
P
o
S
(
C
O
R
F
U
2
0
2
3
)
2
5
8

Renormalization group and quantum error correction

Takaaki Kuwahara,𝑎 Ryota Nasu,𝑏 Gota Tanaka𝑐 and Asato Tsuchiya𝑏,𝑑,∗
𝑎Department of Physics, Kyoto University,
Sakyo-ku, Kyoto 606-8502, Japan

𝑏Graduate School of Science and Technology, Shizuoka University,
836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan

𝑐Institute for Mathematical Informatics, Meĳi Gakuin University,
1518 Kamikuratacho, Totsuka-ku, Yokohama 244-8539, Japan

𝑑Department of Physics, Shizuoka University,
836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
E-mail: kuwahara@gauge.scphys.kyoto-u.ac.jp, nasu.ryota.17@shizuoka.ac.jp,
gotanak@mi.meijigakuin.ac.jp, tsuchiya.asato@shizuoka.ac.jp

We show that quantum error correction is realized by the renormalization group in scalar field
theories. We construct a 𝑞-level system in the IR region by using coherent states. We encode it
in the UV region by acting on the states in the 𝑞-level system the inverse of the unitary operator
that gives the renormalization group flow of the ground state. We find that the condition for
quantum error correction is satisfied for operators that create coherent states. We confirm this to
the first order in the perturbation theory. This result suggests a general relationship between the
renormalization group and quantum error correction and should give insights into their role in the
AdS/CFT correspondence.

Corfu Summer Institute 2023 "School and Workshops on Elementary Particle Physics and Gravity"
(CORFU2023)
23 April - 6 May , and 27 August - 1 October, 2023
Corfu, Greece

∗Speaker

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:kuwahara@gauge.scphys.kyoto-u.ac.jp
mailto:nasu.ryota.17@shizuoka.ac.jp
mailto:gotanak@mi.meijigakuin.ac.jp
mailto:tsuchiya.asato@shizuoka.ac.jp
https://pos.sissa.it/


P
o
S
(
C
O
R
F
U
2
0
2
3
)
2
5
8

Renormalization group and quantum error correction Asato Tsuchiya

1. Introduction

Emergence of space-time is seen in various contexts such as the large-𝑁 reduction, the matrix
models for noncritical strings and superstrings and the AdS/CFT correspondence (the gauge/gravity
correspondence)[1]. It seems natural in quantum gravity, since the space-time itself fluctuates there.
Here we focus on the AdS/CFT correspondence.

In the AdS/CFT correspondence, the bulk geometry emerges from the degrees of freedom of
field theories on the boundary. While the mechanism of emergence of space-time in the AdS/CFT
correspondence has not been revealed completely, there are some insights into it. First, the structure
of the renormalization group is seen in the AdS/CFT correspondence. The metric of (𝑑 + 2)-
dimensional AdS in the Poincare coordinates is given by

𝑑𝑠2 =
𝑑𝑧2 + 𝑑𝑥𝜇𝑑𝑥𝜇

𝑧2
, (1.1)

where 𝜇 run 0 to 𝑑. 𝑧 corresponds to the coordinate in the bulk direction. The CFT lives on the
(regularized) boundary specified by 𝑧 = 𝜖 , where 𝜖 is the UV cutoff. The metric (1.1) is invariant
under 𝑧 → 𝜌𝑧, 𝑥𝜇 → 𝜌𝑥𝜇. This implies that 𝑧 is interpreted as the scale of the renormalization
group and that small and large 𝑧 correspond to the UV and IR regions, respectively. Second, it
has been recognized that quantum information plays crucial roles in the AdS/CFT correspondence.
We note here that it has been argued that the structure of quantum error correction is needed for
the bulk operators to be consistently described by the boundary operators[2]. As seen above, the
bulk and the boundary correspond to the IR and UV regions in field theories on the boundary,
respectively. This suggests that in field theories quantum error correction can be associated with
the renormalization group.

It was shown in [3, 4] that quantum error correction is realized by the renormalization group in
so-called magic cMERA[5], which is a free scalar field theory whose action has a particular scale
dependence, by using coherent states. In this paper, motivated by this work, we realize quantum
error correction by the renormalization group in scalar field theories including interactions[6]1. For
this, we need the scale dependence of wave functionals, since quantum error correction is examined
in a Hilbert space. Thus, we begin with reviewing the exact renormalization group (ERG) equation
for wave functions in scalar field theories derived in [7], which determines the scale dependence of
wave functionals.

This paper is organized as follows. In section 2, we review the ERG equation for the wave
functional. In section 3, we present a general procedure of encoding a 𝑞-level system by the
renormalization group. In section 4, we examine the renormalization group flow in scalar field
theories, in particular that of the creation and annihilation operators. In section 5, we construct
a 𝑞-level system by using the coherent states and show that quantum error correction is realized
by encoding the 𝑞-level system in the IR region into that in the UV region. Section 6 is devoted
to conclusion and discussion. In appendices, the Knill-Laflamme condition and the Polchinski
equation are briefly reviewed.

1The roles of IR and UV in our case seem to be exchanged compared to those in [4].
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2. ERG equation for wave functionals

In this section, we review the ERG equation for the wave functionals[7].

2.1 ERG equation for wave functionals in the scalar field theory

In the AdS/CFT correspondence, the bulk direction corresponds to the scale of the renormal-
ization group. Furthermore, since the classical bulk geometry corresponds to strongly-coupled
gauge theory, non-perturbative treatment is essential.

The exact renormalization group(ERG) is a non-perturbative method in which scale dependence
is described by a functional differential equation. We derived an ERG equation describing the scale
dependence of the wave functionals in scalar field theories. This equation is based on the Polchinski
equation[8], summarized in appendix B.

Throughout this paper, we consider scalar field theories in 𝑑 + 1 dimensions with UV cutoff
and use a shorthand notation:∫

𝑝

≡
∫

𝑑𝑑𝑝

(2𝜋)𝑑
, 𝛿(𝑝) = (2𝜋)𝑑𝛿𝑑 (𝑝) , (2.1)

where 𝑝 stands for 𝑑-dimensional spatial momentum. We denote the effective momentum cutoff
by Λ.

