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1. Introduction

Covariant differential geometric methods have played a central role in the development of
Quantum Field Theory (QFT) [1–5]. In particular, such differential geometric methods have been
employed by Vilkovisky and DeWitt (VDW) [7, 8] to address the issue of gauge-fixing parameter
independence in gauge and quantum gravity theories. The VDW framework was developed further
by several other authors [9–12]. More recently, differential geometric formalisms were utilised
to resolve the so-called quantum frame problem in cosmological single-field and multi-field infla-
tion [13–15], along with the issue of uniqueness of the path-integral measure of the VDW effective
action [16, 17] beyond the Born approximation. Geometric techniques were also employed to
analyse new-physics phenomena within the framework of Effective Field Theories (EFTs) beyond
the Standard Model (SM) [18–23], also known as SMEFT (for a review, see [24]).

Unlike bosons, the inclusion of fermions as independent chart variables has faced a number of
theoretical difficulties and limitations. Given the linearity of the fermion kinetic terms in spacetime
derivatives, it is not obvious how to define a proper rank-2 tensor that could assume the role
of a metric in the fermionic field space. On the other hand, in supergravity and certain string
theories [5, 6], the geometry of the fermionic sector is related to that of bosons by supersymmetry
through the so-called Kähler manifold. In such theories, the number of fermionic species cannot be
arbitrary but directly determined by their supersymmetric bosonic counterparts.

In these proceedings, our aim is to show that one can go beyond the standard supersymmetric
framework and treat fermions and bosons as independent field variables. Since fermion fields are
anti-commuting Grassmannian variables, their consistent description in the path-integral configu-
ration space requires the consideration of differential supergeometry (SG) on supermanifolds [25].
Recent studies [26–28] have made considerable progress in formulating reparameterisation-invariant
scalar-fermion theories, where the field-space metric was defined from the action. The formalism
that was put forward in [26, 27] not only enabled one to obtain earlier known results of the effective
action at the one-loop level, but also a new expression for the complete SG effective action at the
two-loop order. Nevertheless, definite models with non-zero fermionic curvature have not been
presented in the initial work [26].

In [28], we have been able to formulate minimal SG-QFT models for the first time that
feature non-zero fermionic curvature both in two and four spacetime dimensions. In formulating
these minimal models, we paid attention to the issue of uniqueness in defining from the action
the field-space metric of the underlying supermanifold, 𝛼𝐺𝛽 , which is also termed supermetric.
However, a proper rank-2 tensor can be constructed from the model-function that appears in the
kinetic term of the fermions, leading to a supermetric of the field-space supermanifold which is
supersymmetric. This means that 𝛼𝐺𝛽 should be invariant under the operation of supertransposition
(sT) to be defined in Section 2. Furthermore, we have shown that a scalar field alone cannot induce
a non-trivial field-space Riemannian curvature in the fermionic sector.

The remainder of the proceedings is laid out as follows. In Section 2, we review the basic
covariant structure of scalar-fermion SG-QFTs including their key model functions, 𝛼𝑘𝛽 and 𝜁

𝜇
𝛼. In

the same section, we present our approach to deriving the supermetric from the classical action of an
SG-QFT. In Section 3, we show a no-go theorem for the generation of a non-zero super-Riemannian
curvature in a bilinear kinetic fermionic sector from the existence of a scalar field only in SG-QFTs.
In addition, we present a minimal model that realises non-zero fermionic curvature when the model
function 𝜁

𝜇
𝛼 contains non-linear fermionic terms. Our main results are summarised in Section 4,

including an outlook for physical applications that makes use of this SG-QFT framework.
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2. Supergeometry and the Scalar-Fermion Field Space

We briefly review some basic aspects of differential supergeometry on the scalar-fermion
field space [25] that are relevant to the formulation of SG-QFTs. First, we note that a set of 𝑁

real scalar fields and 𝑀 Dirac fermions describe a field-space supermanifold of dimension (𝑁 |8𝑀)
in four spacetime dimensions (4D). A chart of this supermanifold may be represented by the
(𝑁 + 8𝑀)-dimensional column vector,

𝚽 ≡ {Φ𝛼} =
©«

𝜙𝐴

𝜓𝑋

𝜓𝑌 T

ª®¬ , (1)

where a Greek index like 𝛼 = 1, 2, . . . , 𝑁 + 8𝑀 labels all fields. Otherwise, we use Latin letters
from the beginning of the alphabet to denote individual bosonic degrees of freedom and letters
from the end to denote fermionic ones. In analogy to the standard theory of manifolds, general field
reparameterisations of the form,

Φ𝛼 → Φ̃𝛼 = Φ̃𝛼 (𝚽) , (2)

become now diffeomorphisms on the supermanifold. Notice that the class of transformations
in (2) cover any ultralocal redefinitions of the scalar and fermions fields without introducing extra
spacetime derivatives of fields like 𝜕𝜇Φ𝛼. This restriction could be relaxed by adopting Finslerian-
type geometries in the field space [16, 29, 30].

