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1. Introduction

The Becchi-Rouet-Stora-Tyupin formalism [1–3], the BRST formalism in short-hand notation,
has played an important role in the Yang-Mills theory and superstring theory. This is because the
modern quantum field theories including superstring theory have been developed in the framework
of gauge theories. The fundamental principle of gauge theories lies in an invariance of the theories
under local gauge transformations. Let us recall that gauge symmetries are literally not symmetries
in the conventional sense of symmetries, which act on the configuration space and as a result lead
to indentical physics. Rather, gauge symmetries are a kind of redundancies in our description of the
physics when we work with the configuration space rather its quotient by gauge transformations.

In order to make a quantum field theory from a certain classical field theory with gauge
symmetries, somehow we must carry out a quatization by several different procedures. The most
modern procedure is to make use of the BRST formalism where to remove redundancies in our
description, the gauge symmetries of a classical action are fixed by suitable gauge-fixing conditions
and the corresponding Faddeev-Popov (FP) ghosts are added. Consequently, instead of the local
gauge symmetries, a new global and nilpotent symmetry, called the “BRST symmetry”, emerges,
and its BRST charge not only defines physical states as well as physical observables but also plays
a role in deriving the Ward-Takahashi identities among Green functions, which are needed for the
proof of the unitarity and renormalizability.

The BRST formalism of general relativity (GR) has been also constructed by Nakanishi by
a series of papers [4, 5] where the existence of a huge global symmetry, which is a Poincaré-
like IOSp(8|8) global symmetry, has been clarified, and the unitarity of the physical S-matrix has
been proved although its renormalizability is completely obscure. On the other hand, the BRST
formalism of quadratic gravity or higher-derivative gravity, of which the Einstein-Hilbert term is
supplemented with R2 and RµνRµν, has been also built in Refs. [6–8] where the renormalizability
is manifest [9] while the unitarity is violated by the presence of a massive tensor ghost.

In recent years we have constructed the BRST formalism of a gobally scale invariant gravity
[10], a locally scale invariant (or equivalently Weyl invariant) gravity [11], Weyl conformal gravity
in Weyl geometry [12], and conformal gravity [13]. Moreover, we have clarified the existence
of conformal symmetry and established the Zumino theorem [14] at the quantum level in general
Weyl invariant gravitational theories [15]. One of the main motivations behind these articles is
to resolve the issue of the perturbative non-renormalizability of general relativity. In the interest
of renormalizability, we are accustomed to altering the Einstein-Hilbert Lagrangian in general
relativity by adding to it the most general quadratic Lagrangian L of dimension four at most:

1
√−gL =

1
16πG

(R − 2Λ) + αr R2 − αcCµνρσCµνρσ, (1)

which is sometimes called quadratic gravity or higher-derivative gravity.1 However, a notorious
problem happens and it is associated with the last term involving conformal tensor Cµνρσ: As long
as this term exists in the Lagrangian, we have a spin-2 massive ghost which makes not only the
classical theory be unstable because of unbounded energy from below but also the quantum theory
be non-unitary owing to the ghost with negative norm.

1The Gauss-Bonnet theorem enables us to use the term CµνρσCµνρσ instead of RµνRµν .
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At extremely high energies, it is expected that the kinetic term dominates the mass term and as
a result all particles can be effectively regarded as massless particles. In such a situation, a global
or local scale symmetry naturally appears in addition to general coordinate invariance. Since the
global scale symmetry could be broken by the no-hair theorem of black holes in a curved space-time
[16], it is plausible to suppose that the local scale symmetry, which we call Weyl symmetry, plays a
role at high energies.

From this perspective, when we impose the Weyl symmetry on the Lagrangian (1) and require
that Einstein’s general relativity should be restored at low energies, we are forced to take account
of the following Lagrangian:

1
√−gL =

1
12
ϕ2R +

1
2
gµν∂µϕ∂νϕ − αcCµνρσCµνρσ . (2)

Note that in the unitary gauge ϕ =
√

3
4πG (G is the Newton constant) the terms except for conformal

gravity on the right-hand side (RHS) produce the Einstein-Hilbert term.
In this article, we briefly review the manifestly covariant canonical operator formalism of the

Weyl invariant gravity as defined in the Lagrangian (2) on the basis of the Becchi-Rouet-Stora-
Tyupin (BRST) formalism in Sections 2-6. The detail can be found in the original paper [13].
Furthermore, we propose a new idea on ghost confinement in terms of the BRST formalism in
Section 7. If the Weyl BRST transformation of the massive ghost has a bound state, then the
massive ghost is confined in the zero-norm states by the BRST-quartet mechanism, thereby the
physical S-matrix becoming unitary. This mechanism of the ghost confinement might pave the
way for a long-standing problem of the unitarity violation in quadratic gravity or higher-derivative
gravity. The Appendix gives various equal-time (anti)commutation relations in the linearized level,
which are needed in computing the four-dimensional (anti)commutation relations in Section 6.

2. Classical theory

Let us consider a classical gravitational theory which is invariant under both general coordinate
transformation (GCT) and Weyl transformation. Our classical Lagrangian consists of Weyl invariant
scalar-tensor gravity [17] and conformal gravity2

L0 = LWIST + LCG, (3)

where

LWIST =
√−g

(
1
12
ϕ2R +

1
2
gµν∂µϕ∂νϕ

)
,

LCG = −√−gαcCµνρσCµνρσ . (4)

Here ϕ is a real scalar field with a ghost-like kinetic term, R the scalar curvature, αc a dimensionless
positive coupling constant (αc > 0) and Cµνρσ is the well-known conformal tensor.

2We follow the notation and conventions of Misner-Thorne-Wheeler (MTW) textbook [16]. Lowercase Greek letters
µ, ν, . . . and Latin ones i, j, . . . are used for spacetime and spatial indices, respectively; for instance, µ = 0, 1, 2, 3 and
i = 1, 2, 3.
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In order to perform the canonical quantization, we have to rewrite LCG into the first-order
form since it involves fourth-order derivatives. To do that, we introduce an auxiliary symmetric
tensor Kµν = Kνµ and a Stückelberg-like vector field Aµ, which is needed to avoid the second-class
constraint coming from the Bianchi identity, and rewrite LCG as [6–8]

L(K)
CG
≡ √−g

{
γGµνKµν + α[(Kµν − ∇µAν − ∇νAµ)2 − (K − 2∇ρAρ)2]

}
, (5)

where Gµν ≡ Rµν − 1
2gµνR denotes the Einstein tensor, and γ and α are dimensionless coupling

constants which obey a relation

αc =
γ2

8α
, (6)

where α > 0. It is easy to verify that carrying out the path integral over Kµν in L(K)
CG

produces the
Lagrangian of conformal gravity LCG . Henceforth, as a classical Lagrangian Lc we take a linear
combination of LWIST and L(K)

