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We review the holographic QCD model for nucleons and vector mesons proposed in [1]. The
model can be thought of a consistent embedding of soft wall models in Einstein-dilaton gravity
and it leads to hadronic correlators compatible with QCD in the large 𝑁𝑐 limit. We compare
our results for the hadronic masses and decay constants against previous models and available
experimental data.
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1. Confinement in Einstein-dilaton holography

We start with the action of 5d Einstein-dilaton gravity in the Einstein frame:

𝑆𝐸 = 𝜎

∫
𝑑5𝑥

√−𝑔
[
𝑅 − 4

3
𝑔𝑚𝑛𝜕𝑚Φ𝜕𝑛Φ + ℓ−2𝑉 (Φ)

]
, (1)

where ℓ is the radius of 5d anti-de Sitter (AdS) space. In holographic QCD we consider the following
ansatz for the metric and dilaton

𝑑𝑠2 =
1

𝜁 (𝑧)2

[
−𝑑𝑡2 + 𝑑®𝑥2 + 𝑑𝑧2] , Φ = Φ(𝑧) . (2)

The inverse scale factor 𝜁 (𝑧) is usually expressed in terms of the warp factor 𝐴(𝑧) through the
relation 𝐴(𝑧) = − ln 𝜁 (𝑧). Varying the action (1) and using the ansatz in (2) we obtain the following
independent Einstein-dilaton field equations

𝜁 ′′ − 4
9
𝜁Φ′2 = 0 , ℓ−2𝑉 − 𝜁5(𝜁−3)′′ = 0 , (3)

where ′ = 𝑑/𝑑𝑧. At small 𝑧 we impose the condition that the 5d metric becomes AdS and that the
dilaton field vanishes, i.e. 𝜁 (𝑧 → 0) = 𝑧/ℓ and Φ(𝑧 → 0) = 0. At large 𝑧 (far from the bundary) we
impose the condition Φ(𝑧 → ∞) = 𝑘𝑧2 which guarantees linear confinement [2] and linear Regge
trajectories for vector mesons [3]. In this work we consider two analytical solutions that satisfy the
conditions above. These are given by

Φ𝐼 (𝑧) = 𝑘𝑧2 , 𝜁𝐼 (𝑧) = Γ(5/4)
(

3
𝑘

)1/4 √
𝑧

ℓ
𝐼1/4

(
2
3
𝑘𝑧2

)
Φ𝐼 𝐼 (𝑧) =

1
2
√
𝑘𝑧
√︁

9 + 4𝑘𝑧2 + 9
4

sinh−1
(
2
3
√
𝑘𝑧

)
, 𝜁𝐼 𝐼 (𝑧) =

𝑧

ℓ
exp

(
2
3
𝑘𝑧2

)
. (4)

In the next sections we will describe the dynamics of the 5d gauge and Dirac fields dual to the
4d vectorial current and nucleon operators. The 5d actions will be described in the string frame
where the warp factor takes the form

𝐴𝑠 (𝑧) = 𝐴(𝑧) +
2
3
Φ(𝑧) = − ln 𝜁 (𝑧) + 2

3
Φ(𝑧) . (5)

2. Vector mesons in confining holographic QCD

We are interested in the physics of vector mesons in large 𝑁𝑐 QCD with 𝑁 𝑓 = 2 flavors. This
is described by the 4d flavour current operators 𝐽𝜇,𝑎 (𝑥) = 𝑞(𝑥)𝛾𝜇𝑇𝑎𝑞(𝑥) and for simplicity we
assume 𝑆𝑈 (2) isospin symmetry (𝑚𝑢 = 𝑚𝑑). Inspired by previous works [4, 5] we map these
currents to 5d non-Abelian fields 𝑉𝑎

