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The search for experimental signatures of the critical point (CP) of strongly interacting matter
is one of the main objectives of numerous heavy ion collision experiments today. A promising
category of observables connected to the approach to the CP are local fluctuations of the order
parameter of the chiral phase transition. In the vicinity of the CP, the system experiences a second
order phase transition and can be described in a scale-invariant way; consequently, order parameter
fluctuations are expected to scale according to a universal power-law. One of the most promising
candidates for the role of order parameter are local fluctuations of the net baryon density nB, and its
proxy, the proton density in transverse momentum space. Experimentally, critical fluctuations of
the order parameter can be probed through proton multiplicity intermittency analysis of the second
scaled factorial moments (SSFMs) in transverse momentum space. Proton intermittency analyses
that have been performed on NA49 (C+C, Si+Si, Pb+Pb) as well as NA61/SHINE (Be+Be, Ar+Sc,
Pb+Pb) SPS data provide some evidence of critical fluctuations [1], but are inconclusive due to
large uncertainties as well as difficulties in handling correlations [2]. We present a novel approach
to intermittency analysis, employing statistical techniques as well as systematic scans of Monte
Carlo simulations in order to robustly estimate confidence intervals for the values of intermittency
index (power-law exponent) φ2 that are compatible with given sets of correlated experimental data.
We also discuss the challenges posed by limited event statistics, low proton event multiplicity, and
particle identification, and propose feasible solutions.
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1. Introduction

A key question in the study of QCD is to determine the structure of the QCD Phase Diagram
as a function of temperature T and baryochemical potential µB (equivalently: nuclear density, nB);
that is, to determine the various states of strongly interacting matter, the Equations of State (EoS)
that govern them, and the location, nature, and type of the phase transition boundaries that separate
them. Fig. 1 shows a hypothetical sketch of the QCD Phase Diagram in (T − µB), where the phases
of hadronic (nuclear) matter and quark-gluon plasma are separated by different types of phase
transitions, namely a smooth cross-over at high T and low µB, and a 1st order transition at low T and
high µB, ending on a critical point (CP), in the vicinity of which a 2nd order transition is expected
to occur. Both the cross-over and the 1st order transition line are evidenced by Lattice QCD and
effective models, respectively, and therefore there is ample evidence to support the existence of a
critical point (CP) as an end point of the 1st order transition line.

A characteristic feature of a second order phase transition (expected to occur at the CP) is the
divergence of the correlation length, leading to a scale-invariant system effectively described by a
universality class. Of particular interest are local fluctuations of the order parameter of the QCD
chiral phase transition, the chiral condensate σ(x) = 〈q̄(x)q(x)〉. At finite baryochemical potential,
the critical fluctuations of the chiral condensate are transferred to the net-baryon density [3]. For
a critical system, we expect fluctuations of the order parameter to be self-similar [4], obeying
power-laws with critical exponents determined by the 3D Ising universality class [5–7].

Candidates for the role of order parameter include the chiral σ-condensate as reconstructed
through π+π− (dipion) pairs, as well as local fluctuations of the net baryon density nB, and its proxy,
the proton density in transverse momentum space. The choice of dipions offers the advantage of
being the main decay channel of the σ-condensate, leading to an abundance of pions, and thus
high-multiplicity events to analyse. However, this comes at the price of sifting through a large
combinatorial background of unrelated π+π− pairs, which restricts the analysis to a window of
invariant mass close to the production threshold of dipions1. For that reason, intermittency analysis
efforts were shifted to the study of net baryon density fluctuations, of which the net proton density
is a proxy.

Such fluctuations correspond to a power-law scaling of the proton density-density correlation
function, which can be detected in transverse momentum space within the framework of an inter-
mittency analysis [7, 9–11] of proton scaled factorial moments (SFMs). A detailed analysis can
be found in Ref. [1], where we study various heavy nuclei collision datasets recorded in the NA49
experiment at maximum energy (158A GeV/c, √sNN ≈ 17 GeV) of the SPS (CERN).