CG

Lc ≡ LWIST + L(K)CG

=
√−g

{ 1
12
ϕ2R +

1
2
gµν∂µϕ∂νϕ + γGµνKµν

+ α[(Kµν − ∇µAν − ∇νAµ)2 − (K − 2∇ρAρ)2]
}
. (7)

The classical LagrangianLc possesses three local transformations, those are, infinitesimal gen-
eral coordinate transformation (GCT) δ(1), Weyl transformation δ(2) and Stückelberg transformation
δ(3). Concretely, the GCT takes the form

δ(1)gµν = −(∇µξν + ∇νξµ) = −(ξα∂αgµν + ∂µξαgαν + ∂νξαgαµ),
δ(1)ϕ = −ξα∂αϕ, δ(1)Kµν = −ξα∇αKµν − ∇µξαKαν − ∇νξαKµα,

δ(1)Aµ = −ξα∇αAµ − ∇µξαAα. (8)

As for the Weyl transformation, we have

δ(2)gµν = 2Λgµν, δ(2)ϕ = −Λϕ,
δ(2)Kµν =

γ

α
∇µ∇νΛ − 2(Aµ∂νΛ + Aν∂µΛ − gµνAα∂

α
Λ),

δ(2)Aµ = 0. (9)

Finally, the Stückelberg transformation is given by

δ(3)gµν = δ
(3)ϕ = 0, δ(3)Kµν = ∇µεν + ∇νεµ,

δ(3)Aµ = εµ . (10)

In the above, ξµ,Λ and εµ are infinitesimal transformation parameters.
Before closing this section, let us count the number of phyical degrees of freedom since it is

known that this counting is more subtle in higher derivative theories than in conventional second-
order derivative theories [18, 19]. In the formalism at hand, however, the introduction of the
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auxiliary field Kµν makes it possible to rewrite conformal gravity with fourth-order derivatives to a
second-order derivative theory, so we can apply the usual counting method. The fields gµν, ϕ,Kµν

and Aµ have 10, 1, 10 and 4 degrees of freedom, respectively. We have three kinds of local
symmetries, those are, the GCT, Weyl and Stückelberg symmetries with 4, 1 and 4 degrees of
freedom, respectively. Thus, we have totally (10 + 1 + 10 + 4) − (4 + 1 + 4) × 2 = 7 physical
degrees of freedom, which will turn out to be the massless graviton of 2 physical degrees with
positive-definite norm and the spin-2 massive ghost of 5 degrees with indefinite norm.

3. Quantum theory

To fix three local symmetries and obtain a BRST invariant quantum Lagrangian, we have to
introduce three kinds of gauge fixing conditions and the corresponding Faddeev-Popov (FP) ghost
terms in the classical Lagrangian (7). In our previous papers [10–12], we have constructed two
independent BRST transformations corresponding to general coordinate transformation (GCT) and
Weyl transformation in the sense that the two nilpotent BRST charges anticommute with each other.
To do so, it has been emphasized that a gauge condition for one local symmetry must respect the
other symmetry [11]. However, it will turn out that we cannot find such suitable gauge fixing
conditions in the present formalism since the gauge fixing condition for the Stückelberg gauge
transformation necessarily breaks the Weyl symmetry [13]. Thus, in this article, instead of making
three independent BRST charges we will construct only two independent BRST charges.

The suitable gauge condition for the GCT, which preserves the maximal global symmetry, is
given by “the extended de Donder gauge condition” [11]

∂µ(g̃µνϕ2) = 0, (11)

where we have defined g̃µν ≡ √−ggµν. This gauge condition breaks the GCT (8) but is invariant
under both the Weyl transformation (9) and the Stückelberg transformation (10).

As the gauge fixing condition for the Weyl transformation, we shall choose, what we call, “the
traceless gauge condition”:3

K − 2∇µAµ = 0. (12)

Let us note that the traceless gauge condition is invariant under the GCT (8) and the Stückelberg
transformation (10).

Finally, let us consider the gauge fixing condition for the Stückelberg transformation. It is here
that we cannot find the gauge fixing condition which breaks the Stückelberg transformation but is
invariant under both the GCT and the Weyl transformation. We shall take a gauge fixing condition

∇µKµν = 0. (13)

Since this gauge condition is manifestly invariant under the GCT but is not so under the Weyl
transformation, we cannot define three independent BRST charges, but only two independent BRST
charges. We will call this gauge condition (13) “the K-gauge”.

3As seen in Eq. (??), this gauge condition is equivalent to the condition of the vanishing scalar curvature, R = 0 at
the classical level [20–22].
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The BRST transformation corresponding to the GCT, which is called GCT BRST transfor-
mation δ

(1)
B , can be obtained from (8) by replacing the transformation parameter ξµ with the

Faddeev-Popov (FP) ghost cµ

δ
(1)
B gµν = −(∇µcν + ∇νcµ) = −(cα∂αgµν + ∂µcαgαν + ∂νcαgαµ),
δ
(1)
B ϕ = −cα∂αϕ, δ

(1)
B Kµν = −cα∇αKµν − ∇µcαKαν − ∇νcαKµα,

δ
(1)
B Aµ = −cα∇αAµ − ∇µcαAα, δ

(1)
B cµ = −cα∂αcµ,

δ
(1)
B c̄µ = iBµ, δ

(1)
B Bµ = 0, δ

(1)
B bµ = −cα∂αbµ, (14)

where c̄µ and Bµ are respectively an antighost and a Nakanishi-Lautrup (NL) field, and a new NL
field bµ is defined as

bµ = Bµ − icα∂α c̄µ, (15)

which will be used in place of Bµ in what follows.
On the other hand, because of the K-gauge condition (13), in order to construct another BRST

transformation which is independent of the GCT BRST transformation (14), we make a BRST
transformation in a such way that it involves both the Weyl and the Stückelberg transformations
simultaneously. This new BRST transformation δ(2)B , which we call “WS BRST transformation”,
can be made by replacing Λ and εµ with the FP ghosts c and ζµ, respectively, as follows

δ
(2)
B gµν = 2cgµν, δ

(2)
B ϕ = −cϕ,

δ
(2)
B Kµν =

γ

α
∇µ∇νc − 2(Aµ∂νc + Aν∂µc − gµνAα∂

αc) + ∇µζν + ∇νζµ,

δ
(2)
B Aµ = ζµ, δ

(2)
B c̄ = iB, δ

(2)
B c = δ(2)B B = 0,

δ
(2)
B ζ̄µ = iβµ, δ

(2)
B ζµ = δ

(2)
B βµ = 0, (16)

where c̄ and ζ̄µ are antighosts, and B and βµ are NL fields. In place of ζµ, it is more convenient to
introduce a new FP ghost ζ̃µ, which is defined as

ζ̃µ = ζµ +
γ

2α
∂µc. (17)

In addition to it, we introduce a new NL field b which is defined as

b = B + 2ic̄c. (18)

Using the new FP ghost ζ̃µ and the new b field, the WS BRST transformation for Kµν, Aµ, ζ̃µ and b
can be written as

