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1. Introduction

A long-term goal of physics is to understand the phenomenon of quantum space to see if
consistent physical theories can be built on it and then to draw verifiable predictions from that
theory. One of the most studied examples is the fuzzy sphere, which has been studied in various
contexts [1-16].

The upside of the fuzzy sphere model is its simplicity and transparency, which is the reason
behind the numerous studies performed on it. The downside is obvious — the corresponding
geometry differs from the space we live in. Had we been living in a two-dimensional space, the
fuzzy sphere would be a good candidate for the model of quantum space. Instead, it is either an
interesting mathematical model to study basic properties of quantum space or a useful regularisation
tool, [17, 18]. In our previous contribution, we proposed a way of connecting fuzzy spherical layers
to form the fuzzy onion space. This model has two advantages: it is still nearly as simple as the
original fuzzy sphere model, and it describes a three-dimensional space.

The construction of the fuzzy onion as presented there, had two nontrivial steps. The first
was connecting various layers. If the fundamental length scale is fixed along increasing sphere
radius, one has to use matrices of increasing size. Comparing them, for example, to calculate the
radial derivative is naively impossible. This has been overcome by using the Fourier transform
and discarding or adding the unmappable degrees of freedom. The second step was to define the
full Laplace operator that captures the geometry of the space. There is some ambiguity in this
definition; ours differs from that of [19, 20]. Our goal was to reproduce the results of the model
of three-dimensional quantum space studied in [3, 4] that has been studied thoroughly and has
well-established commutative limit; some preliminary tests of the construction have been passed,
see [23].

2. The fuzzy sphere and the fuzzy onion

We begin with a brief reminder of the fuzzy sphere and the fuzzy onion constructions. Fields
on a sphere can be expanded into spherical harmonics, which form an infinite-dimensional repre-
sentation of the SO(3) generators L;:

f(G,(,D) = ZCle[m(e,‘,D),

Im
LY = Lili Yy =10+ DY, (1)
LyYim = mYi,

Finite-dimensional representations with momentum cut-off exist; that is, they have a maximum
value of /. In this case, the fields can be represented as N X N matrices Y,,,, where [ = N — 1 is the
maximal angular momentum. Fields are encoded into N X N matrices, and the angular momentum
eigenstates now form the basis for Hermitian matrices of this size.

The matrix algebra generated by Y7, is closed under multiplication and noncommutative. Both
fields on the sphere and Hermitian matrices can form an so(3) representation space, but they differ
in the momentum cut-off. The expansion coefficients serve as a map between functions on the
sphere and Hermitian matrices. If one imposes a momentum cut-off on the sphere, this map can be
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bijective. However, this comes with a loss — with a limited number of expansion terms, one can
only approximate the Dirac d-function, or in other words, the spatial resolution is limited. In this
way, Hermitian matrices can be used to encode fields on a sphere with limited spatial resolution.
The minimal distinguishable scale is given by the parameter A, where [£;,%;] = 2idg;j; X, and %;
are position operators.

The radius of the fuzzy sphere is r ~ NA, which means that if the minimal length scale is fixed,
to describe a larger sphere, one needs a larger matrix. Layers of fuzzy spheres with increasing
radius, denoted by the superscript (), can then be put together into a larger matrix of the form

o
fo1
@(Nm)
where the angular part of the Laplace operator acts on each of the layers separately
LD
L£Pp?
_EA (Num) q)(Nm) X

To define the radial part of the Laplace operator, first, we need to define an operator that connects
submatrices ®*) on consecutive layers:

UoW = oD e H(N +1), 4)
Do = oD eH(N-1), (5)
where H (N) is the set of Hermitian matrices of size N. This can be done by first doing the Fourier

expansion and then discarding the unmappable coefficients when going one layer down or adding
zeroes when going one layer up:

N-1 1 ( (
(N) _ N)y(N)
s - Z Cim Ylm >
I=1 m=—I
DT U\
N-1 1
(N+1) _ (N+1), (N+1)
A - Z Z Cim Ylm ’
=1 m=-1
where
cl(N) = N for: 1 <N-1,
,m I,m
CEVN:HI) = 0.