𝑚(𝑧, 𝑥) with a 5d action given by

𝑆𝑉 = −
∫

𝑑4𝑥 𝑑𝑧
1

4𝑔2
5

√−𝑔𝑠 𝑒−Φ𝑣𝑎𝑚𝑛
2
, (6)

where 𝑣𝑎𝑚𝑛 = 𝜕𝑚𝑉
𝑎
𝑛 − 𝜕𝑛𝑉𝑎

𝑚
1 and 𝑔𝑠𝑚𝑛 = 𝑒2𝐴𝑠 (𝑧)𝜂�̂��̂� is the 5d metric in the string frame. The

5d coupling is fixed as 𝑔2
5 = 12𝜋2/𝑁𝑐 in order to reproduce the perturbative QCD result for

1Cubic or higher order on 𝑉𝑎
𝑚 are relevant only for interactions and will be neglected in this work.
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the current correlator in the regime of small distances. The 5d gauge field is decomposed as
𝑉𝑎
�̂�
= (𝑉𝑎

𝑧 , 𝑉
⊥
�̂�,𝑎

+ 𝜕�̂�𝜉𝑎). We use gauge symmetry to fix 𝑉𝑎
𝑧 = 0 and from the field equations one

finds that 𝜉 = 0. The only remaining field equation from (6) is[
𝜕𝑧 + 𝐴′

𝑠 −Φ′
]
𝜕𝑧𝑉

�̂�,𝑎
⊥ + □𝑉 �̂�,𝑎

⊥ = 0 . (7)

At small 𝑧 the 5d gauge field admits the asymptotic solution

𝑉�̂�,𝑎 (𝑥, 𝑧) = 𝑉 (0)
�̂�,𝑎

(𝑥) + · · · +𝑉 (2)
�̂�,𝑎

(𝑥)𝑧2 + . . . , (8)

where 𝑉 (0)
�̂�,𝑐

(𝑥) and 𝑉 (2)
�̂�,𝑐

(𝑥) are the source and VEV coefficients. It is also convenient to introduce
the bulk to boundary propagator 𝐾𝑐𝑑

�̂��̂�
(𝑧, 𝑥; 𝑦) via the relation

𝑉𝑎
�̂� (𝑧, 𝑥) =

∫
𝑑4𝑦 𝐾𝑎𝑏

�̂��̂� (𝑧, 𝑥; 𝑦)𝑉 �̂�,0
𝑏

(𝑦), (9)

As shown in [1], the holographic dictionary for the 4d current correlator takes the form

𝐺𝑐𝑑
�̂��̂� (𝑥 − 𝑦) = ⟨𝐽�̂�,𝑐 (𝑥)𝐽�̂�,𝑑 (𝑦)⟩ =

1
𝑔2

5

[
𝑒𝐴𝑠−Φ𝜕𝑧𝐾

𝑐𝑑
�̂��̂� (𝑧, 𝑥; 𝑦)

]
𝑧=𝜖

. (10)

In momentum space the bulk to boundary propagator can be written as

�̃�𝑎𝑏
�̂��̂� (𝑧, 𝑞) =

(
𝜂𝜇𝜈 − 𝑞𝜇𝑞𝜈

𝑞2

)
𝛿𝑎𝑏 𝑉 (𝑧, 𝑞) . (11)

From (7) we find that 𝑉 (𝑧, 𝑞) satisfies the differential equation[(
𝜕𝑧 + 𝐴′

𝑠 −Φ′
)
𝜕𝑧 − 𝑞2

]
𝑉 (𝑧, 𝑞) = 0 , (12)

which can be written in the Sturm-Liouville form[
L + 𝜆 𝑟 (𝑧)

]
𝑦(𝑧) = 0 , L = 𝜕𝑧

(
𝑝(𝑧)𝜕𝑧

)
− 𝑠(𝑧) , (13)

with
𝑝(𝑧) = 𝑒𝐴𝑠−Φ , 𝑠(𝑧) = 0 , 𝜆 = −𝑞2 , 𝑟 (𝑧) = 𝑒𝐴𝑠−Φ . (14)