δ
(2)
B Kµν = ∇µ ζ̃ν + ∇ν ζ̃µ − 2(Aµ∂νc + Aν∂µc − gµνAα∂

αc),

δ
(2)
B Aµ = ζ̃µ −

γ

2α
∂µc, δ

(2)
B ζ̃µ = 0, δ

(2)
B b = −2bc. (19)

In order to make the two nilpotent BRST transformations be anticommutative, i.e., {δ(1)B , δ
(2)
B } =

0, we must determine the remaining BRST transformations: As for the GCT BRST transformation,

6
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the BRST transformations on fields, which do not appear in (14) but appear in (16) are determined
in such a way that they coincide with their tensor structure, for instance,

δ
(1)
B c = −cα∂αc, δ

(1)
B ζ̃µ = −cα∇α ζ̃µ − ∇µcα ζ̃α. (20)

On the other hand, in cases of the WS BRST transformations, one simply defines the vanishing
BRST transformations, e.g.,

δ
(2)
B bµ = δ

(2)
B cµ = δ(2)B c̄µ = 0. (21)

Now that we have chosen gauge fixing conditions and established BRST transformations, we
can construct a gauge fixed and BRST invariant quantum Lagrangian by following the standard
recipe

Lq = Lc + iδ(1)B (g̃
µνϕ2∂µ c̄ν) + iδ(2)B {

√−g[c̄(K − 2∇µAµ) + ζ̄ν∇µKµν]}

=
√−g

{
1
12
ϕ2R +

1
2
gµν∂µϕ∂νϕ + γGµνKµν + α[(Kµν − ∇µAν

− ∇νAµ)2 − (K − 2∇ρAρ)2]
}
− g̃µνϕ2(∂µbν + i∂µ c̄λ∂νcλ)

− √−g b (K − 2∇µAµ) + i
γ

α
g̃µν∂µ c̄∂νc − √−g∇µKµνβν

+ i
√−g∇µ ζ̄ν[∇µ ζ̃ν + ∇ν ζ̃µ − 2(Aµ∂νc + Aν∂µc − gµνAα∂

αc)]
− i
√−gζ̄µ(2Kµν∂

νc − K∂µc), (22)

where surface terms are dropped.

4. Canonical commutation relations

In this section, we derive the concrete expressions of canonical conjugate momenta and set up
the canonical (anti)commutation relations (CCRs), which will be used in evaluating various equal-
time (anti)commutation relations (ETCRs) among fundamental variables. To simplify various
expressions, we obey the following abbreviations adopted in the textbook of Nakanishi and Ojima
[5]:

[A, B′] = [A(x), B(x ′)]|x0=x′0, δ3 = δ(®x − ®x ′),

f̃ =
1
g̃00 =

1
√−gg00 , (23)

where we assume that g̃00 is invertible.

7
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To remove second order derivatives of the metric involved in R and Gµν, and regard bµ as a
non-canonical variable, we perform the integration by parts and rewrite the Lagrangian (22) as

Lq = − 1
12

g̃µνϕ2(ΓσµνΓασα − ΓσµαΓασν) −
1
6
ϕ∂µϕ(g̃αβΓµαβ − g̃

µν
Γ
α
να)

+
1
2
g̃µν∂µϕ∂νϕ − γ

√−g(Γαµν∂α − Γαµα∂ν + Γ
β
µαΓ

α
βν − ΓαµαΓ

β
νβ)K̄

µν

+ α
√−g[(Kµν − ∇µAν − ∇νAµ)2 − (K − 2∇µAµ)2]

+ ∂µ(g̃µνϕ2)bν − ig̃µνϕ2∂µ c̄ρ∂νcρ − √−g b (K − 2∇µAµ) + i
γ

α
g̃µν∂µ c̄∂νc

− √−g∇µKµν · βν + i
√−g∇µ ζ̄ν[∇µ ζ̃ν + ∇ν ζ̃µ − 2(Aµ∂νc

+ Aν∂µc − gµνAα∂
αc)] − i

√−gζ̄µ(2Kµν∂
νc − K∂µc) + ∂µVµ, (24)

where K̄µν is defined as

K̄µν ≡ Kµν −
1
2
gµνK, K̄ ≡ gµνK̄µν, (25)

and a surface termVµ is given by

Vµ =
1
12
ϕ2(g̃αβΓµαβ − g̃

µν
Γ
α
να) + γ

√−g(ΓµαβK̄αβ − ΓαανK̄µν)

− g̃µνϕ2bν . (26)

Since the NL fields bµ, b and βµ have no derivatives in Lq, we can regard them as non-canonical
variables.

Using this Lagrangian (24), it is straightforward to derive the concrete expressions of canonical

8
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conjugate momenta. The result is given by

π
µν
g =

∂Lq

∂ Ûgµν

= − 1
24
√−gϕ2

[
−g0λgµνgστ − g0τgµλgνσ − g0σgµτgνλ + g0λgµτgνσ

+ g0τgµνgλσ + g0(µgν)λgστ
]
∂λgστ −

1
6
√−g

[
g0(µgν)ρ − gµνg0ρ

]
ϕ∂ρϕ

− 1
2
√−g(2g0(µgν)ρ − gµνg0ρ)(ϕ2bρ + 2bAρ)

− γ
√−g

[
∇(µK̄ν)0 − 1

2
∇0K̄µν − 1

2
gµν∂αK̄0α − gµνΓβαβK̄0α

− 2Γ0
ρσg

ρ(µK̄ν)σ + Γαρα(gρ(µK̄ν)0 + g0(µK̄ν)ρ)
]

+ 2α
√−g

[
2K̂0(µAν) − K̂µνA0 − K̂(2g0(µAν) − gµνA0)

]
+

1
2
√−g(2g0(µKν)ρ + g0ρKµν − gµνK0ρ)βρ,

− i
√−g(2g0αgβ(µ ζ̄ν) − ζ̄0gαµgβν)(∇(α ζ̃β) − 2A(α∂β)c + gαβAγ∂

γc)
− i
√−g[(∇0 ζ̄ (µ + ∇(µ ζ̄ |0 |)ζ̃ν) − ∇(µ ζ̄ν) ζ̃0],

πϕ =
∂Lq

∂ Ûϕ
= g̃0µ∂µϕ + 2g̃0µϕbµ +

1
6
ϕ(−g̃αβΓ0

αβ + g̃
0α
Γ
β
αβ),

π
µν
K =

∂Lq

∂ ÛKµν

= −γ√−g
[
(gµρgνσ − 1

2
gµνgρσ)Γ0

ρσ −
1
2
(g0µgνρ + g0νgµρ − gµνg0ρ)Γσρσ

]
− 1

2
√−g(g0µβν + g0νβµ),

π
µ
A
=

∂Lq

∂ ÛAµ

= −4α
√−g(K̂0µ − g0µK̂) + 2g̃0µb,

πcµ =
∂Lq

∂ Ûcµ = −ig̃0νϕ2∂ν c̄µ, π
µ
c̄ =

∂Lq

∂ Û̄cµ
= ig̃0νϕ2∂νcµ,

πc =
∂Lq

∂ Ûc = i
γ

α
g̃0µ∂µ c̄ − 2i

√−g[(∇0 ζ̄µ + ∇µ ζ̄0)Aµ − ∇ρ ζ̄ρA0] − i
√−g(2ζ̄µKµ

0 − ζ̄0K),

πc̄ =
∂Lq

∂ Û̄c
= −i

γ

α
g̃0µ∂µc,

π
µ

ζ̃
=

∂Lq

∂ Û̃ζµ
= i
√−g(∇µ ζ̄0 + ∇0 ζ̄µ),

π
µ

ζ̄
=

∂Lq

∂ Û̄ζµ
= −i
√−g[∇µ ζ̃0 + ∇0 ζ̃µ − 2(Aµ∂0c + A0∂µc − g0µAρ∂

ρc)], (27)