The Lagrangian for a general scalar-fermion theory being invariant under field-space diffeo-
morphisms, up to second order in 𝜕𝜇Φ

𝛼, can be expressed in terms of three model functions:
(i) a rank-2 field-space tensor 𝛼𝑘𝛽 (𝚽), (ii) a mixed spacetime and field-space vector 𝜁

𝜇
𝛼 (𝚽),

and (iii) a zero-grading scalar 𝑈 (𝚽) describing the potential and Yukawa interactions. Such a
diffeomorphically- or frame-invariant Lagrangian reads [26]

L =
1
2
𝑔𝜇𝜈𝜕𝜇Φ

𝛼
𝛼𝑘𝛽 (𝚽) 𝜕𝜈Φ𝛽 + 𝑖

2
𝜁
𝜇
𝛼 (𝚽) 𝜕𝜇Φ𝛼 − 𝑈 (𝚽). (3)

In (3), 𝛼𝑘𝛽 vanishes when the indices 𝛼 or 𝛽 are fermionic, i.e. 𝑋𝑘𝐴 = 𝐴𝑘𝑌 = 𝑋𝑘𝑌 = 0. Note that
𝛼𝑘𝛽 plays the role of the field-space metric [16] for a purely bosonic theory. Therefore, the function
𝜁
𝜇
𝛼 is introduced to describe the fermionic sector. Notice that 𝜁 𝜇𝛼 may also be used to include chiral

fermions by decomposing each Dirac fermion into pairs of Majorana fermions.

The model functions, 𝛼𝑘𝛽 and 𝜁
𝜇
𝛼, can unambiguously be extracted from the Lagrangian

according to the following prescription [26]:

𝛼𝑘𝛽 =
𝑔𝜇𝜈

𝐷

−→
𝜕

𝜕
(
𝜕𝜇Φ

𝛼
)L ←−

𝜕

𝜕
(
𝜕𝜈Φ

𝛽
) , 𝜁

𝜇
𝛼 =

2
𝑖

(
L − 1

2
𝑔𝜇𝜈𝜕𝜇Φ

𝛾
𝛾𝑘 𝛿 𝜕𝜈Φ

𝛿

) ←−
𝜕

𝜕
(
𝜕𝜇Φ

𝛼
) . (4)

To equip the supermanifold with a metric, we need to construct a proper field-space covector 𝜁𝛼
from 𝜁

𝜇
𝛼. As it is evident from (3) and explained in [26], the Lorentz index 𝜇 in 𝜁 𝜇𝛼 can only arise from

the presence of a 𝛾𝜇-matrix, or a 𝜎𝜇 = (𝜎0 ,𝝈) matrix in the chiral basis, where 𝝈 = (𝜎1 , 𝜎2 , 𝜎3)
are the three Pauli matrices.

To find the metric of the field-space supermanifold, it proves useful to distinguish two
categories of SG-QFTs depending on the actual structure of the model function 𝜁

𝜇
𝛼. In the first

3
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category, the fermionic components of 𝜁 𝜇𝛼 may be expressed in a factorisable form as

𝜁
𝜇
𝛼 = 𝜁 𝛽

𝛽 (Γ𝜇) 𝛼, where Γ𝜇 =

(
𝛾𝜇 0
0 (𝛾𝜇)T

)
. (5)

The second category of SG-QFTs does not possess the factorisation property (5). As we will see
in Section 3, the distinction between factorisable and non-factorisable 𝜁

𝜇
𝛼 affects the geometric

properties of the field-space supermanifold. For the first category of SG-QFTs, it is straightforward
to project a proper field-space covector 𝜁 𝛼 from 𝜁

𝜇
𝛼 given in (5). The simplest way would be to

introduce a differentiation with respect to the 𝛾𝜇 matrix as done in [26], i.e.

𝜁𝛼 =
1
𝐷

𝛿𝜁
𝜇
𝛼

𝛿𝛾𝜇
, (6)

where 𝐷 is the number of space-time dimensions. But for the second category of SG-QFTs for
which 𝜁

𝜇
𝛼 does not obey (5), one may alternatively use the more natural projection operation,

𝜁
𝜇

𝛽
𝛽
(←−
Σ 𝜇

)
𝛼

= 𝜁𝛼 , where ←−
Σ 𝜇 =

1
𝐷

( ←−
𝜕

𝜕𝛾𝜇 0
0 Γ𝜇

)
. (7)

In the above, the differentiation acting on the fermionic components of 𝜁 𝜇𝛼 is replaced by contraction
with 𝛾𝜇 matrices. In this way, the spin-3/2 degrees of freedom (dofs) contained in 𝜁

𝜇
𝑎 are projected

onto spin-1/2 dofs in 𝜁𝑎. In this study we adopt the projection method (7) which can be applied to
both categories of SG-QFTs.