The corresponding Green’s function satisfies the differential equation[
L + 𝜆 𝑟 (𝑧)

]
𝐺 (𝑧; 𝑧′) = 𝛿(𝑧 − 𝑧′) . (15)

Following Sturm-Liouville theory, the Green’s function admits the spectral decomposition

𝐺 (𝑧; 𝑧′) = −
∑︁
𝑛

𝑣𝑛 (𝑧)𝑣𝑛 (𝑧′)
𝑞2 + 𝑚2

𝑣𝑛

, (16)

where the Sturm-Liouville modes satisfty the differential equation[
𝜕𝑧

(
𝑒𝐴𝑠−Φ𝜕𝑧

)
+ 𝑚2

𝑣𝑛𝑒
𝐴𝑠−Φ

]
𝑣𝑛 (𝑧) = 0 (17)
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and are normalized as
∫
𝑑𝑧 𝑒𝐴𝑠−Φ𝑣𝑚(𝑧)𝑣𝑛 (𝑧) = 𝛿𝑚𝑛. As described in [1], the bulk to boundary

propagator is related to the Green’s function by𝑉 (𝑧′, 𝑞) = −
[
𝑒𝐴𝑠−Φ𝜕𝑧𝐺 (𝑧; 𝑧′)

]
𝑧=𝜖

. Then using the
holographic dictionary (10) one obtain the following decomposition for the current correlator

𝐺𝑎𝑏
�̂��̂� (𝑞) =

(
𝜂�̂��̂� −

𝑞 �̂�𝑞 �̂�

𝑞2

)
𝛿𝑎𝑏

∑︁
𝑛

𝐹2
𝑣𝑛

𝑞2 + 𝑚2
𝑣𝑛

, 𝐹𝑣𝑛 =
1
𝑔5

[
𝑒𝐴𝑠−Φ𝜕𝑧𝑣𝑛 (𝑧)

]
𝑧=𝜖

, (18)

where 𝐹𝑣𝑛 are the vector meson decay constants. The decomposition in (18) is consistent with large
𝑁𝑐 QCD, see for example [6, 7].

3. Nucleons in confining holographic QCD

In QCD nucleons are usually described using interpolating fields. For the proton we use
the Ioffe operator O(𝑥) = 𝜖𝑎𝑏𝑐

(
𝑢𝑇𝑎 (𝑥)𝐶𝛾𝜇𝑢𝑏 (𝑥)

)
𝛾5𝛾

𝜇𝑑𝑐 (𝑥) [8, 9]. Inspired by previous works
[10–12], we map this 4d operator to a 5d Dirac field with the following 5d action 2

𝑆𝐹 = 𝐺𝐹

∫
𝑑5𝑥

√−𝑔𝑠
( 𝑖
2
�̄� /𝐷𝜓 + c.c. − 𝑖�̃��̄�𝜓

)
+ Δ𝑆 , (19)

where /𝐷 = Γ𝑛𝐷𝑛 with Γ𝑛 = 𝑒𝑛
�̂�
Γ�̂� and 𝐷𝑛 = 𝜕𝑛 +

1
4
𝜔�̂��̂�
𝑛 Γ�̂��̂�. The surface term Δ𝑆 is required by the

variational principle. The quantities 𝑒𝑛
�̂�

and 𝜔�̂��̂�
𝑛 are the veilbein and spin connection respectively

while Γ�̂� are the gamma matrices in 5d flat space.
In holographic QCD the veilbein takes the form 𝑒𝑛

�̂�
= 𝑒−𝐴𝑠 (𝑧)𝛿𝑛

�̂�
and the non-vanishing com-

ponents of the spin connection are 𝜔 �̂� �̂�
𝜇 = −𝜔�̂� �̂�

𝜇 = −𝐴′
𝑠𝛿

�̂�
𝜇. As shown in [1], the 5d coupling

in (19) can be fixed to 𝐺𝐹 = 2𝜋−4 to reproduce the perturbative QCD result for the nucleon
correlator at small distances. The 5d Dirac field admits the decomposition 𝜓 = 𝜓𝑅 + 𝜓𝐿 where