where we have defined the time derivative such as Ûgµν ≡ ∂gµν
∂t ≡

∂gµν
∂x0 ≡ ∂0gµν, and differentiation

of ghosts is taken from the right.
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Next let us set up the canonical (anti)commutation relations:

[gµν, πρλ′g ] = [Kµν, π
ρλ′
K ] = i

1
2
(δρµδλν + δλµδ

ρ
ν )δ3,

[ϕ, π′ϕ] = iδ3, [Aµ, π
ν′
A ] = iδνµδ

3,

{cµ, π′cν} = {c̄ν, π
µ′
c̄ } = iδµν δ

3, {c, π′c} = {c̄, π′c̄} = iδ3,

{ζ̄µ, πν′ζ̄ } = {ζ̃µ, π
ν′
ζ̃
} = iδνµδ

3, (28)

where the other (anti)commutation relations vanish. In setting up these CCRs, it is valuable to
distinguish non-canonical variables from canonical ones. Recall again that in our formalism, the
NL fields bµ, b and βµ are not canonical variables. On the basis of these CCRs, field equations
and the BRST transformations, it is lengthy but straightforward to calculate all the equal-time
(anti)commutation relations (ETCRs).

5. Linearized field equations

In this section, we analyze asymptotic fields under the assumption that all fields have their
own asymptotic fields and there is no bound state. We also assume that all asymptotic fields are
governed by the quadratic part of the quantum Lagrangian apart from possible renormalization.

First, let us define the gravitational field φµν on a flat Minkowski metric ηµν and the scalar
fluctuation ϕ̃ on a nonzero fixed scalar field ϕ0:

gµν = ηµν + φµν, ϕ = ϕ0 + ϕ̃. (29)

For sake of simplicity, we use the same notation for the other asymptotic fields as that for the
interacting fields. Then, up to surface terms the quadratic part of the quantum Lagrangian (22)
reads

Lq =
1
12
ϕ2

0

(1
4
φµν□φµν −

1
4
φ□φ − 1

2
φµν∂µ∂ρφν

ρ +
1
2
φµν∂µ∂νφ

)
+

1
6
ϕ0ϕ̃

(
−□φ + ∂µ∂νφµν

)
+

1
2
∂µ ϕ̃∂

µ ϕ̃ +
1
2
γ(2∂µ∂ρφνρ − □φµν

−∂µ∂νφ)K̄µν + α[(Kµν − ∂µAν − ∂νAµ)2 − (K − 2∂µAµ)2]

−
(
2ϕ0η

µν ϕ̃ − ϕ2
0φ

µν +
1
2
ϕ2

0η
µνφ

)
∂µbν − iϕ2

0∂µ c̄ρ∂µcρ

−b(K − 2∂µAµ) + i
γ

α
∂µ c̄∂µc − ∂µKµνβν + i∂µ ζ̄ν(∂µ ζ̃ν + ∂ν ζ̃µ). (30)

In this and next sections, the spacetime indices µ, ν, . . . are raised or lowered by the Minkowski
metric ηµν = ηµν = diag(−1, 1, 1, 1), and we define □ ≡ ηµν∂µ∂ν, φ ≡ ηµνφµν and K̄µν ≡
Kµν − 1

2ηµνK .
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Based on this Lagrangian, it is straightforward to derive the linearized field equations:

1
12
ϕ2

0

(
1
2
□φµν −

1
2
ηµν□φ − ∂ρ∂(µφν)ρ +

1
2
∂µ∂νφ +

1
2
ηµν∂ρ∂σφ

ρσ

)
+

1
6
ϕ0

(
−ηµν□ + ∂µ∂ν

)
ϕ̃ +

γ

2

(
2∂ρ∂(µK̄ν)

ρ − □K̄µν − ηµν∂ρ∂σK̄ρσ
)

+ϕ2
0

(
∂(µbν) −

1
2
ηµν∂ρbρ

)
= 0. (31)

1
6
ϕ0(□φ − ∂µ∂νφµν) + □ϕ̃ + 2ϕ0∂µbµ = 0. (32)

2∂ρ∂(µφν)ρ − □φµν − ∂µ∂νφ − ηµν(∂ρ∂σφρσ − □φ) +
4α
γ

[
Kµν

−∂µAν − ∂νAµ − ηµν(K − 2∂ρAρ)
]
+

2
γ
(−ηµνb + ∂(µβν)) = 0. (33)

∂ν
[
Kµν − ∂µAν − ∂νAµ − ηµν(K − 2∂ρAρ)

]
− 1

2α
∂µb = 0. (34)

∂µ ϕ̃ −
1
2
ϕ0

(
∂νφµν −

1
2
∂µφ

)
= 0. (35)

K − 2∂µAµ = 0. (36)
∂µKµν = 0. (37)
□cµ = □c̄µ = □c = □c̄ = 0. (38)
□ζ̃µ + ∂µ∂ν ζ̃ν = □ζ̄µ + ∂µ∂ν ζ̄ν = 0. (39)

Now we are ready to simplify the field equations obtained above. Before doing so, it is more
convenient to make use of the linearized BRST transformations in order to seek for the linearized
field equations for the NL fields bµ, b and βµ. Taking the linearized GCT BRST transformation
δ
(1L)
B c̄µ = ibµ of □c̄µ = 0 in Eq. (38) gives us

□bµ = 0. (40)

Similarly, the linearized WS BRST transformation δ(2L)B c̄ = ib of □c̄ = 0 in Eq. (38) produces

□b = 0. (41)

Finally, the linearized WS BRST transformation δ(2L)B ζ̄µ = iβµ of □ζ̄µ + ∂µ∂νζν = 0 in Eq. (39)
yields

□βµ + ∂µ∂νβν = 0. (42)

Of course, Eqs. (40), (41) and (42) can be also derived by solving the linearized field equations
directly.