The path-integral representation of the ground-state wave functional Ψ[𝜑] is given by

ΨΛ [𝜑] =
∫
𝜙 (0, 𝑝)=𝜑 (𝑝)

D𝜙𝑒−
∫ 0
−∞ 𝑑𝜏𝐿Λ [𝜙] , (2.2)

where 𝐿Λ is the effective Lagrangian. We impose the boundary condition for the field 𝜙(𝜏, 𝑝) as

𝜙(0, 𝑝) = 𝜑(𝑝) . (2.3)

𝐿Λ is assumed to be real so that ΨΛ [𝜑] is also real.
The scale dependence of the wave functional ΨΛ [𝜑] is described by the ERG equation[7]

−Λ 𝜕

𝜕Λ
ΨΛ = − 1

2

∫
𝑝

¤𝐶Λ(0, 𝑝)
{

𝛿2ΨΛ

𝛿𝜑(𝑝)𝛿𝜑(−𝑝) +
1
ΨΛ

𝛿ΨΛ

𝛿𝜑(𝑝)
𝛿ΨΛ

𝛿𝜑(−𝑝)

}
−

∫
𝑝

¤𝐶Λ(0, 𝑝)
𝐶Λ(0, 𝑝)

𝜑(𝑝) 𝛿ΨΛ

𝛿𝜑(𝑝) −
𝑉

2
ΨΛ

∫
𝑝

¤𝐶Λ(0, 𝑝)
𝐶Λ(0, 𝑝)

, (2.4)

where ¤𝐶Λ ≡ −Λ𝜕Λ𝐶Λ is an ERG integration kernel(see appendix B). The details of the derivation
is in [7].

2.2 The free and perturbative solutions

Here we introduce the free and perturbative solutions of the ERG equation(2.4).
We assume that 𝐶Λ(𝜏, 𝑝) is factorized as

𝐶Λ(𝜏, 𝑝) = 𝑓 (𝜏, 𝑝)𝑔Λ(𝑝) , (2.5)
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where 𝑓 is independent of Λ. We use the following 𝐶Λ:

𝐶Λ(𝑝) =
𝐾 (𝑝2/Λ2)
𝑝2

0 + 𝑝2 + 𝑚2
, 𝐶Λ(0, 𝑝) =

𝐾 (𝑝2/Λ2)
2𝜔𝑝

, (2.6)

where the property shown in (2.5) is satisfied and 𝜔𝑝 =
√︁
𝑝2 + 𝑚2. 𝐾 (𝑥) is assumed to have the

following properties: 𝐾 (0) = 1, 𝐾 (𝑥) ∼ 1 for 𝑥 < 1, and 𝐾 (𝑥) damps rapidly for 𝑥 > 1. In this
case, ¤𝐶Λ(0, 𝑝) is given by

¤𝐶Λ(0, 𝑝) =
¤𝐾 (𝑝2/Λ2)

2𝜔𝑝

, (2.7)

where ¤𝐾 (𝑝2/Λ2) = −Λ𝜕Λ𝐾 (𝑝2/Λ2).
We consider the Lagrangian 𝐿Λ which consists of the free part 𝐿0,Λ and the interaction part

𝐿int,Λ: 𝐿Λ = 𝐿0,Λ + 𝛼𝐿int,Λ, with

𝐿0,Λ =

∫
𝑝

1
2
𝐾−1

𝑝

[
𝜕𝜏𝜙(𝜏, 𝑝)𝜕𝜏𝜙(𝜏,−𝑝) + 𝜔2

𝑝𝜙(𝜏, 𝑝)𝜙(𝜏,−𝑝)
]
, (2.8)

𝐿int,Λ =
𝛿𝑚2

2

∫
𝑝

𝜙(𝜏, 𝑝)𝜙(𝜏,−𝑝)

+ 𝜆

4!

∫
𝑝1...𝑝4

𝜙(𝜏, 𝑝1)𝜙(𝜏, 𝑝2)𝜙(𝜏, 𝑝3)𝜙(𝜏, 𝑝4)𝛿(𝑝1 + 𝑝2 + 𝑝3 + 𝑝4) , (2.9)

where we have introduced an expansion parameter 𝛼 and a shorthand notation

𝐾𝑝 = 𝐾 (𝑝2/Λ2) . (2.10)

The flow equation for 𝛿𝑚2 is
¤𝛿𝑚2

2
= − 𝜆

4!

∫
𝑝

6 ¤𝐾𝑝

2𝜔𝑝

. (2.11)

The free solution of the ERG equation(2.4) is given by

Ψ
(0)
Λ

[𝜑] = 𝑁0 exp
[
−

∫
𝑝

1
2
𝐾−1

𝑝 𝜔𝑝𝜑(𝑝)𝜑(−𝑝)
]
, (2.12)

where 𝑁0 is the normalization constant which is fixed by the condition 1 =
∫
D𝜑 |Ψ0 [𝜑] |2 as

𝑁0 = exp
[
𝑉

4

∫
𝑝

log
(
2𝐾−1

𝑝 𝜔𝑝

)]
. (2.13)

The perturbative solution in the first order takes the following form:

Ψ
(1)
Λ

= 𝐴ΛΨ
(0)
Λ

(2.14)

with

𝐴Λ = − 𝛿𝑚2

2

∫
𝑝

𝜑(𝑝)𝜑(−𝑝) 1
2𝜔𝑝

− 𝜆

4!

∫
𝑝1𝑝2

𝜑(𝑝1)𝜑(−𝑝1)
3𝐾2

2𝜔1(𝜔1 + 𝜔2)

− 𝜆

4!

∫
𝑝1 · · ·𝑝4

𝜑1 · · · 𝜑4
𝛿(𝑝1 + 𝑝2 + 𝑝3 + 𝑝4)
𝜔1 + 𝜔2 + 𝜔3 + 𝜔4

+ C , (2.15)
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where
C =

{
𝛿𝑚2

2
+ 𝜆

4!

∫
𝑝

6𝐾𝑝

2𝜔𝑝

} ∫
𝑘

𝐾𝑘𝑉

4𝜔2
𝑘

− 𝜆

4!

∫
𝑝1, 𝑝2

3𝐾1𝐾2𝑉

𝜔1𝜔2(𝜔1 + 𝜔2)
. (2.16)

Note that 𝐴Λ is an anti-Hermitian operator. In the following sections, we use the free and perturbative
solutions (2.12) and (2.14) to realize quantum error correction in the scalar field theory.

