝑠pole = 𝑀 − 𝑖Γ/2) and coupling (as defined in [15]) for all the
resonances can be found in Table 1. We do not find any hint of the 𝜌(1250), which was present in
old Review of Particle Physics editions and recently claimed [16] for the same data we fit [1, 3].

Figure 3: Preliminary results [12] for the mass (left) and width (right) of the 𝜌(1450) (Solution I).

Isoscalar resonances

M (MeV) 𝚪 (MeV) |𝒈|

𝑓0(500) 457+12
−10 518+17

−26 3.14+0.25
−0.34 GeV

𝑓0(980) 990+5
−6 44+15

−10 1.5+0.4
−0.3 GeV

𝑓0(1370) 1211+40
−42 582+56

−85 8.7+1.3
−1.0 GeV

𝑓0(1500) 1547+17
−15 55+47

−29 5.5+0.9
−0.8 GeV

𝑓2(1270) 1265.8+0.7
−0.5 196.9+0.8

−0.7 4.50+0.03
−0.05 GeV−1

Isovector resonances

M (MeV) 𝚪 (MeV) |𝒈|

𝜌(770) 758.0+1.1
−0.8 149.0+1.0

−0.9 6.062+0.012
−0.005

𝜌(1450) 1459+14
−11 278+33

−36 1.8+0.3−0.4

𝜌3(1690)/
1700+67

−78 278+174
−172 𝑋𝑋𝑋

𝜌(1700)

Table 1: Preliminary pole parameters [12] (mass, width and coupling) for Solution I. The 𝜌3 (1690) and
𝜌(1700) overlap in our FDR output and cannot be disentangled (therefore the coupling cannot be calculated).

4. Summary

We improve on the 𝜋𝜋 dispersive analyses in [9, 13] and obtain a set of global parameterizations
that describe data in a more suitable way and satisfy dispersive constraints up to higher energies.
Preliminary results show that these constraints are better satisfied for Solution I. From the output
of the FDR, we extract the pole parameters using continued fractions, and the results are stable.
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