Next, operating ∂µ on Eq. (42) leads to

□∂µβµ = 0. (43)

Moreover, acting □ on Eq. (42) and using Eq. (43), we have

□2βµ = 0, (44)

11
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which implies that βµ is a dipole field. In a perfectly similar manner, Eq. (39) gives us

□∂µ ζ̃µ = □2 ζ̃µ = 0, □∂µ ζ̄µ = □2 ζ̄µ = 0. (45)

Now it is easy to see that with the help of Eqs. (36) and (37), Eq. (34) provides4

□Aµ + ∂µ∂νAν +
1

2α
∂µb = 0. (46)

Given Eq. (41), this equation shows that the gauge field Aµ is a dipole field obeying

□∂µAµ = □2 Aµ = 0. (47)

By use of Eq. (36), this equation means that K is a simple field:

□K = 0. (48)

Next, to exhibit that the scalar field ϕ̃ is also a dipole field, let us take the trace of Eq. (33)
whose result can be written as

□φ − ∂µ∂νφµν =
1
γ
(4b − ∂µβµ), (49)

where Eq. (36) was utilized. Substituting this equation into Eq. (32) yields

□ϕ̃ = − ϕ0

6γ
(4b − ∂µβµ + 12γ∂µbµ). (50)

Operating □ on this equation produces the desired result that ϕ̃ is a dipole field:

□2ϕ̃ = 0, (51)

where we used Eqs. (40), (41) and (43). The divergence of Eq. (35) takes the form

□ϕ̃ =
1
2
ϕ0(∂µ∂νφµν −

1
2
□φ). (52)

Using three equations (49), (50) and (52), we can describe □φ and ∂µ∂νφµν as

□φ =
4

3γ
(4b − ∂µβµ − 6γ∂µbµ),

∂µ∂νφ
µν =

1
3γ
(4b − ∂µβµ − 24γ∂µbµ), (53)

which imply two equations:

□2φ = □∂µ∂νφµν = 0. (54)

4Note that as a consistency check, the WS BRST transformation of this equation gives rise to the linearized field
equation for ζ̃µ in Eq. (39) when we use the field equation □c = 0 and ignore the quadratic term bc.
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Here it is useful to express Kµν in terms of the other fields by starting with Eq. (33) and
utilizing some equations obtained thus far, whose result is described as

Kµν = ∂µAν + ∂νAµ +
γ

4α
□φµν −

γ

αϕ0
∂µ∂ν ϕ̃

− 1
2α

(
ηµνb + ∂(µβν) −

1
2
ηµν∂ρβ

ρ
)
. (55)

Finally, let us focus on the linearized Einstein equation (31). After some calculations using
several equations, it turns out Eq. (31) can be rewritten into a more compact form

□(□ − m2)φµν +
1

3γ
m2ηµν(4b − ∂ρβρ) −

4
3γ
∂µ∂νb +

4
3γ
∂µ∂ν∂ρβ

ρ

+8∂µ∂ν∂ρbρ − 24m2
(
∂(µbν) −

1
6
ηµν∂ρbρ

)
= 0, (56)

where we have defined mass squared, m2 ≡ ϕ2
0

24αc
=

αϕ2
0

3γ2 , which demands us to take the positive α
as assumed before. Furthermore, operating □ on (56), we can obtain the gravitational equation for
φµν:

□2
(
□ − m2

)
φµν = 0. (57)

Eq. (57) implies that there are both massless and massive modes in φµν. In order to disentangle
these two modes, let us act □ on Eq. (55):

□
(
Kµν − ∂µAν − ∂νAµ +

γ

αϕ0
∂µ∂ν ϕ̃ +

1
2α

∂(µβν)
)
=

γ

4α
□2φµν . (58)

This RHS can be further rewritten by using Eqs. (55) and (56) as

□
(
Kµν − ∂µAν − ∂νAµ +

γ

αϕ0
∂µ∂ν ϕ̃ +

1
2α

∂(µβν)
)

= m2
[
Kµν − ∂µAν − ∂νAµ +

γ

αϕ0
∂µ∂ν ϕ̃ +

1
2α

∂(µβν) +
1

6α
ηµν(b − ∂ρβρ)

+
1

3αm2 ∂µ∂ν(b − ∂ρβ
ρ − 6γ∂ρbρ) + 6γ

α

(
∂(µbν) −

1
6
ηµν∂ρbρ

)]
. (59)

Provided that we take a linear combination of fields given as

ψµν = Kµν − ∂µAν − ∂νAµ +
γ

αϕ0
∂µ∂ν ϕ̃ +

1
2α

∂(µβν) +
1

6α
ηµν(b − ∂ρβρ)

+
1

3αm2 ∂µ∂ν(b − ∂ρβ
ρ − 6γ∂ρbρ) + 6γ

α

(
∂(µbν) −

1
6
ηµν∂ρbρ

)
, (60)

we find that ψµν corresponds to an infamous massive ghost of spin-2 of 5 physical degrees of
freedom since it satisfies the equations of motion

(□ − m2)ψµν = ψ
µ
µ = ∂

νψµν = 0. (61)

On the other hand, if we choose the following linear combination

hµν = φµν −
12γ
ϕ2

0
ψµν +

2
ϕ0
ηµν ϕ̃, (62)
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we find that hµν obeys the field equation

□hµν = −
4

3γm2 ∂µ∂ν(b − ∂ρβ
ρ − 6γ∂ρbρ) − 24∂(µbν),

∂µhµν −
1
2
∂νh = 0. (63)

Then, Eq. (63) implies that hµν is a dipole field satisfying

□2hµν = 0. (64)

In the next section we will show that two transverse components of hµν is nothing but a massless
spin-2 graviton.

6. Analysis of physical states

Following the standard technique, we can calculate the four-dimensional (anti)commutation
relations (4D CRs) between asymptotic fields. The point is that the simple pole fields, for instance,
the Nakanishi-Lautrup field bµ(x) obeying □bµ = 0, can be expressed in terms of the invariant delta
function D(x) as

bµ(x) =
∫

d3zD(x − z)←→∂ z
0bµ(z). (65)

Here the invariant delta function D(x) for massless simple pole fields and its properties are described
as

D(x) = − i
(2π)3

∫
d4k ϵ(k0)δ(k2)eikx, □D(x) = 0,

D(−x) = −D(x), D(0, ®x) = 0, ∂0D(0, ®x) = δ3(x), (66)

where ϵ(k0) ≡ k0
|k0 | . With these properties, it is easy to see that the right-hand side (RHS) of Eq.

(65) is independent of z0, and this fact will be used in evaluating 4D CRs via the ETCRs shortly.
To illustrate the detail of the calculation, let us evaluate a 4D CR, [hµν(x), bρ(y)] explicitly.