An important geometric property of SG-QFTs as described by the Lagrangian L in (3) is
that L is a scalar in the field-space supermanifold. In other words, L remains invariant under
the field redefinitions in (2), provided all model functions and the field-space tangent vectors are
appropriately transformed. In this SG framework, we have

𝜕𝜇Φ̃
𝛼 (𝚽) = 𝜕𝜇Φ

𝛽 (𝚽) 𝛽𝐽𝛼 (𝚽) , (8)

where 𝛽𝐽
𝛼 = 𝛽,Φ̃

𝛼 is the Jacobian of the transformation and the subscript 𝛽 before the comma on
the left side of Φ̃𝛼 denotes ordinary left-to-right differentiation with respect to the field Φ𝛽 .

A field-space supermanifold of interest to us must be endowed with a rank-2 field-space
tensor 𝛼𝐺𝛽 , which is supersymmetric, i.e.

𝛼𝐺𝛽 = (𝛼𝐺𝛽)sT = (−1)𝛼+𝛽+𝛼𝛽𝛽𝐺𝛼 , (9)

and non-singular. Such a supermanifold is called Riemannian [25] and the rank-2 field-space
tensor 𝛼𝐺𝛽 is known as the supermetric. Its inverse 𝛼𝐺𝛽 , deduced from the identity: 𝛼𝐺𝛾 𝐺𝛾𝛽 =

𝛼𝛿
𝛽 , satisfies

𝛼𝐺𝛽 = 𝐺𝛼𝛽 = (−1)𝛼𝛽 𝐺𝛽𝛼. (10)

In the above, we have employed the compact index calculus and conventions by DeWitt in [25], so
that the exponents of (−1) determine the grading of the respective quantities and take the values 0
or 1 for commuting or anticommuting fields, respectively. According to DeWitt’s conventions, the
usual tensor contraction between indices can only be performed if the two indices to be summed
over are adjacent. Otherwise, extra factors of (−1) must be introduced whenever two indices are
swapped.
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Given the supermetric 𝛼𝐺𝛽 , the Christoffel symbols Γ𝛼
𝛽𝛾

can be evaluated as in [25], from
which the super-Riemann tensor is obtained

𝑅𝛼
𝛽𝛾𝛿 = − Γ𝛼

𝛽𝛾, 𝛿 + (−1)𝛾𝛿 Γ𝛼
𝛽𝛿,𝛾 + (−1)𝛾 (𝜎+𝛽) Γ𝛼

𝜎𝛾Γ
𝜎
𝛽𝛿 − (−1) 𝛿 (𝜎+𝛽+𝛾) Γ𝛼

𝜎𝛿Γ
𝜎
𝛽𝛾 . (11)

The super-Ricci tensor is obtained by contracting the first and third indices of the super-Riemann
tensor [25],

𝑅𝛼𝛽 = (−1)𝛾 (𝛼+1)𝑅𝛾

𝛼𝛾𝛽
. (12)

Further contraction of the remaining two indices of 𝑅𝛼𝛽 yields the super-Ricci scalar,

𝑅 = 𝑅𝛼𝛽 𝐺
𝛽𝛼 . (13)

Note that the super-Ricci tensor is supersymmetric, i.e. 𝑅𝛼𝛽 = (𝑅𝛼𝛽)sT = (−1)𝛼𝛽𝑅𝛽𝛼.
To determine the supermetric 𝛼𝐺𝛽 of the scalar-fermion field space, we follow the procedure

presented in [26, 27]. After calculating the projected model function 𝜁𝛼 as stated in (7), we may
now construct the rank-2 field-space anti-supersymmetric tensor

𝛼𝜆𝛽 =
1
2

(
𝛼,𝜁𝛽 − (−1)𝛼+𝛽+𝛼𝛽 𝛽,𝜁𝛼

)
. (14)

Exactly as happens for the anti-symmetric field strength tensor 𝐹𝜇𝜈 in QED in curved spacetime, the
derivatives appearing in (14) are ordinary derivatives and not covariant ones, since the Christoffel
symbols drop out for such constructions of anti-supersymmetric rank-2 tensors like 𝛼𝜆𝛽 .