3. Encoding

In the AdS/CFT correspondence, the bulk and boundary operators should have the property of
quantum error correction(QEC). If the solution of the ERG equation(2.4) describes the bulk recon-
struction(spacetime emergence), the Knill-Laflamme condition should hold in a code subspace.

In the following, by making a rescaling such as

𝑝 → Λ𝑝 , 𝜑(𝑝) → Λ− 𝑑+1
2 𝜑(𝑝) , (3.1)

𝐾𝑝 = 𝐾 (𝑝2/Λ2) → 𝐾𝑝 = 𝐾 (𝑝2), 𝜔𝑝 =

√︃
𝑝2 + 𝑚2 → Λ𝜔𝑝 = Λ

√︃
𝑝2 + 𝑚2/Λ2 , (3.2)

𝛿𝑚2 → Λ2𝛿𝑚2, 𝜆 → Λ3−𝑑𝜆 , (3.3)

we make all quantities dimensionless. The functional ΨΛ is rewritten in terms of the rescaled
quantities.

We construct 𝑞-level states |𝑟⟩ (𝑟 = 0, 1, . . . , 𝑞 − 1), which correspond to span({|𝑖⟩}), by using
coherent states in the IR region. We describe the renormalization group flow of the ground state
|Ψ⟩Λ by a unitary operator𝑈 as

|Ψ⟩Λ = 𝑈 (Λ,ΛUV) |Ψ⟩ΛUV , (3.4)

where Λ is the effective cutoff and ΛUV is the UV cutoff.
We assume that𝑈 (Λ,ΛUV) can be represented as

𝑈 (Λ,ΛUV) = 𝑇 exp
[∫ ΛUV

Λ

𝑑Λ′

Λ′ 𝑋Λ′

]
. (3.5)

Here 𝑇 is an ordering operator defined by

𝑇 (𝑋Λ𝑋Λ′) =
{
𝑋Λ𝑋Λ′ for Λ < Λ′

𝑋Λ′𝑋Λ for Λ > Λ′ . (3.6)

As in the context of continuum MERA[9, 10], it is natural to call an anti-Hermitian operator 𝑋Λ
the disentangler because it removes entanglement and reduces degrees of freedom along with the
renormalization group flow.

By acting −Λ𝜕Λ on both sides of (3.4) and using (3.5), we obtain

−Λ𝜕Λ |Ψ⟩Λ = 𝑋Λ |Ψ⟩Λ . (3.7)

This is the flow equation for the ground state. If we obtain the scale dependence of the ground state
in another way, we can calculate 𝑋Λ by using this equation.
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By acting on the 𝑞-level states the inverse of the unitary operator𝑈, we encode them into states
in the UV region. Namely, we identify𝑈† with𝑊 in (A.1) and have

|𝑟⟩ = 𝑈†(Λ,ΛUV) |𝑟⟩ . (3.8)

We find that the condition (A.2) is satisfied in an approximate sense in the IR region and exactly
in the IR limit for a class of operators which correspond to 𝐸𝑎 in (A.2). We verify this to the first
order in the perturbation theory, using the free and perturbative solutions (2.12) and (2.14) of the
ERG equation(2.4).

4. Renormalization group flow of the ground state

In this section, we derive the renormalization group flow of the ground state in the perturbation
theory for evaluating the Knill-Laflamme condition in the next section.

4.1 The effective Hamiltonian for scalar field theory

We define the creation and annihilation operators at the scale Λ by2

[𝑎Λ, 𝑝, 𝑎†Λ, 𝑝′] = 𝛿(𝑝 − 𝑝′) , [𝑎Λ, 𝑝, 𝑎Λ, 𝑝′] = 0 , [𝑎†
Λ, 𝑝
, 𝑎

†
Λ, 𝑝′] = 0 , (4.1)

𝑎Λ, 𝑝 |Ψ⟩Λ = 0 . (4.2)

Then, the renormalization group flow of the creation and annihilation operators is defined by

𝑎Λ, 𝑝 = 𝑈 (Λ,ΛUV)𝑎ΛUV, 𝑝𝑈 (Λ,ΛUV)† ,
𝑎
†
Λ, 𝑝

= 𝑈 (Λ,ΛUV)𝑎†ΛUV, 𝑝
𝑈 (Λ,ΛUV)† . (4.3)

Or equivalently,

− Λ𝜕Λ𝑎Λ, 𝑝 = [𝑋Λ, 𝑎Λ, 𝑝] ,
− Λ𝜕Λ𝑎

†
Λ, 𝑝

= [𝑋Λ, 𝑎†Λ, 𝑝] . (4.4)

(4.1) and (4.2) are preserved under (4.3) and (4.4). For later convenience, we also introduce linear
combinations of the creation and annihilation operators as

𝑎+Λ, 𝑝 = 𝑎Λ, 𝑝 + 𝑎†Λ,−𝑝
, (4.5)

𝑎−Λ, 𝑝 = 𝑎Λ, 𝑝 − 𝑎†Λ,−𝑝
. (4.6)

The flow equations for the above operators follow from (4.4):

−Λ𝜕Λ𝑎±Λ =

[
𝑋Λ, 𝑎

±
Λ, 𝑝

]
. (4.7)

2It seems nontrivial whether there exist the creation and annihilation operators that satisfy (4.1) and (4.2). In the
following, we show this is indeed the case to the first order in the perturbation theory.
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In this paper, we consider a perturbation theory in which we expand |Ψ⟩Λ, 𝑋Λ, 𝑎Λ, 𝑝 and 𝑎±
Λ, 𝑝

in terms of 𝛼 as follows:

|Ψ⟩Λ = |Ψ (0)⟩Λ + 𝛼 |Ψ (1)⟩Λ + 𝛼2 |Ψ (2)⟩Λ + · · · ,

𝑋Λ = 𝑋
(0)
Λ

+ 𝛼𝑋 (1)
Λ

+ 𝛼2𝑋
(2)
Λ

+ · · · ,

𝑎Λ, 𝑝 = 𝑎
(0)
Λ, 𝑝

+ 𝛼𝑎 (1)
Λ, 𝑝

+ 𝛼2𝑎
(2)
Λ, 𝑝

+ · · · ,

𝑎±Λ, 𝑝 = 𝑎
±(0)
Λ, 𝑝

+ 𝛼𝑎±(1)
Λ, 𝑝

+ 𝛼2𝑎
±(2)
Λ, 𝑝

+ · · · . (4.8)

In the remaining part of this section, we use the 𝜑-representation.