Using Eq. (65), it can be described as

[hµν(x), bρ(y)]

=

∫
d3zD(y − z)←→∂ z

0[hµν(x), bρ(z)]

=

∫
d3z

(
D(y − z)[hµν(x), Ûbρ(z)] − ∂z0 D(y − z)[hµν(x), bρ(z)]

)
. (67)

As mentioned above, since the RHS of Eq. (65) is independent of z0, we put z0 = x0 in (67) and
use relevant ETCRs to obtain

[hµν(x), bρ(z)] = iϕ−2
0 (δ0

µηρν + δ
0
νηρµ)δ3(x − z),

[hµν(x), Ûbρ(z)] = −iϕ−2
0 (δkµηρν + δkνηρµ)∂kδ3(x − z). (68)
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Substituting Eq. (68) into Eq. (67), we can obtain the 4D CR

[hµν(x), bρ(y)] = iϕ−2
0 (ηµρ∂ν + ηνρ∂µ)D(x − y). (69)

In a similar manner, we can compute 4D CRs among ψµν, hµν and bµ etc. To do that, let us
note that since ψµν obeys a massive simple pole equation (61), it can be expressed in terms of the
invariant delta function ∆(x; m2) for massive simple pole fields as

ψµν(x) =
∫

d3z∆(x − z; m2)←→∂ z
0ψµν(z), (70)

where ∆(x; m2) is defined as

∆(x; m2) = − i
(2π)3

∫
d4k ϵ(k0)δ(k2 + m2)eikx, (□ − m2)∆(x; m2) = 0,

∆(−x; m2) = −∆(x; m2), ∆(0, ®x; m2) = 0,
∂0∆(0, ®x; m2) = δ3(x), ∆(x; 0) = D(x). (71)

As for hµν, since it is a massless dipole field as can be seen in Eq. (64), it can be described as

hµν(x) =
∫

d3z
[
D(x − z)←→∂ z

0hµν(z) + E(x − z)←→∂ z
0□hµν(z)

]
, (72)

where we have introduced the invariant delta function E(x) for massless dipole fields and its
properties are given by

E(x) = − i
(2π)3

∫
d4k ϵ(k0)δ′(k2)eikx, □E(x) = D(x),

E(−x) = −E(x), E(0, ®x) = ∂0E(0, ®x) = ∂2
0 E(0, ®x) = 0,

∂3
0 E(0, ®x) = −δ3(x). (73)

As in Eq. (65), we can also show that the RHS of both (70) and (72) is independent of z0.

By using the ETCRs summarized in Appendix A, after a lengthy but straightforward calculation,
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we find the following 4D CRs among ψµν, hµν, ϕ̃, bµ, b, βµ, cµ, c̄µ, c and c̄:

[ψµν(x), ψστ(y)] = −i
ϕ2

0
12γ2

[2
3
ηµνηστ − ηµσηντ − ηµτηνσ

+
1

m2
(
ηµσ∂ν∂τ + ηµτ∂ν∂σ + ηνσ∂µ∂τ + ηντ∂µ∂σ

−2
3
ηµν∂σ∂τ −

2
3
ηστ∂µ∂ν

)
− 4

3m4 ∂µ∂ν∂σ∂τ

]
∆(x − y; m2). (74)

[hµν(x), hστ(y)] = i
12
ϕ2

0

[
ηµνηστ − ηµσηντ − ηµτηνσ

+
1

m2
(
ηµσ∂ν∂τ + ηµτ∂ν∂σ + ηνσ∂µ∂τ + ηντ∂µ∂σ

−2
3
ηµν∂σ∂τ −

2
3
ηστ∂µ∂ν

)
− 4

3m4 ∂µ∂ν∂σ∂τ

]
D(x − y)

+i
12
ϕ2

0

(
ηµσ∂ν∂τ + ηµτ∂ν∂σ + ηνσ∂µ∂τ + ηντ∂µ∂σ

− 4
3m2 ∂µ∂ν∂σ∂τ

)
E(x − y). (75)

[hµν(x), ψστ(y)] = 0. (76)
[ψµν(x), bρ(y)] = [ψµν(x), b(y)] = [ψµν(x), βρ(y)] = 0. (77)
[hµν(x), bρ(y)] = iϕ−2

0 (ηµρ∂ν + ηνρ∂µ)D(x − y). (78)
[hµν(x), b(y)] = [hµν(x), βρ(y)] = 0. (79)
[ϕ̃(x), ϕ̃(y)] = −i[D(x − y) − 2m2E(x − y)]. (80)
[ϕ̃(x), ψστ(y)] = 0. (81)
[ϕ̃(x), hστ(y)] = 2iϕ−1

0 [ηστD(x − y) + 2∂σ∂τE(x − y)]. (82)

[ϕ̃(x), b(y)] = −i
α

γ
ϕ0D(x − y). (83)

[ϕ̃(x), bρ(y)] = [ϕ̃(x), βρ(y)] = 0. (84)
{cµ(x), c̄ν(y)} = −ϕ−2

0 δ
µ
ν D(x − y). (85)

{c(x), c̄(y)} = α

γ
D(x − y). (86)

In particular, note that the negative sign in front of the RHS of Eq. (74) implies that the massive
spin-2 field ψµν has indefinite norm so it is sometimes called “massive ghost”.

As usual, the physical Hilbert space |phys⟩ is defined by the Kugo-Ojima subsidiary conditions
[3]

Q(1)B |phys⟩ = Q(2)B |phys⟩ = 0, (87)

where Q(1)B and Q(2)B are respectively BRST charges corresponding to the GCT and WS BRST
transformations.
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The GCT BRST transformation for the asymptotic fields5 is given by

δ
(1)
B ψµν = 0, δ

(1)
B hµν = −(∂µcν + ∂νcµ), δ

(1)
B ϕ̃ = 0,

δ
(1)
B bµ = δ

(1)
B b = δ(1)B βµ = 0,

δ
(1)
B c̄µ = ibµ, δ

(1)
B cµ = δ(1)B c = δ(1)B c̄ = 0. (88)

And the WS transformation for the asymptotic fields takes the form

δ
(2)
B ψµν = δ

(2)
B hµν = 0, δ

(2)
B ϕ̃ = −ϕ0c,

δ
(2)
B bµ = δ

(2)
B b = δ(2)B βµ = 0,

δ
(2)
B c̄ = ib, δ

(2)
B cµ = δ(2)B c̄µ = δ

(2)
B c = 0. (89)

Given the physical state conditions (87) and the two BRST transformations (88) and (89), it
is easy to clarify the physical content of the theory under consideration: The physical modes are
composed of both a spin-2 massive ghost ψµν of mass m which has five physical degrees of freedom,
and a spin-2 massless graviton which corresponds to two components of hµν (for instance, in the
specific Lorentz frame pµ = (p, 0, 0, p), the graviton corresponds to 1√

2
(h11 − h22) and h12.). On the

other hand, the remaining four components of hµν, bµ, cµ and c̄µ belong to a GCT-BRST quartet
while ϕ̃, b, c and c̄ does a WS-BRST quartet. These quartets appear in the physical subspace only
as zero norm states by the Kugo-Ojima subsidiary conditions (87). It is worthwhile to stress that
the massive ghost with indefinite norm appears in the physical Hilbert space so the unitarity of the
physical S-matrix is explicitly violated when there is no bound state.