2. Methodology

2.1 The method of intermittency analysis

As mentioned in Section 1, critical fluctuations of the chiral phase transition order parameter
follow a power-law form at the vicinity of the CP; specifically, for the idealized case of an infinite

1A detailed dipion intermittency analysis of NA49 experimental data can be found in [8].
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Figure 1: Hypothetical sketch of the phase diagram of strongly interacting matter with critical point, drawn
as a function of baryochemical potential µB and temperature T . A crossover transition is predicted at low
µB and high T ; whereas, a 1st order transition is predicted at low T and high µB. A critical point (CP) is
therefore hypothesized to exist as an end point of the 1st order transition line.

size system belonging to the 3D-Ising universality class, we obtain the following forms of density-
density correlations in momentum space, for theσ-condensate [5] and the net baryon density nB [7],
respectively:

〈nσ(k) nσ(k′)〉 ∼ |k − k′ |−4/3 (1a)

〈nB(k) nB(k′)〉 ∼ |k − k′ |−5/3 (1b)

where k − k′ is the momentum transfer.
In order to probe a set of particle momenta for presence of power-law density-density correla-

tions, we use the method of intermittency analysis of the Second Scaled Factorial Moments (SSFM)
F2(M), pioneered by Białas and others [7, 9–11] as a method to detect non-trivial dynamical fluc-
tuations in high energy nuclear collisions. The method consists of partitioning an analysis window
in transverse momentum space into a number of equal size bins (Fig.2 left), then examining how
F2(M) of particle transverse momenta scale with the number M2 of 2D bins:

F2(M) ≡

〈
1

M2

M2∑
i=1

ni(ni − 1)

〉 / 〈
1

M2

M2∑
i=1

ni

〉2

(2)

where ni is the number of particles in the i-th bin, and 〈. . .〉 denotes average over events.
For a pure critical system, F2(M) is predicted to follow a power-law [5, 7]:

F2(M) ∼ M2·φ2,cr , φ
(σ)
2,cr = 2/3 , φ

(p)
2,cr = 5/6 (3)

where the exponent φ2 is called the intermittency index.
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Figure 2: Left: Counting particle pairs in a transverse momentum space partitioning of M × M equal size
bins. Right: By centering circles around each point in the set, it is possible to account for all pairs of points
within a given distance R; demanding equal area for bins and circles allows for a correspondence of scales:
πR2 = α2. Image adapted from [12]

For a noisy system, mixed event moments must be subtracted from the data moments in order
to recover the critical component [1]. This is a non-trivial operation, starting with notionally
partitioning all pairs in eq.(2) into critical/background pairs, plus a cross-term:

〈n(n − 1)〉 = 〈nc(nc − 1)〉︸         ︷︷         ︸
critical

+ 〈nb(nb − 1)〉︸         ︷︷         ︸
background

+ 2〈nbnc〉︸   ︷︷   ︸
cross term

(4)

Rearranging (4), and normalizing to the mean particle multiplicity, we obtain:

∆F2(M)︸   ︷︷   ︸
correlator

= F(d)2 (M)︸   ︷︷   ︸
data

−λ(M)2 · F(b)2 (M)︸   ︷︷   ︸
background

−2 · λ(M)︸︷︷︸
ratio <n>b

<n>d

· (1 − λ(M)) fbc (5)

where λ(M) ≡ < n >b

/
< n >d is defined as the ratio of background to total (data) multiplicity in

bins of size M . λ is in general a function of bin size, but in practice it converges to a constant value
at the limit of M → ∞, unless the 1-particle distribution is singular. The cross-term factor, fbc,
cannot in general be factored out into background and critical contributions, due to correlations
between the two sets. However, Critical Monte Carlo [7] simulations show that the cross-term can
be safely neglected [1] in two limit cases:

1. When λ(M) ∼ 0, i.e. for an almost pure system, when background can altogether be ignored;

2. When λ(M) . 1, i.e. when the background is dominant, and background moments can be
approximated by mixed event moments F(b)2 (M) ∼ Fmix

2 (M).

The latter (dominant background) has proved to be the case in virtually all experimental systems
we have studied so far. We can thus simplify eq.(5), and define an effective correlator ∆F2(M) as
simply the difference of data and mixed event moments:

4
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∆F2(M) = F(d)2 (M) − F(m)2 (M) (6)

Intermittent behavior, if present, will then be revealed in ∆F2(M),

∆F2(M) ∼
(
M2

)ϕ2
, M � 1 (7)

and we obtain the predictions of eq.(3) for the intermittency index φ2, for the σ-condensate and
proton density, respectively.