4.2 Free field theory

In this subsection, we examine the free field theory, namely the zeroth order in 𝛼. The creation
and annihilation operators for the free Hamiltonian 𝐻0,Λ are given by

𝑎
(0)
Λ, 𝑝

=
1
√

2

(√︂
𝜔Λ, 𝑝

𝐾𝑝

𝜑(𝑝) +

√︄
𝐾𝑝

𝜔Λ, 𝑝

𝛿

𝛿𝜑(−𝑝)

)
,

𝑎
(0)†
Λ, 𝑝

=
1
√

2

(√︂
𝜔Λ, 𝑝

𝐾𝑝

𝜑(−𝑝) −

√︄
𝐾𝑝

𝜔Λ, 𝑝

𝛿

𝛿𝜑(𝑝)

)
. (4.9)

Then, the free Hamiltonian is rewritten as

𝐻0,Λ =

∫
𝑝

𝜔Λ, 𝑝𝑎
(0)
Λ, 𝑝

†𝑎 (0)
Λ, 𝑝

+ 𝑉
2

∫
𝑝

𝜔Λ, 𝑝 , (4.10)

where 𝑉 is the volume of space.
By acting −Λ𝜕Λ on the free solution(2.12) of the ERG equation(2.4), we obtain

−Λ𝜕ΛΨ (0)
Λ

= −1
4

∫
𝑝

¤𝜔Λ, 𝑝

𝜔Λ, 𝑝

𝑎
(0)†
Λ,−𝑝

𝑎
(0)†
Λ, 𝑝

Ψ
(0)
Λ

. (4.11)

Taking the anti-Hermiticity into account, we read off 𝑋
(0)
Λ

as

𝑋
(0)
Λ

= −1
4

∫
𝑝

¤𝜔Λ, 𝑝

𝜔Λ, 𝑝

(
𝑎
(0)†
Λ,−𝑝

𝑎
(0)†
Λ, 𝑝

− 𝑎 (0)
Λ, 𝑝

𝑎
(0)
Λ,−𝑝

)
, (4.12)

where we use 𝑎 (0)
Λ, 𝑝

Ψ
(0)
Λ

= 0.
Finally, we derive the scaling of the creation and annihilation operators in the free field theory.

While we can easily read off from (4.9), we derive it by using the disentangler as a preparation for
the analysis of the interacting theory. By using (4.12), we calculate the zeroth order of (4.7) in 𝛼 as

−Λ𝜕Λ𝑎±(0)Λ, 𝑝
=

[
𝑋

(0)
Λ
, 𝑎

±(0)
Λ, 𝑝

]
= ±1

2
¤𝜔Λ, 𝑝

𝜔Λ, 𝑝

𝑎
±(0)
Λ, 𝑝

, (4.13)
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from which, we obtain the scaling for 𝑎±(0) as

𝑎
+(0)
Λ, 𝑝

=

√︂
𝜔Λ, 𝑝

𝜔UV, 𝑝
𝑎
+(0)
UV, 𝑝 , (4.14)

𝑎
−(0)
Λ, 𝑝

=

√︂
𝜔UV, 𝑝

𝜔Λ, 𝑝

𝑎
−(0)
UV, 𝑝 , (4.15)

where 𝜔UV, 𝑝 and 𝑎±(0)UV, 𝑝 stand for 𝜔Λ, 𝑝 and 𝑎±(0)
Λ, 𝑝

with Λ = ΛUV, respectively.

4.3 The first order in the perturbation theory

In this subsection, we examine the first order in the perturbation theory. By expanding (3.7),
we obtain

−Λ𝜕ΛΨ (0)
Λ

= 𝑋
(0)
Λ

Ψ
(0)
Λ

, (4.16)

−Λ𝜕ΛΨ (1)
Λ

= 𝑋
(0)
Λ

Ψ
(1)
Λ

+ 𝑋 (1)
Λ

Ψ
(0)
Λ

. (4.17)

Substituting perturbative solution (2.14) and (4.16) into (4.17) leads to

−Λ𝜕Λ𝐴Λ = 𝑋
(1)
Λ

+ [𝑋 (0)
Λ
, 𝐴Λ] . (4.18)

One can determine 𝑋 (1)
Λ

if 𝐴Λ is known.
From (4.4), we obtain

− Λ𝜕Λ𝑎
(0)
Λ, 𝑝

=

[
𝑋

(0)
Λ
, 𝑎

(0)
Λ, 𝑝

]
, (4.19)

− Λ𝜕Λ𝑎
(1)
Λ, 𝑝

=

[
𝑋

(1)
Λ
, 𝑎

(0)
Λ, 𝑝

]
+

[
𝑋

(0)
Λ
, 𝑎

(1)
Λ, 𝑝

]
. (4.20)

We can show that

𝑎
(1)
Λ, 𝑝

= [𝐴Λ, 𝑎 (0)Λ, 𝑝
] . (4.21)

5. Quantum error correction by the renormalization group

5.1 Encoding 𝑞-level states

In this subsection, we do not restrict ourselves to the free field theory. We use only the
properties of the creation and annihilation operators (4.1) and (4.2). In order to realize a 𝑞-level
system in scalar field theories, following [4], we use coherent states defined by

| 𝑓 ⟩Λ = exp
[∫

𝑝

(
𝑓 (𝑝)𝑎†

Λ
(−𝑝) − 𝑓 ∗(−𝑝)𝑎Λ(𝑝)

)]
|Ψ⟩Λ , (5.1)

where 𝑓 is an arbitrary function. Note that

𝑎Λ, 𝑝 | 𝑓 ⟩Λ = 𝑓 (𝑝) | 𝑓 ⟩Λ . (5.2)

The inner product between coherent states is given by

Λ⟨ 𝑓 ′ | 𝑓 ⟩Λ = exp
[
−1

2

∫
𝑝

(
| 𝑓 ′(𝑝) |2 − 2 𝑓 ′∗(𝑝) 𝑓 (𝑝) + | 𝑓 (𝑝) |2

)]
, (5.3)