7. A possible mechanism of ghost confinement

In the previous section, we have shown that when there is no bound state, the unitarity of the
physical S-matrix is violated because of the presence of the massive ghost so the quantum conformal
gravity under consideration is not regarded as a physically meaningful theory. In this section, we
wish to present a possible mechanism of the confinement of the massive tensor ghost. Our idea
stems from previous two ideas, one of which is a mechanism of color confinement in quantum
chromodynamics (QCD) [23] and the other is the one of a massive ghost in the renormalizable
quadratic quantum gravity [24].

Before delving into the detail, let us recall the main idea of this confinement mechanism. In
the standard BRST formalism, using the BRST charge QB the physical Hilbert space |phys⟩ is
determined by

QB |phys⟩ = 0. (90)

For instance, in QCD, this physical state condition is a sufficient condition to prohibit the appearance
of unphysical modes such as the FP ghosts c and c̄, the scalar component of Aµ (or the Nakanishi-
Lautrup auxiliary field B) and the unphysical Higgs mode. The main idea of the confinement

5Recall that we use same fields for the interacting and the asymptotic fields. In this section, all the fields describe the
asymptotic ones.
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mechanism is to regard the very condition (90) as a sufficient condition for the confinement of the
color or the massive ghost as well.

Actually, we can prove the following statement [23]: If one can prove the existence of a
bound-state pole in C for any gauge-variant operator Φ transforming as

[iQB,Φ(x)] = C(x), (91)

then the operator Φ with vanishing FP ghost number is confined by the BRST-quartet mechanism
[3]. Let us make this statement be more precise. First, we assume that the field operators Φ(x) and
C(x) have respectively asymptotic fields χ(x) and γ(x). Then, Eq. (91) leads to

[iQB, χ(x)] = γ(x), (92)

which implies that the pair {χ(x), γ(x)} forms a BRST-doublet. Moreover, from [3], we can always
find another Heisenberg operator C(x) with the FP ghost number −1 having the asymptotic field
γ(x), which is FP-conjugate to γ(x). This asymptotic field γ(x) also forms another BRST-doublet

{QB, γ(x)} = β(x), (93)

where β(x) is the asymptotic field of an operator B(x) with vanishing FP ghost number, which is
defined as

{QB, C(x)} = B(x). (94)

Finally, the two pairs of BRST-doublets {χ(x), γ(x)} and {γ(x), β(x)} constitute a BRST-quartet
having the same quantum numbers such as mass and spin, and consequently these asymptotic fields
emerge in the physical Hilbert space only as the zero-norm states, which means the confinement of
the BRST-quartet.

In the articles [7, 24], the issue of the ghost confinement was considered in the quadratic
gravity (or higher-derivative gravity), but there seems to be a problem. In the quadratic gravity, the
local gauge symmetry is only the general coordinate symmetry, but this symmetry does not tell the
massive ghost from the graviton but treat them as tensor fields on an equal footing. Thus, if the
massive ghost were confined by the quartet mechanism, the graviton would be confined as well and
vice versa, which is against experiments.

On the other hand, in the quantum conformal gravity under consideration, there are three
different local gauge symmetries, from which one can construct two BRST transformations, those
are, GCT BRST transformation and WS BRST transformation. In particular, since the WS BRST
transformation includes Weyl BRST transformation, which has the ability to distinguish a massless
particle and a massive one, there might be a possibility of confining only the massive ghost without
touching the massless graviton. We will purpue this possibility in what follows.

For this purpose, let us first consider the generally covariant tensor fields corresponding to the
massive ghost (60) and the massless graviton (62):

Ψµν = Kµν − ∇µAν − ∇νAµ +
γ

αϕ0
∇µ∇νϕ +

1
2α
∇(µβν) +

1
6α

gµν(b − ∇ρβρ)

+
1

3αm2∇(µ∇ν)(b − ∇ρβ
ρ − 6γ∇ρbρ) + 6γ

α

(
∇(µbν) −

1
6
gµν∇ρbρ

)
,

Hµν = gµν −
12γ
ϕ2

0
Ψµν +

2
ϕ0

gµνϕ. (95)
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Next, taking the WS BRST transformation of Ψµν produces

δ
(2)
B Ψµν ≡ {iQ(2)B ,Ψµν}

=
γ

α
(1 − ϕ

ϕ0
)∇µ∇νc +

γ

αϕ0
(−4∇(µc∇ν)ϕ − c∇µ∇νϕ + gµν∇ρc∇ρϕ) + . . . , (96)

where ... denotes terms involving the Nakanishi-Lautrup fields, bµ, βµ and b.
At this point, we assume that the RHS has a bound state Cµν, i.e.,

{iQ(2)B ,Ψµν(x)} = Cµν(x). (97)

When we define the asymptotic fields, Ψµν → χµν and Cµν → γµν for |x0 | → ∞, Eq. (97) gives us

{iQ(2)B , χµν(x)} = γµν(x), (98)

which means that the pair {χµν(x), γµν(x)} forms a BRST-doublet.
Then, the operator Cµν, which is FP-conjugate to Cµν, can be made by replacing the ghost c by

the antighost c̄ on the RHS of Eq. (96). Moreover, we can construct an operator B with vanishing
FP ghost number by taking the WS BRST transformation

{QB, Cµν(x)} = Bµν(x). (99)

When we define the asymptotic fields, Cµν → γµν and Bµν → βµν for |x0 | → ∞, Eq. (99) leads to

{QB, γµν(x)} = βµν(x). (100)

The asymptotic fields {γµν(x), βµν(x)} therefore also form another BRST-doublet. Finally, the two
pairs of BRST-doublets {χµν(x), γµν(x)} and {γµν(x), βµν(x)} constitute a BRST-quartet and thus
these asymptotic fields appear in the physical Hilbert space in the zero-norm combinations, meaning
the confinement of the massive ghost.

The key observation is that even if the massive ghost is confined, there is a chance that the
graviton is not confined but appear in the physical Hilbert space with positive-definite norm. To
show this possibility, let us take the WS BRST transformation of Hµν in Eq. (95) whose result takes
the form

δ
(2)
B Hµν ≡ {iQ(2)B ,Hµν}

= 2(1 + ϕ

ϕ0
)cgµν −

12γ
ϕ2

0
Cµν . (101)

Provided that the first term on the RHS has also a bound state in such a way that it cancles out the
second term, we can have

{iQ(2)B ,Hµν} = 0. (102)

As a result, the massless graviton belongs to the physical Hilbert space with positive-definite norm.
We shall detail the issue of the ghost confinement in a separate publication in future.
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Appendix

A. Various equal-time commutation relations in the linearized level

In this Appendix, we simply write down various equal-time (anti)commutation relations
(ETCRs) which are useful in deriving the four-dimensional commutation relations (4D CRs) in
Eqs. (74)-(86). These ETCRs can be derived by using the canonical (anti)commutation relations
(CRs), the BRST transformations and the linearized field equations.