Using this, we are in a position to define the radial derivative and the radial part of the Laplace
operator. This is the source of some ambiguity as infinitely many definitions of the derivative
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coincide in the 4 — O limit. We chose a simple option that reproduces the ordinary energy
spectrum, but a more detailed study is needed here:

D¢(N+l) _ ﬂ¢(N—l)

3, @) = :
21

(6)

and
DN+ _2¢6N) L gp(N-1)
J . @)

Using those, we can define the full Laplace operator that acts on the W that describe fields that

PN =

exist on a series of concentric fuzzy spheres of increasing radius, that is, on the fuzzy onion space:

2
AW = (iﬁ( zi) _L_)lp ®)

r2 0, " or r2
It is trivial to define a potential on the fuzzy sphere using polynomials
V(¢) = Tr P(D), €))

where the trace operation replaces the integration — the same can be done on the fuzzy onion.
Still, we must include 477 as an integration measure as it differs across various fuzzy spheres. With
this definition, there is something disconcerting. While the fields are smeared on each layer due
to nonlocality, they are not smeared across various layers. This can be changed artificially by a
smearing procedure

¢(n) + Z @; ((Lli¢(n—i) + Di¢(n+i))

(n) _ i
S¢ T+ ya , (10)

for example with a| = %, asy = 0:

6 + LD 4 Lqqpn=D

So = , 11
¢ > 1D
and with it, we can take a potential that is nonlocal in each direction as
N, _
V(W) = Zv(sqs(f)). (12)

J=1

The other option is to consider the model for strings stretching between various layers as in [21].

3. Scalar field theory

The scalar field theory is defined by the action

SI¥) = 4n T r (a WK bW 4 e W), K= L, (13)

where r is a diagonal matrix that multiplies each layer with the corresponding radius. The mean
values of observables are defined as:

M
(O(WP)) = %/d‘Pe‘S(T)O(‘P), d¥ = ]_[ do™) (14)
N=1
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Basically, this is a Hermitian matrix model in which we consider only a subset of matrices of a
certain type and have a specific action that serves to define the integration measure.

Hermitian matrices are partially described by their eigenvalues, and for a pure potential matrix
model, the action depends only on them. The diagonalisation procedure and integrating the rest
of the degrees of freedom produces a new term in the integration measure that can be interpreted
as a logarithmic repulsion between the eigenvalues [22]. In the case of the field theories on fuzzy
spaces, the action involves a kinetic term that prevents diagonalisation, but analysing the behaviour
of the eigenvalues still proves to be useful for understanding the model.

Usually, one takes a = 1 and then produces the phase diagram of the model with respect to
b, c. While c is positive, b can be positive, zero or negative. For sufficiently large values of b, all
eigenvalues reside close to the origin; this is called the disordered phase. There are two options for
sufficiently negative values of b. There are two potential minima and either all eigenvalues are in
one of them, this is called the uniformly ordered phase, or are split between them due to repulsion;
this is the nonuniformly ordered phase.

As was shown in great detail in [13], the phase diagram for the scalar field theory on the fuzzy
sphere converges when expressed in rescaled parameters

b c

b = YR ¢= Tk (15)

This is interesting because, in our case, the value of N varies across layers. That means that
for fixed values of b and c, different layers might prefer different phases. The assumption in this
regard is that the outermost layer would set the behaviour as it has the largest number of degrees of
freedom.

To understand the behaviour of the model, we have performed Hamiltonian Monte Carlo (HMC)
studies of the model. While the fuzzy sphere model has been studied with N > 100, the fuzzy
onion model is more computationally demanding as one has to perform the Fourier transformation
at each step. Since this is an initial study, we chose N = 10 for the largest matrix.

There were two questions we wanted to answer. Does the radial part of the Laplace operator
work as intended and cause interaction between consecutive layers? Does the outermost layer
dictate the behaviour when there is a mismatch between preferred phases across various layers?

To answer the first question, we have set a simulation in a regime where we expected the field
theory to be in the nonuniformly ordered phase and saved a single configuration of the fields on the
fuzzy onion after a sufficient number of steps after the thermalisation had been achieved. In the
first simulation, the radial part of the kinetic term has been removed, and we can observe a range
of wild patterns on each layer, completely independent from each other, see Figure 1. This is an
obvious outcome as, without the radial term, the simulation is basically a simulation of distinct
fuzzy spheres. This serves as a benchmark of what noninteraction between the layers looks like.

Then, we repeated the same simulation but with the radial term included. The alignment is
now obvious; see Figure 1. In principle, we could have calculated correlation coefficients to be
more precise, but in this case, we believe the plots are sufficient to prove the point.

To answer the second question, we ran a simulation with the largest matrix of size N = 8, the
radial term included and values b = —=3.07,¢c = 12.8. The eigenvalues were measured after each
10° steps taken. The simulation was initiated in a uniformly ordered phase; that is, for each of the
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Figure 1: Plots of ®(6, ¢) in a nonuniformly ordered phase with @ = 1,b = =3,¢ = 5 and N = 10 and the
radial term missing (a) or present (b). We can see that including the radial term caused alignment across
consecutive layers. Figure taken from [23].

layers, all of the eigenvalues were in the same potential well. The simulations have been pushed
strongly, meaning the acceptance rate was close to 50%, and the phase seemed stable. However, it
turned out to be actually meta-stable only as around the step 220 x 10°, first one and then shortly
after, half of the eigenvalues on the outermost layer moved to the other potential well, and the field
moved to the nonuniformly ordered phase. This effect then cascaded down and shifted all but two
innermost layers to the same phase. We expect that in a properly ergodic simulation, actually, even
the second innermost layers would shift and then the innermost layer would move between two
layers.