8
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which implies that Λ⟨ 𝑓 | 𝑓 ⟩Λ = 1. We construct 𝑞-level states by choosing 𝑓 = 𝑟 𝑓0 with 𝑓0 being a
real function and 𝑟 = 0, 1, . . . , 𝑞 − 1 :

|𝑟 𝑓0⟩Λ = exp
[
−𝑟

∫
𝑝

𝑓0(−𝑝)
(
𝑎Λ, 𝑝 − 𝑎†Λ,−𝑝

)]
|Ψ⟩Λ

= exp
[
−𝑟

∫
𝑝

𝑓0(−𝑝)𝑎−Λ, 𝑝
]
|Ψ⟩Λ . (5.4)

The inner product between these states is given by

Λ⟨𝑟 ′ 𝑓0 |𝑟 𝑓0⟩Λ = exp
[
−1

2
(𝑟 − 𝑟 ′)2

∫
𝑝

| 𝑓0(𝑝) |2
]
. (5.5)

Note that these states form an orthonormal basis in an approximate way when
∫
𝑝
| 𝑓0 |2 is large

enough. When 𝑓0(𝑥) is localized around 𝑥 = 𝑥0, the 𝑞-level states are realized locally.
We encode the 𝑞-level states into states in the UV region as

|𝑟 𝑓0⟩UV = 𝑈†(Λ,ΛUV) |𝑟 𝑓0⟩Λ , (5.6)

where𝑈†(Λ,ΛUV) is the inverse of the unitary operator defined in (3.4). This equation implies that
we encode information defined in the IR region with small Λ into the UV region in terms of the
inverse of the renormalization group3.

In what follows, we consider error operators 𝐷 [𝑔] defined in the IR region

𝐷 [𝑔] = exp
[∫

𝑝

𝑔(−𝑝)
(
𝑎Λ, 𝑝 − 𝑎†Λ,−𝑝

)]
= exp

[∫
𝑝

𝑔(−𝑝)𝑎−Λ, 𝑝
]
, (5.7)

where 𝑔 is an arbitrary real function. Note that 𝐷 [𝑔] is an operator that generates a coherent state
in the IR region, namely 𝐷 [𝑔] |Ψ⟩Λ is a coherent state. We show that quantum error correction
condition or the Knill-Laflamme condition[11]

UV⟨𝑟 ′ 𝑓0 | 𝐷† [𝑔]𝐷 [ℎ] |𝑟 𝑓0⟩UV = 𝑀 [𝑔, ℎ] UV⟨𝑟 ′ 𝑓0 | 𝑟 𝑓0⟩UV , (5.8)

with 𝑀 [𝑔, ℎ] being a Hermitian matrix on the functional vector space is approximately satisfied in
the IR region (exactly satisfied in the Λ → 0 limit). Namely, we see that span({|𝑟 𝑓0⟩UV}) gives a
code subspace that is correctable for the errors caused by 𝐷 [𝑔]. In order to show this, it is enough
to calculate

UV⟨𝑟 ′ 𝑓0 | 𝐷 [𝑔] |𝑟 𝑓0⟩UV , (5.9)

for any real functions 𝑔, because 𝐷† [𝑔]𝐷 [ℎ] = 𝐷 [ℎ − 𝑔].

3Note that𝑈 (Λ,ΛUV) does not necessarily give the renormalization group flow of |𝑟 𝑓0⟩Λ, since it is defined as giving
that of the ground state. We just define the encoding of |𝑟 𝑓0⟩Λ by𝑈† (Λ,ΛUV).

9
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5.2 Free field theory

In this subsection, we show that the error correction condition is satisfied in the free scalar field
theory. (5.9) is calculated as follows.

UV⟨𝑟 ′ 𝑓0 |𝐷 [𝑔] |𝑟 𝑓0⟩UV

= UV⟨𝑟 ′ 𝑓0 | exp
[∫

𝑝

𝑔(−𝑝)𝑎−(0)
Λ, 𝑝

]
|𝑟 𝑓0⟩UV

= UV⟨𝑟 ′ 𝑓0 | exp
[∫

𝑝

𝑔(−𝑝)
√︂
𝜔UV, 𝑝

𝜔Λ, 𝑝

𝑎
−(0)
UV, 𝑝

]
|𝑟 𝑓0⟩UV

= UV⟨𝑟 ′ 𝑓0 | exp
[
−

∫
𝑝

(
𝑟 𝑓0(−𝑝) − 𝑔(−𝑝)

√︂
𝜔UV, 𝑝

𝜔Λ, 𝑝

)
𝑎
−(0)
UV, 𝑝

]
|Ψ⟩UV

=
UV

〈
𝑟 ′ 𝑓0

���� 𝑟 𝑓0 − √︂
𝜔UV

𝜔Λ

𝑔

〉
UV

= exp
[
−1

2

∫
𝑝

(
−2(𝑟 − 𝑟 ′)

√︂
𝜔UV, 𝑝

𝜔Λ, 𝑝

𝑔(−𝑝) 𝑓0(𝑝) +
𝜔UV, 𝑝

𝜔Λ, 𝑝

|𝑔(𝑝) |2
)]

UV⟨𝑟 ′ 𝑓0 | 𝑟 𝑓0⟩UV ,

(5.10)

where we used (5.3). The exponent is small enough in the IR region with Λ/𝑚 ≪ 1. Thus, we
obtain

UV⟨𝑟 ′ 𝑓0 | 𝐷 [𝑔] |𝑟 𝑓0⟩UV ∼ UV⟨𝑟 ′ 𝑓0 | 𝑟 𝑓0⟩UV . (5.11)

Namely, the Knill-Laflamme condition is satisfied in an approximate sense4. The deviation from
the exact condition can be read off from (5.10). In particular, the Knill-Laflamme condition is
exactly satisfied in the IR limit, Λ/𝑚 → 0.

5.3 Perturbation theory

In this subsection, we show that the Knill-Laflamme condition is satisfied to the first order in
the perturbation theory. In order to calculate (5.9), we begin with representing the error operator
up to the first order in 𝛼 in terms of 𝑎±UV, 𝑝 by using (4.21) and (2.15). The details of the calculation
are presented in [6]. The result is

𝐷 [𝑔] = exp
[∫

𝑝

𝑔(−𝑝)𝑎−,Λ(𝑝)
]
= exp [𝑋 + 𝛼𝑌 ] (5.12)

with

𝑋 =

∫
𝑝

𝑔(−𝑝)
√︂
𝜔UV, 𝑝

𝜔Λ, 𝑝

𝑎−UV, 𝑝 , (5.13)

𝑌 =

∫
𝑝

𝑔(−𝑝)
{
− 𝜆

4!