[ Ûφµν, φ′στ] = 16iϕ−2
0 δ0

µδ
0
νδ

0
σδ

0
τδ

3,

[φµν, Û̃ϕ′] = 4iϕ−1
0 δ0

µδ
0
νδ

3, [φµν, Ü̃ϕ′] = −4iϕ−1
0 (δ0

µδ
i
ν + δ

i
µδ

0
ν)∂iδ3,

[φµν, Ý̃ϕ′] = 4iϕ−1
0 (−m2ηµν + 2δ0

µδ
0
ν∆ + δ

i
µδ

j
ν∂i∂j)δ3,

[φµν, ÛA′σ] = 0, [φµν, ÜA′σ] = −i
1

2γ
ηµνδ

0
σδ

3,

[ Ûφµν,K ′στ] = −i
1
γ

[
ηµνηστ − ηµσηντ − ηµτηνσ + ηµνδ0

σδ
0
τ +

2
3
ηστδ

0
µδ

0
ν

−(ηµσδ0
τ + ηµτδ

0
σ)δ0

ν − (ηνσδ0
τ + ηντδ

0
σ)δ0

µ −
4
3
δ0
µδ

0
νδ

0
σδ

0
τ

]
δ3,

[φµν, b′ρ] = iϕ−2
0 (δ0

µηρν + δ
0
νηρµ)δ3, [φµν, Ûb′ρ] = −iϕ−2

0 (δiµηρν + δiνηρµ)∂iδ3,

[φµν, b′] = 0, [φµν, Ûb′] = −2i
α

γ
ηµνδ

3. (A.1)

[ Û̃ϕ, ϕ̃′] = iδ3, [ Û̃ϕ, Ü̃ϕ′] = i(∆ − 2m2)δ3, [ Ü̃ϕ, ϕ̃′] = [ Ü̃ϕ, Ü̃ϕ′] = 0,
[ Ý̃ϕ, Ü̃ϕ′] = i∆(∆ − 4m2)δ3,

[ Û̃ϕ,K ′στ] = i
ϕ0

6γ
(ηστ + δ

0
σδ

0
τ)δ3, [ Ü̃ϕ,K ′στ] = i

ϕ0

6γ
(δ0

σδ
i
τ + δ

0
τδ

i
σ)∂iδ3,

[ Ý̃ϕ,K ′στ] = i
ϕ0

6γ
[(ηστ + 2δ0

σδ
0
τ)∆ + δiσδ

j
τ∂i∂j]δ3,

[ Û̃ϕ, A′σ] = 0, [ Ü̃ϕ, A′σ] = [ϕ̃, ÜAσ
′] = i

ϕ0

4γ
δ0
σδ

3,

[ Ý̃ϕ, A′σ] = −i
ϕ0

4γ
δiσ∂iδ

3, [ Ü̃ϕ, ÜA′σ] = i
ϕ0

2γ
δ0
σ∆δ

3,

[ Û̃ϕ, b′] = −i
α

γ
ϕ0δ

3, [ Ü̃ϕ, Ûb′] = i
α

γ
ϕ0∆δ

3. (A.2)
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[ ÛKµν,K ′στ] = i
ϕ2

0
12γ2

[
−2

3
ηµνηστ + ηµσηντ + ηµτηνσ −

2
3
(δ0

µδ
0
νηστ + δ

0
σδ

0
τηµν)

+δ0
µδ

0
σηντ + δ

0
µδ

0
τηνσ + δ

0
νδ

0
σηµτ + δ

0
νδ

0
τηµσ +

4
3
δ0
µδ

0
νδ

0
σδ

0
τ

]
δ3,

[Kµν, ÛA′σ] = [Kµν, ÜA′σ] = 0,
[Kµν, β

′
σ] = i(δ0

µησν + δ
0
νησµ + δ

0
µδ

0
νδ

0
σ)δ3,

[Kµν, Ûβ′σ] = i(δ0
µδ

0
νδ

i
σ + δ

0
µδ

i
νδ

0
σ + δ

i
µδ

0
νδ

0
σ + ηµσδ

i
ν + ηνσδ

i
µ)∂iδ3,

[Kµν, Ûβ′σ] = i(δ0
µδ

0
νδ

i
σ + δ

0
µδ

i
νδ

0
σ + δ

i
µδ

0
νδ

0
σ + ηµσδ

i
ν + ηνσδ

i
µ)∂iδ3,

[Kµν, Üβ′σ] = i[(δ0
µηνσ + δ

0
νηµσ + 2δ0

µδ
0
νδ

0
σ)∆ + (δ0

µδ
i
νδ

j
σ + δ

i
µδ

0
νδ

j
σ

+δiµδ
j
νδ

0
σ)∂i∂j]δ3,

[Kµν, Ýβ′σ] = i{[δiµηνσ + δiνηµσ + 2(δ0
µδ

0
νδ

i
σ + δ

0
µδ

i
νδ

0
σ + δ

i
µδ

0
νδ

0
σ)]∆

+δiµδ
j
νδ

k
σ∂j∂k}∂iδ3. (A.3)

[ ÛAµ, A′σ] = i
1

4α
(ηµσ + δ0

µδ
0
σ)δ3, [ ÜAµ, A′σ] = i

1
4α
(δ0

µδ
i
σ + δ

i
µδ

0
σ)∂iδ3,

[ ÜAµ, ÛA′σ] = −i
1

4α
[(ηµσ + 2δ0

µδ
0
σ)∆ + δiµδ

j
σ∂i∂j]δ3,

[Aµ, b′] = −i
1
2
δ0
µδ

3, [ ÛAµ, b′] = −i
1
2
δiµ∂iδ

3, [ ÛAµ, Ûb′] = i
1
2
δ0
µ∆δ

3,

[Aµ, Ûβ′σ] = −i
(
ηµσ +

1
2
δ0
µδ

0
σ

)
δ3, [Aµ, Üβ′σ] = i

1
2
(δ0

µδ
i
σ + δ

i
µδ

0
σ)∂iδ3,

[Aµ, Ýβ′σ] = −i
[
(ηµσ + δ0

µδ
0
σ)∆ +

1
2
δiµδ

j
σ∂i∂j

]
δ3,

[ ÛAµ, Ýβ′σ] = −i(δ0
µδ

i
σ + δ

i
µδ

0
σ)∂i∆δ3. (A.4)

{ Û̄ζµ, ζ̃ ′σ} = −
(
ηµσ +

1
2
δ0
µδ

0
σ

)
δ3, { Ǖζµ, ζ̃ ′σ} = −

1
2
(δ0

µδ
i
σ + δ

i
µδ

0
σ)∂iδ3,

{cµ, Û̄c′σ} = ϕ−2
0 δ

µ
σδ

3, {c, Û̄c′} = −α
γ
δ3. (A.5)
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