𝜓𝑅/𝐿 =
1
2
(
1 ± Γ �̂�

)
𝜓 = 𝑃𝑅/𝐿𝜓. The Dirac field equation arising from (19) decomposes as

/𝜕𝜓𝐿 = −
(
𝜕𝑧 + 2𝐴′

𝑠 − 𝑒𝐴𝑠 �̃�

)
𝜓𝑅 , /𝜕𝜓𝑅 =

(
𝜕𝑧 + 2𝐴′

𝑠 + 𝑒𝐴𝑠 �̃�

)
𝜓𝐿 , (20)

where /𝜕 = Γ�̂�𝜕𝜇. At small 𝑧 one finds the asymptotic solutions

𝜓𝐿 (𝑥, 𝑧) = 𝛼𝐿 (𝑥)𝑧2−𝑚 + · · · + 𝛽𝐿 (𝑥)𝑧3+𝑚 + . . . ,
𝜓𝑅 (𝑥, 𝑧) = 𝛼𝑅 (𝑥)𝑧3−𝑚 + · · · + 𝛽𝑅 (𝑥)𝑧2+𝑚 + . . . , (21)

where 𝛼𝑅/𝐿 and 𝛽𝑅/𝐿 are the source and VEV coefficients respectively. In this work we will be
interested only in the operator O𝑅 (𝑥) = 𝑃𝑅O(𝑥) so the only independent source is 𝛼𝐿 (𝑥). Again,
it is convienent to define a bulk to boundary propagator 𝐹𝐿 (𝑧, 𝑥; 𝑦) using the relation

𝜓𝐿 (𝑧, 𝑥) =
∫

𝑑4𝑦 𝐹𝐿 (𝑧, 𝑥; 𝑦) 𝛼𝐿 (𝑦) , (22)

and the holographic dictionary for the nucleon correlator takes the form [1]

Γ𝑅 (𝑥 − 𝑦) = ⟨O𝑅 (𝑥)Ō𝑅 (𝑦)⟩ = 𝑖𝐺𝐹𝑃𝑅

/𝜕𝑥−𝑦
𝜕2

(
𝑧2−𝑚𝑒4𝐴𝑠 (𝜕𝑧 + 2𝐴′

𝑠 + 𝑒𝐴𝑠 �̃�)𝐹𝐿 (𝑧, 𝑥; 𝑦)
)
𝑧=𝜖

. (23)

2The dilaton coupling was absorbed in a redefinition of the Dirac field 𝜓 → 𝑒Φ/2𝜓.
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The bulk to boundary propagator in momentum space satisfies the differential equation[ (
𝜕𝑧 + 4𝐴′

𝑠

)
𝜕𝑧 + 2𝐴′′

𝑠 + 4𝐴′ 2
𝑠 + 𝜕𝑧 (𝑒𝐴𝑠 �̃�) − 𝑒2𝐴𝑠 �̃�2 +𝑄2] 𝐹𝐿 (𝑞, 𝑧) = 0 . (24)

Again, we use the Sturm-Liouville theory and follow the same steps as in the previous section to
obtain a spectral decompostion for the nucleon correlator [1]

Γren
𝑅 (𝑞) = −𝑃𝑅/𝑞

∑︁
𝑛

𝜆2
𝑁𝑛

𝑞2 + 𝑚2
𝑁𝑛

, 𝜆𝑁𝑛 =
√︁
𝐺𝐹

[
𝑧−2−𝑚 𝑓𝑅,𝑛 (𝑧)

]
𝑧=𝜖

, (25)

where 𝜆𝑁𝑛 are the nucleon “decay constants” which can be interpreted as probability amplitudes
associated with the creation of nucleon states from the vacuum. The Sturm-Liouville modes satisfy
the coupled differential equations(