The usual methodology of computing F2(M) on a grid is computationally intensive, and for the
case of proton intermittency where proton multiplicity per event is low, introduces artifacts. Due
to the arbitrary positioning of grid lines, pairs within the same scale may be split across borders,
skewing pair statistics. In the past, this problem was corrected for by introducing a lattice average
over slightly displaced grids [1]; however, a computationally faster alternative to the lattice average
has been developed [12] using the correlation integral C(R) [13], defined as:

C(R) =
2

〈Nmul (Nmul − 1)〉ev

〈∑
i, j
i< j

Θ
(
|xi − xj | ≤ R

) 〉
ev

(8)

where R is a given length scale, Nmul is the eventmultiplicity, andΘ is the step function, counting the
number of pairs of particles in an event within a distance R from each other. C(R) can be calculated
by (notionally) placing circles of radius R around each of the points in the set (Fig. 2 right), and
counting the points falling within them. We can then match the circle radius R to the bin side α,
and thus the number of divisions M per dimension, by demanding equal area for bins and circles:
πR2

M = α
2. Thus, we arrive at a correspondence between F2(M) and C(RM ),

F2(M) =
〈Nmul (Nmul − 1)〉ev

〈Nmul〉
2
ev

M2C(RM ) (9)

that we can use to compute F2(M) efficiently, at the same time eliminating grid artifacts. We have
adopted the correlation integral technique throughout our latest intermittency analyses, both for
experimental and for Monte Carlo simulated data.

2.2 Handling of statistical and systematic uncertainties

SSFMs statistical errors are estimated via the bootstrap method [14, 15], which is a well-
established statistical technique for obtaining unbiased error estimates of statistical quantities. In
applying the bootstrap method to intermittency analysis, the original set S of events is first randomly
sampled, with replacement, i.e., a number of events equal to that of the original set are selected
uniformly at random; thus, a new bootstrap set SB is created, in which some events are omitted and
others duplicated. By repeating this process, a large number of bootstrap samples SBi , i = 1 . . . NB,
NB & 1000, are created from the original set. Subsequently the quantity of interest, in particular the
moments ∆F2(M), are calculated for each bootstrap sample in the same manner as for the original;
the resulting values can be used to obtain the bootstrap statistical distribution of ∆F2(M), as well as
its standard error, confidence intervals, or any other measure of variance desirable.
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Bootstrap estimation of uncertainties has certain advantages over error propagation: it is
straightforward to calculate, only requiring calculation of the original statistics (the SSFMs), in
contrast to error propagation, which requires calculating higher moments [14]. It is relatively cheap
computationally, as only the weights of each original event need to be calculated and stored in
advance; the SSFMs of bootstrap samples can then be computed in one pass, along with those of
the original. Finally, it allows us to naturally and effortlessly calculate the correlation matrix of
∆F2(M) between different bins M .

It must, however, be emphasized that the bootstrap cannot help us estimate or correct for the
systematic uncertainties that may be present in the original sample. As verified by Monte Carlo
simulations, as well as theoretical analysis, bootstrap estimates of the magnitude of variance and
covariance of SSFMs can be trusted, but the centroids (average, median) estimated by bootstrap
will certainly be biased towards the original sample. This is especially important to bear in mind
when attempting to fit SSFMs with a power-law model, as in eq.(7): ∆F2(M) values for different
M are not independent, as the same events are used to calculate all ∆F2(M), and this invalidates a
simple least-squares fit. We will address this issue, as well as methods to deal with it, in Section 5.

3. Results

3.1 NA49 proton intermittency analysis

As mentioned in Section.1, pion intermittency analysis has the drawback of a large combi-
natorial background of non-critical π+π− pairs that need to be subtracted in order to reveal the
critical dipion contribution originating from σ meson decays. For that reason, analysis efforts have
been shifted to proton intermittency analysis, which probes the density-density correlations of the
proton density, a proxy to the net-baryon density [3]. There are solid theoretical predictions for
the expected φ2 value of critical proton transverse momenta SSFMs [7]. This mode of analysis
has the advantage of directly probing the proton density, and thus not requiring the subtraction of
a combinatorial background. On the other hand, it has its own shortcomings: proton per event
multiplicity is low in medium sized nuclei collisions (typically, of the order of ∼ 2 − 5 protons per
event in systems such as C+C and Si+Si, and ∼ 10 in Pb+Pb). Therefore, an exceptionally large
number of events (events statistics), and good proton identification are required in order for a proton
intermittency analysis to be conclusive. At minimum of the order of ∼ 100K events, and ideally
more than ∼ 1M , are needed in order to confidently establish a trend in ∆F2(M); proton purity (the
percentage of actual protons in the candidate protons selected from the data) should ideally be in
excess of 90%.