4. Conclusion

We have performed an initial study of the model of the scalar field theory on the fuzzy onion
space. So far, the model behaves as expected. As we have shown in [23], the model reproduces
the results of the hydrogen atom problem in noncommutative space and can be used to study some
classical problems, such as the heat transfer.
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Figure 2: HMC trajectories for eigenvalues of ®™) on each of the layers. We can see that while all of them
started in the same phase, the change first happened at the outermost layer ®®) and moved down to the &%)
layer.

Here, we have discussed in more detail the behaviour of the scalar field theory. Again, the
model seems to be working as intended. The radial term allows the interaction of neighbouring
layers, and it causes not only the alignment of the fields but also a rather abrupt alignment of the
phases.

Obviously, more detailed studies are warranted. In the first regard, we are interested in the large
N limit of the model. Also, it would be interesting to see if fine-tuning the coefficients (b, ¢) would
allow for the coexistence of multiple phases. Another line of research is to verify various ways
of connecting the potential terms across various layers, either in the smearing or string formalism
mentioned earlier in this report.

Acknowledgments

This research was supported by VEGA 1/0703/20 grant and MUNI Award for Science and
Humanities funded by the Grant Agency of Masaryk University.

References

[1] J. Madore, Class. Quant. Grav. 9 (1992), 69-88

[2] J. Hoppe, Ph.D. thesis, MIT, 1982

[3] S. Kovacik and P. Presnajder, J. Math. Phys. 54 (2013), 102103

[4] V. Galikova, S. Kovacik and P. Presnajder, J. Math. Phys. 54 (2013), 122106
[5] P. Vitale and J. C. Wallet, JHEP 04 (2013), 115

[6] A. B. Hammou, M. Lagraa and M. M. Sheikh-Jabbari, Phys. Rev. D 66 (2002), 025025
doi:10.1103/PhysRevD.66.025025 [arXiv:hep-th/0110291 [hep-th]].

[7] J. Bagger and N. Lambert, JHEP 02 (2008), 105

[8] K. Skenderis and M. Taylor, Phys. Rept. 467 (2008), 117-171



The Fuzzy Onion: An Initial Study S. Kovacik

[9] S. Baez, A. P. Balachandran, B. Ydri and S. Vaidya, Commun. Math. Phys. 208 (2000),
787-798

[10] R.]J. Szabo, Phys. Rept. 378 (2003), 207-299

[11] H. Steinacker, PoS QGQGS2011 (2011), 004

[12] S. S. Gubser and S. L. Sondhi, Nucl. Phys. B 605 (2001), 395-424

[13] S. Kovécik and D. O’Connor, JHEP 10 (2018), 010

[14] B. Ydri, JHEP 03 (2014), 065

[15] M. Panero, JHEP 05 (2007), 082

[16] F. Garcia Flores, X. Martin and D. O’Connor, Int. J. Mod. Phys. A 24 (2009), 3917-3944

[17] T. Kuroki, Nucl. Phys. B 543 (1999), 466-484 doi:10.1016/S0550-3213(98)00815-3
[arXiv:hep-th/9804041 [hep-th]].

[18] W. Zhu, C. Han, E. Huffman, J. S. Hofmann and Y. C. He, Phys. Rev. X 13 (2023) no.2,
021009 doi:10.1103/PhysRevX.13.021009 [arXiv:2210.13482 [cond-mat.stat-mech]].

[19] A.B.Hammou, M. Lagraa and M. M. Sheikh-Jabbari, Coherent state induced star product on
R**3(lambda) and the fuzzy sphere, Phys. Rev. D 66 (2002), 025025, [arXiv:hep-th/0110291
[hep-th]].

[20] P. Vitale and J. C. Wallet, Noncommutative field theories on Rfl: Toward UV/IR mixing
freedom, JHEP 04 (2013), 115, [arXiv:1212.5131 [hep-th]].

[21] H. C. Steinacker and J. Tekel, JHEP 06 (2022), 136 doi:10.1007/JHEP06(2022)136
[arXiv:2203.02376 [hep-th]].

[22] J. Tekel, Acta Phys. Slov. 65 (2015) no.5, 369-468 [arXiv:1512.00689 [hep-th]].

[23] S. Kovécik and J. Tekel, [arXiv:2309.00576 [hep-th]].



	Introduction
	The fuzzy sphere and the fuzzy onion
	Scalar field theory
	Conclusion