∫
𝑘1𝑘2𝑘3

𝐶1(𝑘1, 𝑘2, 𝑘3; 𝑝)𝑎−UV,−𝑘1
𝑎−UV,−𝑘2

𝑎−UV,−𝑘3

− 𝜆
8

∫
𝑘1𝑘2𝑘3

𝐶2(𝑘1, 𝑘2; 𝑘3; 𝑝)𝑎+UV,−𝑘1
𝑎+UV,−𝑘2

𝑎−UV,−𝑘3

− 𝜆
4

∫
𝑘

𝐶3(𝑘; 𝑝)𝑎+UV, 𝑝 − 𝐶4(𝑝)𝑎−UV, 𝑝

}
, (5.14)

4When
∫
𝑝
| 𝑓0 (𝑝) |2 → ∞, UV

〈
𝑟′ 𝑓0

�� 𝑟 𝑓0〉UV → 𝛿𝑟𝑟 ′ . In this case, the Knill-Laflamme condition is exactly satisfied
without taking the IR limit. This is true only in the free case.

10
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where

𝐶1(𝑘1, 𝑘2, 𝑘3; 𝑝)

= 𝛿(𝑘1 + · · · + 𝑝)
(

1
𝜔Λ,1 + · · · + 𝜔Λ, 𝑝

( 3∏
𝑖=1

√︄
𝐾𝑖

2𝜔Λ,𝑖

)√︄
𝐾𝑝

2𝜔Λ, 𝑝

√︂
𝜔UV,1𝜔UV,2𝜔UV,3

𝜔Λ,1𝜔Λ,2𝜔Λ,3

− 1
𝜔UV,1 + · · · + 𝜔UV, 𝑝

( 3∏
𝑖=1

√︄
𝐾𝑖

2𝜔UV,𝑖

)√︄
𝐾𝑝

2𝜔UV, 𝑝

√︂
𝜔UV, 𝑝

𝜔Λ, 𝑝

)
,

(5.15)

𝐶2(𝑘1, 𝑘2; 𝑘3; 𝑝)

= 𝛿(𝑘1 + · · · + 𝑝)
(

1
𝜔Λ,1 + · · · + 𝜔Λ, 𝑝

( 3∏
𝑖=1

√︄
𝐾𝑖

2𝜔Λ,𝑖

)√︄
𝐾𝑝

2𝜔Λ, 𝑝

√︂
𝜔Λ,1𝜔Λ,2

𝜔UV,1𝜔UV,2

√︂
𝜔UV,3

𝜔Λ,3

− 1
𝜔UV,1 + · · · + 𝜔UV, 𝑝

( 3∏
𝑖=1

√︄
𝐾𝑖

2𝜔UV,𝑖

)√︄
𝐾𝑝

2𝜔UV, 𝑝

√︂
𝜔UV, 𝑝

𝜔Λ, 𝑝

)
,

(5.16)

𝐶3(𝑘; 𝑝) = 1
2𝜔Λ, 𝑝 + 2𝜔Λ,𝑘

𝐾𝑝

2𝜔Λ, 𝑝

𝐾𝑘

2𝜔Λ,𝑘

√︂
𝜔Λ, 𝑝

𝜔UV, 𝑝
− 1

2𝜔UV, 𝑝 + 2𝜔UV,𝑘

𝐾𝑝

2𝜔UV, 𝑝

𝐾𝑘

2𝜔UV,𝑘

√︂
𝜔UV, 𝑝

𝜔Λ, 𝑝

,

(5.17)

𝐶4(𝑝) =
√︂
𝜔UV, 𝑝

𝜔Λ, 𝑝

[(
𝛿𝑚2

Λ

2
+ 𝜆

4!

∫
𝑞

6𝐾𝑞

2𝜔Λ,𝑞

)
𝐾𝑝

2𝜔2
Λ, 𝑝

−
(
𝛿𝑚2

UV

2
+ 𝜆

4!

∫
𝑞

6𝐾𝑞

2𝜔UV,𝑞

)
𝐾𝑝

2𝜔2
UV, 𝑝

]
. (5.18)

Here 𝜔Λ,𝑖 , 𝜔UV,𝑖 and 𝐾𝑖 stand for 𝜔Λ,𝑘𝑖 , 𝜔UV,𝑘𝑖 and 𝐾𝑘𝑖 , respectively. Note that 𝐶1(𝑘1, 𝑘2, 𝑘3; 𝑝)
is symmetric with respect to the permutation of 𝑘1, 𝑘2 and 𝑘3 while 𝐶2(𝑘1, 𝑘2; 𝑘3; 𝑝) is symmetric
with respect to the permutation of 𝑘1 and 𝑘2.

The final result is

UV⟨𝑟 ′ 𝑓0 | 𝐷 [𝑔] |𝑟 𝑓0⟩UV

=
UV

〈
𝑟 ′ 𝑓0

���� 𝑟 𝑓0 − √︂
𝜔UV

𝜔Λ

𝑔

〉
UV

×
[
1 + 𝛼

{
− 𝜆

4!