A proton intermittency analysis was performed on a number of NA49 collision data sets of
different sizes (C+C, Si+Si, Pb+Pb), at the maximum collision energy (158A GeV/c, corresponding
to √sNN ≈ 17 GeV) of the Super Proton Synchrotron (SPS), CERN [1]. For the purposes
of the analysis, the most central (12% C+C, 12% Si+Si, 10% Pb+Pb) collisions were selected,
as determined by the energy deposited in the Projectile Spectator Detector (PSD) downstream
calorimeter [16]. The event statistics amounted to 148K events for C+C, 166K events for Si+Si,
and 330K events for Pb+Pb. The standard event and track selection cuts of the NA49 experiment
were applied. Proton identification used the measurements of particle energy loss dE/dx in

6
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Figure 3: Proton SSFMs F2(M) (top row) and the correlator ∆F2(M) (bottom row) for NA49 (a,d) C+C ,
(b,e) Si+Si , and (c,f) Pb+Pb most central (12%, 12%, 10%) collisions at 158A GeV/c (√sNN ≈ 17 GeV) [1].
Error bars are calculated through the bootstrap method [14].

the gas of the time projection chambers; tracks were accepted as candidate protons when the
estimated probability of being a proton exceeded 80% for the C+C and Si+Si systems and 90%
for Pb+Pb collisions. Finally, a window of analysis was selected in transverse momentum space
(−1.5 ≤ px,y ≤ 1.5 GeV/c), and candidate protons in the mid-rapidity region (|yCM | ≤ 0.75) were
projected in transverse space, where their SSFMs were calculated.

Fig.3 shows the SSFMs F2(M) and the correlator ∆F2(M) for the analyzed NA49 systems.
No intermittency effect is observed for the C+C (a,d) and Pb+Pb (c,f) systems; original data and
mixed event moments overlap, and the correlator fluctuates around zero. In contrast, a significant
intermittency effect is observed in the Si+Si system (b,e), as evidenced by the scaling of the
corresponding ∆F2(M). The fitted power-law value for the intermittency index φ2 is compatible
with the theoretical prediction, eq.(3), however the statistical uncertainties are large.

3.2 NA61/SHINE proton intermittency analysis

Motivated by the positive, if ambiguous, NA49 proton intermittency Si+Si result, the search
for the critical point through intermittency analysis has continued within the framework of the
NA61/SHINE experiment [17], a fixed target, high-energy collision experiment at the SPS, CERN,
and the direct continuation of NA49.

The NA49 intermittency result suggests an experimental intermittency scan of medium-sized
nuclei as the best candidates for the detection of the critical point. Preliminary analysis of a number
of medium-sized SHINE systems (Be+Be, Ar+Sc at 150A GeV/c, corresponding to √sNN =

16.8 GeV) close in nuclear size to the NA49 Si+Si system was performed, to which end great
effort was exerted in applying proper experimental cuts, the pre-selection of events and proton
identification and selection.

7
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Figure 4: Proton SSFMs F2(M) (left) and the correlator ∆F2(M) (right) for NA61/SHINE Be+Be 12% most
central collisions at 150A GeV/c (√sNN ≈ 16.8 GeV) [18]. Error bars are calculated through the bootstrap
method [14].
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Figure 5: Proton SSFMs correlator ∆F2(M) for NA61/SHINE Ar+Sc 0-10% (left), and 10-20% (right)most
central collisions at 150A GeV/c (√sNN ≈ 16.8 GeV) [19]. Error bars are calculated through the bootstrap
method [14]. Colored bands correspond to 1-(yellow), 2-(light blue), and 3-σ (dark blue) confidence
intervals, respectively.