𝜕𝑧 + 2𝐴′
𝑠 ∓ 𝑒𝐴𝑠 �̃�

)
𝑓 𝑛
𝑅/𝐿 = ∓𝑚𝑁𝑛 𝑓 𝑛

𝐿/𝑅 , (26)

and are normalized as
∫
𝑑𝑧 𝑒4𝐴𝑠 𝑓 𝑚

𝐿
(𝑧) 𝑓 𝑛

𝐿
(𝑧) = 𝛿𝑚𝑛. The spectral decomposition in (24) is consistent

with large 𝑁𝑐 QCD, see for example [6, 13]. Finally, from the analysis of the mode equations in
(26) one finds that linear Regge trajectories are guaranteed considering a 5d mass term of the form

�̃� = 𝑒−𝐴𝑠

(
1
2
Φ′ − 𝑚𝐴′

𝑠

)
[1].

4. Results

In [1], we calculated the masses of vector mesons and nucleons, as well as the corresponding
decay constants, comparing them with previous models and available experimental data. Here we
present our main results for the vector meson and nucleon masses in table 1 and 2 respectively.

Ratio Model I Model II Soft wall Hard wall Experimental
𝑚𝜌1/𝑚𝜌0 1.591 1.34 1.414 2.295 1.652 ± 0.048
𝑚𝜌2/𝑚𝜌0 2.015 1.611 1.732 3.598 1.888 ± 0.032
𝑚𝜌3/𝑚𝜌0 2.365 1.843 2 4.903 2.216 ± 0.026
𝑚𝜌4/𝑚𝜌0 2.67 2.049 2.236 6.209 2.443 ± 0.072
𝑚𝜌5/𝑚𝜌0 2.944 2.236 2.45 7.514 2.727 ± 0.265

Table 1: Ratio of vector meson masses 𝑚𝜌𝑛/𝑚𝜌0 for the first excited states 𝑛 = 1, .., 5 in the Einstein-dilaton
models I and II, the soft wall model [3], the hard wall model [4], compared against experimental results. The
experimental result for 𝑚𝜌1 was taken from [14] and for the other states were obtained from PDG [15].

References

[1] A. Ballon-Bayona and A. S. Junior, Nucleons and vector mesons in a confining holographic
QCD model, Phys. Rev. D 109 (2024) 094050 [2402.17950].

[2] U. Gursoy, E. Kiritsis and F. Nitti, Exploring improved holographic theories for QCD: Part
II, JHEP 02 (2008) 019 [0707.1349].

5

https://doi.org/10.1103/PhysRevD.109.094050
https://arxiv.org/abs/2402.17950
https://doi.org/10.1088/1126-6708/2008/02/019
https://arxiv.org/abs/0707.1349


P
o
S
(
Q
N
P
2
0
2
4
)
0
1
9

Nucleons and vector mesons in holographic QCD Alfonso Ballon-Bayona

Ratio Model I Model II Soft wall Hard wall Experimental [15]
𝑚𝑁0/𝑚𝜌0 0.896 0.952 1.732 2.136 1.209 ± 0.002
𝑚𝑁1/𝑚𝜌0 1.593 1.314 2 3.5 1.856 ± 0.039
𝑚𝑁2/𝑚𝜌0 2.04 1.595 2.236 4.832 2.204 ± 0.039
𝑚𝑁3/𝑚𝜌0 2.399 1.833 2.449 6.153 2.423 ± 0.065
𝑚𝑁4/𝑚𝜌0 2.708 2.043 2.646 7.468 2.706 ± 0.065

Table 2: Nucleon masses divided by the mass of the 𝜌0 meson in the case Δ = 9/2 (𝑚 = 5/2) in the
Einstein-dilaton models, the soft wall model [12] and the hard wall model [10, 12], compared against the
experimental results from PDG [15].

[3] A. Karch, E. Katz, D.T. Son and M.A. Stephanov, Linear confinement and AdS/QCD, Phys.
Rev. D 74 (2006) 015005 [hep-ph/0602229].