The so-constructed 𝛼𝜆𝛽 turns out to be singular in the presence of scalar fields, and so the
scalar contribution 𝛼𝑘𝛽 has to be added which results in the new rank-2 field-space tensor,

𝛼Λ𝛽 = 𝛼𝑘𝛽 + 𝛼𝜆𝛽 . (15)

However, 𝛼Λ𝛽 cannot act as a supermetric, since it is not supersymmetric. To find a suitable rank-2
tensor that satisfies the latter property, we make use of the vielbein formalism [32, 33] which allows
to compute the field-space vielbeins 𝛼𝑒

𝑎, if the form of 𝛼Λ𝛽 is known in the local field-space frame.
For the latter, we demand that the Lagrangian (3) assumes the canonical Euclidean form in this
local frame. In this way, we may compute the field-space supermetric as [26]

𝛼𝐺𝛽 = 𝛼𝑒
𝑎

𝑎𝐻𝑏
𝑏𝑒sT

𝛽 , (16)

where

𝑎𝐻𝑏 ≡
©«

1𝑁 0 0
0 0 14𝑀
0 −14𝑀 0

ª®¬ (17)

is the local field-space metric in 4D.
Finally, following the VDW formalism [7, 8], we promote the field space to a configuration

space, so as to take into account the spacetime dependence of the fields. In this configuration space,
the coordinate charts are extended as

Φ�̂� ≡ Φ𝛼 (𝑥𝛼) , (18)

where 𝑥𝛼 is the spacetime coordinate of a generic field Φ𝛼. Likewise, the supermetric gets
generalised as

�̂�𝐺𝛽 = 𝛼𝐺𝛽 𝛿(𝑥𝛼 − 𝑥𝛽) , (19)
where 𝛿(𝑥𝛼 − 𝑥𝛽) is the 𝐷-dimensional 𝛿-function. This generalisation affects the Christoffel
symbols and the Riemann tensors, as given in more detail in [16].
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3. Minimal SG-QFT Models

In this section we first give further clarifying details of the proof of a no-go theorem that
was presented earlier in [28]. Specifically, we explain why no non-zero field-space curvature can
be generated in the fermionic sector from a single scalar field and multiple fermions, as long as the
model function 𝜁

𝜇
𝛼 only contains linear terms in the fermionic fields. We then present a minimal

SG-QFT model with non-zero fermionic curvature which is induced by including non-linear terms
in fermion fields in 𝜁

𝜇
𝛼.

3.1 No-Go Theorem for Fermionic Field-Space Curvature

The simplest scenario with a single boson 𝜙 and one Dirac fermion 𝜓 was considered in [26],
where it was shown that this case reduces to a flat field space. Here, we will analyse a more
general scenario with a single boson 𝜙 and a multiplet 𝝍 = {𝜓𝑋} of Dirac fermion fields (with
𝑋 = 1, 2, . . . 𝑀). In 4D, such a scenario has (1|8𝑀) field-space coordinates. Up to second order in
spacetime derivatives, the Lagrangian for such a system is given by

L =
1
2
𝑘 (𝜙) (𝜕𝜇𝜙) (𝜕𝜇𝜙) −

1
2
ℎ𝑋𝑌 (𝜙) 𝜓

𝑋
𝛾𝜇𝜓𝑌 (𝜕𝜇𝜙)

+ 𝑖

2
𝑔𝑋𝑌 (𝜙)

[
𝜓
𝑋
𝛾𝜇 (𝜕𝜇𝜓𝑌 ) − (𝜕𝜇𝜓

𝑋)𝛾𝜇𝜓𝑌
]
.

(20)

Evidently, the single field 𝜙 cannot induce by itself a non-zero Riemannian curvature in the scalar
sector. Consequently, if a non-trivial field-space curvature exists, this can only come from the
fermionic sector of the Lagrangian (20).

In the following, we will show that the addition of multiple fermions as described by the
Lagrangian L in (20) will still give rise to a flat field space. But before doing so, we will examine
the conditions under which a field transformation can bring the model function 𝜁𝛼 as well as L
into a canonical Cartesian form. To this end, let us consider the following redefinition of fermionic
fields:

𝝍 −→ 𝝍 = 𝑲 (𝜙)−1 𝝍 , (21)

where 𝑲 is a 4𝑀 × 4𝑀-dimensional matrix that only depends on the scalar field 𝜙. The field
reparameterisation (21) modifies the fermionic part of the Lagrangian (20) according to the trans-
formations,

𝜕𝜇Φ̃
𝛼 = 𝜕𝜇Φ

𝛽
𝛽𝐽

𝛼 = 𝛼𝐽sT
𝛽 𝜕𝜇Φ

𝛽 , 𝜁𝛼 = 𝜁𝛽
𝛽 (𝐽−1)sT𝛼 , (22)

where {𝜁𝛼} =
(
𝑖𝝍 𝒉𝝍 , 𝝍 𝒈 , 𝝍T𝒈T)