Fig.4 shows the SSFMs F2(M) and the correlator∆F2(M) for the analyzedBe+BeNA61/SHINE
system [18]. No intermittency effect is observed, as F2(M) of data and mixed events overlap, and
therefore the correlator∆F2(M) fluctuates around zero. It should be noted, however, that the average
proton multiplicity per event in the Be+Be system was ∼ 1.5 in the mid-rapidity range, excluding
events with a zero proton multiplicity; that is far too low for proton pair correlations to be firmly
established, making it unlikely for an intermittency analysis to be able to detect a weak critical
component, even if present, given the event statistics available (∼ 160K events).

Following Be+Be analysis, focus was shifted to studying the Ar+Sc system at 150A GeV/c, the
closest in system size and collision energy to the NA49 Si+Si system. In this case, a full scan in
collision centrality was performed, in the 0-20% most central range, in 10% intervals; the decision
was due to experimental evidence, as well as theoretical understanding [2], that changes in collision
peripherality influence the freeze-out conditions (µB,T) in a mild manner.
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The first indication of intermittency in mid-central Ar+Sc collisions at 150A GeV/c was
presented at the CPOD2018 international conference [20]. In 2019, an extended event statistics set,
approved by the NA61/SHINE Collaboration, was subjected to careful analysis. Event statistics
were of the order of∼ 400K events per 10% centrality interval. Fig.5 shows the results of the SHINE
Ar+Sc intermittency centrality scan, in the form of the correlator ∆F2(M) of proton SSFMs, for
each of the 10%-wide collision centrality ranges. Centrality dependence is evident in the scaling of
factorial moments, with the 0-10% (most central) collisions showing no evidence of intermittency,
whereas the more peripheral collisions (10-20%) exhibit a mild intermittent effect. Fig.5 also
illustrates the magnitude and form of ∆F2(M) statistical uncertainties via confidence intervals
(colored bands) corresponding roughly to 1,2 and 3-σ variation around the experimental values
(black points), as calculated via the statistical bootstrap.

It must be emphasized that such plots do not provide the full picture as to the ∆F2(M) variation
and uncertainties, due to the presence of M-bin correlations: the errors of points with different M
values, especially neighboring ones, are correlated, since the same set of events was used to calculate
all the F2(M). This is the reason why confidence intervals for the intermittency index φ2 cannot be
properly obtained through simple power-law fitting, not even by fitting different bootstrap samples
independently. The full ∆F2(M) covariance matrix has to be estimated and taken into account,
which is subject to potential biases. The solution, as we will detail in the following sections, is to
avoid fitting and use model-weighting over a broad collection of parametrized models.

4. The Critical Monte Carlo simulation

It becomes clear from the above review of experimental intermittency analysis that a better
understanding is desirable of the way criticality in transverse momentum space is expressed through
SSFMs, as well as the interplay of critical and non-critical protons and the effect a (dominant)
background has on the strength and functional form of scaling of factorial moments. Monte Carlo
simulations provide a royal road towards such insight.

For this purpose, we use a modified version of the Critical Monte-Carlo (CMC) event gen-
erator [2, 5, 7] suited for simulating protons in transverse momentum space; simulated protons
are produced by sampling a truncated Lévy walk process to exhibit density-density correlations
mimicking those originating from a fireball freezing out at the QCD critical point. The power-law
exponent is adjustable within a range of values; for example, it can be chosen to describe correla-
tions characterizing a critical system in the 3d-Ising universality class. The associated intermittency
index range currently achievable is φ2 ∈ [0.1,1]; the value φ2 = 5/6 corresponds to a fractal mass
dimension of dF = 1/3 for the 2-dimensional Lévy walk. Furthermore, the algorithm can be
parametrized to reproduce any empirical 2-dimensional average per event proton px,y distribution
for the random walk cluster centers, and a (possibly) Poissonian per-event proton multiplicity dis-
tribution, the characteristics of which can be plugged in; finally, truncated Lévy walk bounds can
be fine-tuned in order to produce critical density-density correlations within the desired scales.

A number of uncorrelated proton momenta drawn from a plugged-in one-particle pT distri-
bution replace the critical protons with an adjustable probability per particle. These simulate the
effect of non-critical background contamination on the critical signal, with the desired background
level λ, eq.(5).