∫
𝑝,𝑘1,𝑘2,𝑘3

𝑔(−𝑝)𝐶1(𝑘1, 𝑘2, 𝑘3; 𝑝)

×
{
(𝑟 − 𝑟 ′)3 𝑓0(−𝑘1) 𝑓0(−𝑘2) 𝑓0(−𝑘3) − 3(𝑟 − 𝑟 ′)2

√︂
𝜔UV,3

𝜔Λ,3
𝑓0(−𝑘1) 𝑓0(−𝑘2)𝑔(−𝑘3)

+3(𝑟 − 𝑟 ′)
√︂
𝜔UV,2𝜔UV,3

𝜔Λ,2𝜔Λ,3
𝑓0(−𝑘1)𝑔(−𝑘2)𝑔(−𝑘3)

−
√︂
𝜔UV,1

𝜔Λ,1
𝑔(−𝑘1)

√︂
𝜔UV,2

𝜔Λ,2
𝑔(−𝑘2)

√︂
𝜔UV,3

𝜔Λ,3
𝑔(−𝑘3)

}
+ 𝜆

8

∫
𝑝,𝑘1,𝑘2

𝑔(−𝑝)𝐶1(𝑘1, 𝑘2,−𝑘1 − 𝑘2; 𝑝)
{
(𝑟 − 𝑟 ′) 𝑓0(−𝑘2) −

√︂
𝜔UV,2

𝜔Λ,2
𝑔(−𝑘2)

}
11
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− 𝜆
8

∫
𝑝,𝑘1,𝑘2,𝑘3

𝑔(−𝑝)𝐶2(𝑘1, 𝑘2; 𝑘3; 𝑝)
{
(𝑟 − 𝑟 ′) (𝑟2 + 𝑟 ′2) 𝑓0(−𝑘1) 𝑓0(−𝑘2) 𝑓0(−𝑘3)

− 2(𝑟2 − 𝑟 ′2)
√︂
𝜔UV,1

𝜔Λ,1
𝑔(−𝑘1) 𝑓0(−𝑘2) 𝑓0(−𝑘3)

− (𝑟 + 𝑟 ′)2
√︂
𝜔UV,3

𝜔Λ,3
𝑓0(−𝑘1) 𝑓0(−𝑘2)𝑔(−𝑘3)

+ 2(𝑟 + 𝑟 ′)
√︂
𝜔UV,2𝜔UV,3

𝜔Λ,2𝜔Λ,3
𝑓0(−𝑘1)𝑔(−𝑘2)𝑔(−𝑘3)

+ (𝑟 − 𝑟 ′)
√︂
𝜔UV,1𝜔UV,2

𝜔Λ,1𝜔Λ,2
𝑔(−𝑘1)𝑔(−𝑘2) 𝑓0(−𝑘3)

−
√︂
𝜔UV,1𝜔UV,2𝜔UV,3

𝜔Λ,1𝜔Λ,2𝜔Λ,3
𝑔(−𝑘1)𝑔(−𝑘2)𝑔(−𝑘3)

}
+ 𝜆

4

∫
𝑝,𝑘1,𝑘2,𝑘3

𝑔(−𝑝)𝐶2(𝑘1, 𝑘2;−𝑘1; 𝑝)
{
(𝑟 + 𝑟 ′) 𝑓0(−𝑘2) −

√︂
𝜔UV,2

𝜔Λ,2
𝑔(−𝑘2)

}
− 𝜆

8

∫
𝑝,𝑘1,𝑘2,𝑘3

𝑔(−𝑝)𝐶2(𝑘1,−𝑘1; 𝑘3; 𝑝)
{
(𝑟 − 𝑟 ′) 𝑓0(−𝑘3) −

√︂
𝜔UV,3

𝜔Λ,3
𝑔(−𝑘3)

}
− 𝜆

4

∫
𝑝,𝑘

𝑔(−𝑝)𝐶3(𝑘; 𝑝)
{
(𝑟 + 𝑟 ′) 𝑓0(𝑝) −

√︂
𝜔UV, 𝑝

𝜔Λ, 𝑝

𝑔(𝑝)
}

−
∫
𝑝

𝑔(−𝑝)𝐶4(𝑝)
{
(𝑟 − 𝑟 ′) 𝑓0(𝑝) −

√︂
𝜔UV, 𝑝

𝜔Λ, 𝑝

𝑔(𝑝)
}

− 𝜆
4

∫
𝑝,𝑙,𝑘2,𝑘3

√︂
𝜔UV, 𝑝

𝜔Λ, 𝑝

𝑔(−𝑝)𝑔(−ℓ)𝐶2(𝑝, 𝑘2; 𝑘3; ℓ)

×
{(
𝑟2 − 𝑟 ′2

)
𝑓0(−𝑘2) 𝑓0(−𝑘3) − (𝑟 + 𝑟 ′)

√︂
𝜔UV,3

𝜔Λ,3
𝑓0(−𝑘2)𝑔(−𝑘3)

− (𝑟 − 𝑟 ′)
√︂
𝜔UV,2

𝜔Λ,2
𝑓0(−𝑘3)𝑔(−𝑘2) +

√︂
𝜔UV,2𝜔UV,3

𝜔Λ,2𝜔Λ,3
𝑔(−𝑘2)𝑔(−𝑘3)

}
+ 𝜆

12

∫
𝑝,𝑞,ℓ,𝑘

√︂
𝜔UV,𝑞𝜔UV, 𝑝

𝜔Λ,𝑞𝜔Λ, 𝑝

𝑔(−𝑝)𝑔(−ℓ)𝑔(−𝑞)

× 𝐶2(𝑝, 𝑞; 𝑘; ℓ)
{
(𝑟 − 𝑟 ′) 𝑓0(−𝑘) −

√︂
𝜔UV,𝑘

𝜔Λ,𝑘

𝑔(−𝑘)
} }]

.

(5.19)

In the IR region with Λ/𝑚 ≪ 1, we see that 𝐶1, 𝐶2 and 𝐶3 are obviously small enough. On the
other hand, we need to be careful for 𝐶4. It has 𝛿𝑚2

Λ
which behaves as (ΛUV/Λ)2 in the IR region5.

However, this term also has the factor of 𝐾𝑝/2𝜔2
Λ, 𝑝

which behaves as (Λ/ΛUV)2 which cancel the
above factor. Then, due to the pre-factor

√︁
𝜔UV/𝜔Λ, 𝑝, 𝐶4 is also small enough. Thus, the first-order

5(2.11) is rewritten in terms of the rescaled quantities as

−Λ 𝜕

𝜕Λ
𝛿𝑚2 (Λ) = 2𝛿𝑚2 (Λ) − 1

2
𝜆(Λ)

∫
𝑝

©­« 𝑑

2𝜔Λ, 𝑝
− 𝑝2

2𝜔3
Λ, 𝑝

ª®¬𝐾𝑝 .