. For the specific reparametrisation in (21), the Jacobian matrix
𝑱sT = {𝛼𝐽sT

𝛽
} and its inverse, read

𝑱sT =
©«

1 0 0
(𝑲−1)′ 𝝍 𝑲−1 0
(𝑲∗ −1)′ 𝝍 T 0 𝑲∗ −1

ª®¬ , (𝑱−1)sT =
©«

1 0 0
𝑲′ 𝝍 𝑲 0
(𝑲∗)′ 𝝍 T 0 𝑲∗

ª®®¬ . (23)

Here and in the following, a prime (′) will stand for differentiation with respect to the field 𝜙,
e.g. 𝑲′ ≡ 𝜕𝑲 (𝜙)/𝜕𝜙. Imposing the requirement that the transformed model function 𝜁𝛼 has the
standard Cartesian form, i.e. {𝜁𝛼} =

(
0 , 𝝍 , 𝝍

)
, leads to the following two conditions:

𝑖 𝑲† 𝒉 𝑲 + 𝑲†𝒈 𝑲′ − 𝑲′†𝒈 𝑲 = 0 , (24)
𝑲†𝒈 𝑲 = 1 . (25)
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with 𝒈 = {𝑔𝑋𝑌 } and 𝒉 = {ℎ𝑋𝑌 } being Hermitian matrices. Even though it is straightforward to
find a solution to the system (24) and (25) for the case of a single fermion field [26], it becomes
non-trivial in the presence of many fermions. To this end, we first rescale 𝑲 as follows:

𝑲 = 𝒈−1/2 𝑽 , (26)

with 𝒈1/2𝒈1/2 = 𝒈 such that [𝒈1/2, 𝒈] = 0. As a consequence of the above rescaling, 𝑽 should be a
unitary matrix, because the second condition (25) implies 𝑽†𝑽 = 1.

Now, after some familiarisation with the matrix expression on the LHS of (24), we require
that the unitary matrix 𝑽 satisfies the differential equation,

𝜕𝑽

𝜕𝜙
= − 𝑖

2
𝒈−1/2𝒉 𝒈−1/2 𝑽, (27)

whose formal solution may be represented as

𝑽 (𝜙) = T𝜙

{
exp

(
− 𝑖

2

∫ 𝜙

0
𝒈−1/2𝒉 𝒈−1/2 𝑑𝜙

) }
. (28)

Note that T𝜙 is the field-space equivalent of the usual time ordering operator. After some algebra,
we notice that the first condition (24) gets fulfilled if 𝒈 and 𝒈′, commute, i.e. [𝒈 , 𝒈′] = 0. This
can only happen naturally, if either 𝒈 is a constant matrix, or a flavour basis exists for which 𝒈 is
diagonal for all field values 𝜙 in the flavour space.

In this latter case, after the field transformation (21), the Lagrangian in terms of the trans-
formed fields takes on the Cartesian form:

L =
1
2
(𝜕𝜇𝜙) (𝜕𝜇𝜙) +

𝑖

2

[
�̃�𝑋𝛾𝜇 (𝜕𝜇𝜓𝑋) − (𝜕𝜇�̃�𝑋)𝛾𝜇𝜓𝑋

]
, (29)

where 𝑘 (𝜙) = 1 was taken here for simplicity. Here, we must remark that if we wish to simply
eliminate the model-function 𝒉, but keep 𝒈 non-zero in general, then a different non-unitary form of
𝑲 (𝜙) should be utilised: 𝑲 (𝜙) = T𝜙

{
exp

(
− 𝑖

2

∫ 𝜙

0 𝒈−1𝒉 𝑑𝜙

) }
. As demonstrated explicitly in [28],

this form of 𝑲 (𝜙) obeys only the first condition (24), as it should be.

It is now important to analyse the geometry of the field-space supermanifold for this theory,
within our formalism of an SG-QFT. In particular, we use the general formula (16) to analytically
compute the supermetric 𝛼𝐺𝛽 derived from 𝜁𝛼 associated with the Lagrangian L in (20). In this
way, we obtain [26, 27]

𝛼𝐺𝛽 =

©«
𝑘 − 1

2𝝍 (𝒈
′ − 𝑖𝒉) 𝒈−1 (𝒈′ + 𝑖𝒉) 𝝍 −1

2𝝍 (𝒈
′ − 𝑖𝒉) 1

2𝝍
T

(
𝒈′ T + 𝑖𝒉T

)
1
2

(
𝒈′ T − 𝑖𝒉T

)
𝝍

T
0 𝒈T14

−1
2 (𝒈

′ + 𝑖𝒉) 𝝍 −𝒈14 0

ª®®®¬ . (30)

However, as opposed to what was conjectured in [26], we find that the super-Riemann tensor
computed from the field-space supermetric (30) vanishes identically, thus implying that the field-
space supermanifold is flat [28]∗.