[4] J. Erlich, E. Katz, D.T. Son and M.A. Stephanov, QCD and a holographic model of hadrons,
Phys. Rev. Lett. 95 (2005) 261602 [hep-ph/0501128].

[5] H.R. Grigoryan and A.V. Radyushkin, Form Factors and Wave Functions of Vector Mesons
in Holographic QCD, Phys. Lett. B 650 (2007) 421 [hep-ph/0703069].

[6] E. Witten, Baryons in the 1/n Expansion, Nucl. Phys. B 160 (1979) 57.

[7] D.T. Son and M.A. Stephanov, QCD and dimensional deconstruction, Phys. Rev. D 69
(2004) 065020 [hep-ph/0304182].

[8] B.L. Ioffe, Calculation of Baryon Masses in Quantum Chromodynamics, Nucl. Phys. B 188
(1981) 317.

[9] T.D. Cohen, R.J. Furnstahl, D.K. Griegel and X.-m. Jin, QCD sum rules and applications to
nuclear physics, Prog. Part. Nucl. Phys. 35 (1995) 221 [hep-ph/9503315].

[10] S.J. Brodsky and G.F. de Teramond, AdS/CFT and Light-Front QCD, Subnucl. Ser. 45
(2009) 139 [0802.0514].

[11] D.K. Hong, T. Inami and H.-U. Yee, Baryons in AdS/QCD, Phys. Lett. B 646 (2007) 165
[hep-ph/0609270].

[12] Z. Abidin and C.E. Carlson, Nucleon electromagnetic and gravitational form factors from
holography, Phys. Rev. D 79 (2009) 115003 [0903.4818].

[13] D.B. Leinweber, Nucleon properties from unconventional interpolating fields, Phys. Rev. D
51 (1995) 6383 [nucl-th/9406001].

[14] OBELIX collaboration, Study of anti-p p –> 2pi+ 2pi- annihilation from S states, Phys. Lett.
B 414 (1997) 220.

[15] Particle Data Group collaboration, Review of Particle Physics, PTEP 2022 (2022)
083C01.

6

https://doi.org/10.1103/PhysRevD.74.015005
https://doi.org/10.1103/PhysRevD.74.015005
https://arxiv.org/abs/hep-ph/0602229
https://doi.org/10.1103/PhysRevLett.95.261602
https://arxiv.org/abs/hep-ph/0501128
https://doi.org/10.1016/j.physletb.2007.05.044
https://arxiv.org/abs/hep-ph/0703069
https://doi.org/10.1016/0550-3213(79)90232-3
https://doi.org/10.1103/PhysRevD.69.065020
https://doi.org/10.1103/PhysRevD.69.065020
https://arxiv.org/abs/hep-ph/0304182
https://doi.org/10.1016/0550-3213(81)90259-5
https://doi.org/10.1016/0550-3213(81)90259-5
https://doi.org/10.1016/0146-6410(95)00043-I
https://arxiv.org/abs/hep-ph/9503315
https://doi.org/10.1142/9789814293242_0008
https://doi.org/10.1142/9789814293242_0008
https://arxiv.org/abs/0802.0514
https://doi.org/10.1016/j.physletb.2007.01.030
https://arxiv.org/abs/hep-ph/0609270
https://doi.org/10.1103/PhysRevD.79.115003
https://arxiv.org/abs/0903.4818
https://doi.org/10.1103/PhysRevD.51.6383
https://doi.org/10.1103/PhysRevD.51.6383
https://arxiv.org/abs/nucl-th/9406001
https://doi.org/10.1016/S0370-2693(97)01189-1
https://doi.org/10.1016/S0370-2693(97)01189-1
https://doi.org/10.1093/ptep/ptac097
https://doi.org/10.1093/ptep/ptac097

	Confinement in Einstein-dilaton holography
	Vector mesons in confining holographic QCD
	Nucleons in confining holographic QCD
	Results