.
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terms in the perturbation theory are small enough. We therefore obtain

UV⟨𝑟 ′ 𝑓0 | 𝐷 [𝑔] |𝑟 𝑓0⟩UV ∼ UV⟨𝑟 ′ 𝑓0 | 𝑟 𝑓0⟩UV (5.20)

in the IR region. Namely, the Knill-Laflamme condition is satisfied in an approximate sense. In
particular, it is exactly satisfied in the IR limit, Λ/𝑚 → 0 limit. We have shown that up to the
first order in the perturbation theory, the code subspace spanned by {|𝑟 𝑓0⟩} is error correctable for
𝐷 [𝑔], even in the interacting theory.

6. Conclusion and discussion

In this paper, we showed that quantum error correction is realized by the renormalization group
in scalar field theories. We constructed a 𝑞-level system by using coherent states in the IR region.
We encoded it in the UV region by acting on the states in the 𝑞-level system the inverse of the
unitary operator that gives the renormalization group flow of the ground state. We found that the
Knill-Laflamme condition is satisfied in an approximate sense in the IR region and exactly in the
IR limit for the operators that create coherent states. We confirmed this to the first order in the
perturbation theory.

Some future directions are in order. We would like to extend the analysis in this paper to
non-perturbative one, where the ERG equation for wave functionals (2.4) should be useful. It
is interesting to consider other realizations of 𝑞-level system in the IR region or other classes
of error operators. In such cases, other types of the inverse of the renormalization group may
be required. Indeed, since the renormalization group is a semi-group, taking the inverse of the
renormalization group [12–14] is nontrivial. The above directions should be relevant for revealing
a general relationship between the renormalization group and quantum error correction. As well
as the non-perturbative analysis, extension to gauge theories is important from the viewpoint of the
gauge/gravity correspondence, since the strongly coupled regime at large 𝑁 in the boundary theory
corresponds to classical gravity in the bulk. We hope to report developments in these directions in
the near future.
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A. The Knill-Laframme condition

Here we review the Knill-Laflamme condition[11] for quantum error correction This is the
sufficient and necessary condition that a code is correctable for errors. In quantum error correction,
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in order to protect quantum information possessed by span({|𝑖⟩}) from errors, span({|𝑖⟩}) is encoded
into a larger Hilbert space H . The encoding map𝑊 is defined by

|𝑖⟩ = 𝑊 |𝑖⟩ , (A.1)

where |𝑖⟩ are elements of H and 𝑊†𝑊 = 𝐼 is satisfied. span({|𝑖⟩}), which is a subspace of H , is
called the code subspace.

Suppose that the errors are described by error operators {𝐸𝑎} which are linear maps in H . The
Knill-Laflamme condition [11] is given by

⟨𝑖 |𝐸†
𝑎𝐸𝑏 | 𝑗⟩ = 𝑀𝑎𝑏 ⟨𝑖 | 𝑗⟩ , (A.2)

where 𝑀𝑎𝑏 are elements of a Hermitian matrix6. The Knill-Laflamme condition is said to be
satisfied in an approximate sense when (A.2) holds up to a small quantity.

B. The Polchinski equation

In this appendix, we briefly review the Polchinski equation[8] for scalar field theories. The
ERG equations for scalar field theories have in general the following structure [15–18]

−Λ 𝜕

𝜕Λ
𝑒−𝑆Λ [𝜙] =

∫
𝑝

𝛿

𝛿𝜙(𝑝0, 𝑝)

[
𝐺Λ [𝜙] (𝑝)𝑒−𝑆Λ [𝜙]

]
, (B.1)

whereΛ is the effective cutoff and 𝑆Λ is the effective action at the scaleΛ. The functional𝐺Λ [𝜙] (𝑝),
which also depends on 𝑝, is required to correspond to a continuum blocking procedure and to ensure
the UV regularization of the equation. The structure in Eq.(B.1) ensures the physical requirement
that the partition function is unchanged under the infinitesimal change of the effective cutoff Λ:

−Λ𝜕Λ𝑍 = −Λ𝜕Λ
∫

D𝜙𝑒−𝑆Λ [𝜙] =
∫
𝑝0, 𝑝

D𝜙 𝛿

𝛿𝜙(𝑝0, 𝑝)

[
𝐺Λ [𝜙] (𝑝0, 𝑝)𝑒−𝑆Λ [𝜙]

]
= 0 . (B.2)

A typical form of 𝐺Λ [𝜙] (𝑝0, 𝑝) is given by

𝐺Λ [𝜙] (𝑝0, 𝑝) =
1
2
¤𝐶Λ(𝑝0, 𝑝)

𝛿

𝛿𝜙(−𝑝0, 𝑝)
(𝑆Λ − 2𝑆) , (B.3)

where ¤𝐶Λ ≡ −Λ𝜕Λ𝐶Λ is an ERG integration kernel that incorporates the UV regularization and
specifies the coarse-graining procedure with 𝑆, which is called the seed action. The Polchinski
equation [8] is obtained by setting the seed action 𝑆 to 𝑆0, i.e., the free part of the effective action
𝑆Λ taking the form

𝑆0 =

∫
𝑝

1
2
𝜙(𝑝0, 𝑝)𝐶−1

Λ (𝑝0, 𝑝)𝜙(−𝑝0,−𝑝) . (B.4)

It is easy to check that 𝑆0 satisfies Eq.(B.1) with Eq.(B.3). Then, Eq.(B.1) reduces to

−Λ 𝜕

𝜕Λ
𝑒−𝑆Λ [𝜙] =

∫
𝑝0, 𝑝

𝛿

𝛿𝜙(𝑝0, 𝑝)

[
1
2
¤𝐶Λ(𝑝0, 𝑝)

{
𝛿

𝛿𝜙(−𝑝0,−𝑝)
(𝑆Λ − 2𝑆0)

}
𝑒−𝑆Λ [𝜙]

]
. (B.5)

6Note that the elements of { ˜|𝑖⟩} are linearly independent but not necessarily orthogonal.
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By decomposing the effective action into the free part and the interaction part as

𝑆Λ = 𝑆0 + 𝑆int , (B.6)

one obtains from Eq.(B.5) a conventional form of the Polchinski equation for 𝑆int:

−Λ 𝜕

𝜕Λ
𝑒−𝑆int = −1

2

∫
𝑝

¤𝐶Λ(𝑝0, 𝑝)
𝛿2

𝛿𝜙(𝑝0, 𝑝)𝛿𝜙(−𝑝0,−𝑝)
𝑒−𝑆int . (B.7)
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