∗The authors of [31] posit a different supermetric. Specifically, the upper left scalar entry 𝜙𝐺𝜙 has a different form
from the one given in (30), which leads to a non-zero Riemanian tensor.
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If we now add more than one scalar field 𝜙𝐴 to the theory, a non-zero scalar curvature can
be generated that will originate as usual from the scalar-dependent model functions 𝐴𝑘𝐵 and ℎ𝐴𝑋𝑌 ,
with 𝐴, 𝐵 > 1. But, in order to get a non-zero Riemann tensor from fermions only, we have to
introduce non-linear powers of fermionic fields in the model function 𝜁

𝜇
𝛼. This is the essence of the

No-Go theorem for proper non-zero fermionic Riemannian curvature presented in [28]. In the next
subsection, we present two SG-QFT models that realise non-zero fermionic curvature.

3.2 Minimal Model with Non-zero Fermionic Field-Space Curvature

Having gained some insight from the discussion above on the no-go theorem, we now consider
a 2D SG-QFT model, which includes one scalar field 𝜙 and one Dirac fermion 𝜓 = (𝜓1 , 𝜓2)T,
and contains non-linear fermionic kinetic terms in 𝜓 or 𝜓. More explicitly, the Lagrangian of this
simple model I reads:

LI =
1
2
𝑘 (𝜕𝜇𝜙) (𝜕𝜇𝜙) + 𝑖

2

(
𝑔0 + 𝑔1𝜓𝜓

) [
𝜓𝛾𝜇 (𝜕𝜇𝜓) − (𝜕𝜇𝜓)𝛾𝜇𝜓

]
+ 𝑌 𝜓𝜓 − 𝑉 , (31)

where 𝛾𝜇 = (𝜎1 ,−𝑖𝜎2). Here, all the model functions 𝑘 , 𝑔0, 𝑔1, 𝑌 and 𝑉 depend on the scalar
field 𝜙. Note that the model function 𝜁

𝜇
𝛼 derived from (31) takes on the factorisable form of (5),

with
𝜁𝛼 =

{
0 ,

(
𝑔0 + 𝑔1𝜓𝜓

)
𝜓 ,

(
𝑔0 + 𝑔1𝜓𝜓

)
𝜓T

}
. (32)

Using the method of [26] briefly outlined in Section 2, we may derive the field-space super-
metric 𝑮 = {𝛼𝐺𝛽} in the superspace 𝚽T = (𝜙 , 𝜓T , 𝜓),

𝑮 =
©«
𝑘 + 𝑏T(𝑑−1)T𝑎T − 𝑎 𝑑−1 𝑏 −𝑎 𝑏T

𝑎T 0 𝑑T

−𝑏 −𝑑 0

ª®¬ , (33)

where

𝑎 =
1
2
𝜓

(
𝑔′0 + 𝑔

′
1𝜓𝜓

)
, 𝑏 =

1
2

(
𝑔′0 + 𝑔

′
1𝜓𝜓

)
𝜓 , 𝑑 =

(
𝑔0 + 𝑔1𝜓𝜓

)
12 + 𝑔1𝜓𝜓 , (34)

and a prime (′) on the model functions 𝑔0,1 denotes differentiation with respect to 𝜙. Note that 𝑮
is supersymmetric, since 𝑏T(𝑑−1)T𝑎T = −𝑎 𝑑−1𝑏.

Given the supermetric 𝑮, we may now compute the non-zero components of the Riemann
tensor. For instance, if 𝑔0 = 𝑔1 = 1, these components are found to be

𝑅
𝜓1

𝜓1𝜓1𝜓2
= −𝑅𝜓2

𝜓2𝜓1𝜓2
= 𝜓1𝜓2 − 1 ,

𝑅
𝜓1

𝜓1𝜓2𝜓2
= 𝑅

𝜓1
𝜓2𝜓1𝜓2

= −𝑅𝜓1
𝜓1𝜓2𝜓2

= −𝜓1𝜓1 ,

𝑅
𝜓2

𝜓1𝜓1𝜓2
= 𝑅

𝜓2
𝜓2𝜓1𝜓1

= −𝑅𝜓2

𝜓2𝜓1𝜓1
= 𝜓2𝜓2 ,

𝑅
𝜓2

𝜓1𝜓2𝜓2
= 𝑅

𝜓1
𝜓1𝜓2𝜓1

= −𝑅𝜓2

𝜓2𝜓2𝜓1
= −𝑅𝜓1

𝜓2𝜓1𝜓2
= 1 − 𝜓2𝜓1 .

(35)

Hence, the minimal SG-QFT model of (31) exhibits a non-zero fermionic field-space curvature.
Allowing for 𝜙-dependent model functions 𝑔0,1, the super-Ricci scalar evaluates to

𝑅 =
4𝑔1

𝑔2
0
+

(
2𝑔1𝑔

′
0𝑔
′
1

𝑔3
0𝑘

−
2𝑔2

1𝑔
′ 2
0

𝑔4
0𝑘
−

𝑔′ 21

2𝑔2
0𝑘

)
(𝜓𝜓)2 . (36)
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Observe that 𝑅 is a Lorentz scalar, but not a real-valued expression due to the appearance of the
fermionic bilinear term (𝜓𝜓)2. For 𝑔0 = 𝑔1 = 1, the super-Ricci scalar simplifies to

𝑅 = 4 . (37)

It is important to remark here that the same result (37) would have been obtained in the absence of the
bosonic field 𝜙. Consequently, the non-vanishing field-space curvature arises from the non-linear
terms in the fermion fields in 𝜁𝛼 through the model function 𝑔1 in (32).

The above consideration can be easily extended to a 4D version of the SG-QFT Model I
considered in (31). In this case, 𝛾𝜇 stand for the usual 4D Dirac matrices, and the Dirac fermion has
four components: 𝜓T = (𝜓1 , 𝜓2 , 𝜓3 , 𝜓4). The 4D SG-QFT model has (1|8) dimensions giving
rise to rather lengthy expressions for the super-Riemann tensor, which we will not present here.
Instead, we give the field-space super-Ricci scalar,

𝑅 =
24𝑔1

𝑔2
0
−

24𝑔2
1

𝑔3
0
(𝜓𝜓) +

(
2𝑔1𝑔

′
0𝑔
′
1

𝑔3
0𝑘

−
2𝑔2

1𝑔
′ 2
0

𝑔4
0𝑘
−

𝑔′ 21

2𝑔2
0𝑘
−

4𝑔3
1

𝑔4
0

)
(𝜓𝜓)2

+
(
−

16𝑔2
1𝑔
′
0𝑔
′
1

𝑔4
0𝑘

+
16𝑔3

1𝑔
′ 2
0

𝑔5
0𝑘

+
4𝑔1𝑔

′ 2
1

𝑔3
0𝑘
+

40𝑔4
1

𝑔5
0

)
(𝜓𝜓)3

+
(
80𝑔3

1𝑔
′
0𝑔
′
1

𝑔5
0𝑘

−
80𝑔4

1𝑔
′ 2
0

𝑔6
0𝑘

−
20𝑔2

1𝑔
′ 2
1

𝑔4
0𝑘

+
20𝑔5

1

𝑔6
0

)
(𝜓𝜓)4 .

(38)

For 𝑔0 = 𝑔1 = 1, the field-space Ricci scalar takes on the simpler form,

𝑅 = 24 − 24 (𝜓𝜓) − 4 (𝜓𝜓)2 + 40 (𝜓𝜓)3 + 20 (𝜓𝜓)4 . (39)

We note that (39) becomes identical to the result one would obtain in a system with two fermions
in 2D. This should be expected, since the number of degrees of freedom and the structure of the
Lagrangian (31) are exactly the same for the two cases.

Let us now discuss an important feature of the geometric construction of Lagrangian (31), and
SG-QFTs in general. Specifically, one may notice that under a naive non-linear reparameterisation
of the fermion fields,

𝜓 = 𝜓

√︃
1 + 𝜓𝜓 , �̃� =

√︃
1 + 𝜓𝜓 𝜓 , (40)

one can turn a standard (canonical) Dirac Lagrangian,

LD =
𝑖

2

[
�̃� ( /𝜕𝜓) − ( /𝜕�̃�) 𝜓

]
, (41)

into the Lagrangian (31), in which 𝑔0 = 𝑔1 = 1 and all remaining model functions are set to zero,
𝑘 = 𝑌 = 𝑉 = 0. This would seem to suggest that a curved field-space theory can be obtained from
a flat one by means of a non-linear reparameterisation like (40), and vice-versa.

However, within our SG-QFT framework, such a transformation by itself does not dictate the
geometry of the field-space supermanifold. As explained in the previous section, the supermetric
𝑮 of the field-space is determined by the kinetic model function 𝜁𝛼 through the steps leading to
formula (16). It was therefore crucial to show that the so-derived supermetric 𝑮 given in (33)
leads to a non-zero Riemannian tensor implying a non-zero fermionic curvature. Consequently,
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it is important to emphasise here that different non-standard non-linear forms of the model func-
tion 𝜁

𝜇
𝛼 are expected to provide distinct supergeometric constructions of Lagrangians, involving

different supermetrics 𝑮 with non-zero super-Riemanian curvature. The superdeterminant of 𝑮
determines the path-integral measure which in turn impacts the effective action beyond the classical
approximation [16, 26].

In addition to the minimal model discussed above, we may formulate SG-QFT models that
can have a richer geometric structure, such as the one based on the Lagrangian [28]:

LII =
𝑖

2
[
𝜓𝛾𝜇 (𝜕𝜇𝜓) − (𝜕𝜇𝜓)𝛾𝜇𝜓

]
+ 𝑖

2
𝜓𝛾𝜇𝜓

[
𝜓(𝜕𝜇𝜓) − (𝜕𝜇𝜓)𝜓

]
, (42)

with 𝜁
𝜇
𝛼 =

(
0 , 𝜓𝛾𝜇 + (𝜓𝛾𝜇𝜓) 𝜓 , 𝜓T𝛾𝜇 T + (𝜓𝛾𝜇𝜓) 𝜓T)

. Note that naive redefinitions of the
fermion fields: 𝜓 = 𝜓 𝑓 (𝜓𝜓) and �̃� = 𝑓 ∗(𝜓𝜓) 𝜓, where 𝑓 is some judicious function like (40),
cannot bring the Lagrangian (42) into a canonical form like (41). The interested reader may find
more details of Model II in [28].

We end this section by commenting on the flavour covariance of an SG-QFT with many
species of fermions. An equivalent class of Lagrangians can be consistently constructed through
flavour field redefinitions, 𝝍 → ˜𝝍 = 𝑼𝝍, where 𝑼 is a unitary flavour-rotation matrix that does not
depend on the scalar fields. The new supermetric in the flavour-transformed basis is derived from
the usual rank-2 covariance relation, 𝛼𝐺𝛽 = 𝛼 (𝐽−1)𝛾 𝛾𝐺 𝛿

𝛿 (𝐽−1)sT
𝛽

. The so-derived supermetric
can be shown to be equivalent to the supermetric that would be obtained by extracting the new
model functions from a flavour-transformed Lagrangian, e.g. L̃. This last property provides further
support of the mathematical consistency of our SG-QFT framework.

4. Summary and Outlook

We critically reviewed the frame-covariant formalism presented in [26] and [28] on scalar-
fermion theories. We illustrated how the scalar and fermion fields define a coordinate system (also
called chart) that describes a supermanifold in the configuration space of the respective QFT. We
discussed the issue of uniqueness of the supermetric, explaining how different choices of the latter
lead to distinct Supergeometric QFTs in the off-shell kinematic region, and beyond the tree level.

Given a self-consistent choice for the supermetric, we have demonstrated that scalar fields 𝜙𝐴

alone do not provide a new source of curvature in the fermionic sector beyond the one that originates
from the scalar-dependent model functions 𝐴𝑘𝐵, and ℎ𝐴𝑋𝑌 , once more than one scalar field with
𝐴, 𝐵 > 1 are added to the theory. In particular, we have shown that the fermionic curvature vanishes
for a scalar-dependent 𝑔𝑋𝑌 (𝜙), even if ℎ𝑋𝑌 (𝜙) (with 𝐴 = 1 = 𝜙) is non-zero. To avoid this No-Go
theorem, we have to introduce non-linear powers of fermionic fields in the model function 𝜁

𝜇
𝛼

which can give rise to non-zero fermionic curvature, implying a non-zero super-Riemann tensor.
In this way, we were able to formulate a minimal SG-QFT model that realises non-zero fermionic
curvature both in two and four spacetime dimensions up to second order in spacetime derivatives.
We should stress here that the resulting super-Riemann tensor and super-Ricci scalar may contain
fermionic bilinears which are no proper real numbers. This should be contrasted with Supergravity
theories [5] where the curvature is a real-valued expression dictated by the scalar part of the Kaehler
manifold, on which the fermions were treated as tangent vectors.
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Several new research directions open up within the framework of SG-QFTs. Most notably, we
expect that SG-QFTs will lead to a complete geometrisation of realistic theories of micro-cosmos,
such as the SM and its gravitational sector. We also envisage that SG-QFTs will provide a new
portal to the dark sector, where dark-sector fermionic fields will change the dispersion properties of
weakly interacting particles, like SM neutrinos and axions. Our plan is to investigate some of the
above issues in future works.
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