9
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Figure 6: Correlator ∆F2(M) for two sets of ∼ 400K CMC simulated SHINE-like non-central Ar+Sc
collisions at 150A GeV/c (√sNN ≈ 16.8 GeV). For both sets, the percentage of critical to total simulated
protons has been set to 1.60%. Critical exponent (intermittency index) is set to φ2 = 0.125 (left) and
φ2 = 0.75 (right) respectively. The black points correspond to the average ∆F2(M) of ∼ 8K independent
iterations (samples) of the simulation. Colored bands correspond to 1-(yellow), 2-(light blue), and 3-σ (dark
blue) confidence intervals of independent sample variation, respectively.

Additionally, an “afterburner” can be applied to CMC events in order to simulate detector
effects for better comparison with experimental data. To this purpose, the 2-dimensional simulated
protonmomenta are assigned a rapidity distribution, extracted from experimental data, thus allowing
us to apply all appropriate experimental cuts at the momentum level. In particular, rapidity, pair
quality and acceptance cuts are applied, in the same manner as for SHINE experimental data. We
also apply gaussian smearing of simulated proton momenta with an adjustable radius, in order to
simulate the limited track momentum resolution in the detector.

Fig. 6 shows two examples of the correlator ∆F2(M) obtained by the CMC simulation, for
SHINE-like parametrizedAr+Sc collisions at 150AGeV/c. Two different values of the intermittency
index exponent φ2 have been used, one low (left) and one close to the critical prediction (right).
In each case, the factorial moments are calculated on sets of ∼ 400K events, similar to SHINE
available statistics, and simulation is repeated independently for ∼ 8K iterations, keeping the same
simulation parameters throughout. Independent simulations allow us to estimate the variability of
the resulting ∆F2(M) at this level of event statistics; the average ∆F2(M) gives us the overall trend
of the model. We observe qualitative behavior of the correlator similar to that of the experimental
Ar+Sc SHINE set, Fig. 5. We also note a very similar internal spread of values as obtained for
Ar+Sc SHINE via the bootstrap method, with the crucial difference that now the different samples
are statistically independent.

Critical Monte Carlo simulations give us an intuitive illustration of the way a critical effect
is diluted in experimental data, and of the limitations in detecting critical scaling in systems with
a dominant background component. By directly comparing simulated and experimental ∆F2(M)
behaviour, we can gauge the range of plausible values for the critical exponent φ2 as well as
the critical percentage of protons in experimental data. Additionally, CMC simulations provide an
empirical justification for replacing the full correlator∆F2(M) expression, eq.(5) with the “dominant
background” approximation, eq.(6).

10
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5. Challenges in intermittency analysis, and possible solutions

5.1 Challenges in intermittency analysis

In performing intermittency analysis, in the form it is traditionally pursued, one faces a number
of practical and methodological challenges that need to be dealt with in order to obtain statistically
significant results. We list the most important among them below:

1. Particle species, especially protons, cannot be perfectly identified experimentally; candidates
will always contain a small percentage of impurities. In the case of protons, the main
contamination comes from K+ tracks misidentified as protons. In NA61/SHINE [17], we
identify particles through their energy loss dE/dx in the Time Projection Chambers (TPCs),
as a function of their momentum. Therefore, good particle identification requires quality
decomposition of the total dE/dx spectra of tracks into a sum of gaussians of all particle
species (p, K, π, e) in selected momentum space slices. Ideally, we accept candidate protons
if they have an estimated probability of > 90% of being a proton; however, there is a delicate
balance between achieving a high enough proton purity, and keeping the total multiplicity of
accepted protons large enough for the demands of an intermittency analysis.

2. Experimental momentum resolution sets a limit to how small a bin size (large M) we can
probe. Empirically, we have settled for a maximum of M = 150 one-dimensional bins, which
corresponds to a ∆pT of 20 MeV/c. Experimental momentum resolution is of the order of
∼ 5 MeV/c, well below our minimum bin size.

3. A finite (small) number of usable events is available for analysis; the “infinite statistics”
behaviour of ∆F2(M) must be extracted from these. The best way to guard against finite
statistics artifacts is to investigate as many CMC simulated data sets as possible, with an
event statistics comparable to that of the experimental data.

4. Proton multiplicity for medium-sized systems is low (typically ∼ 2 − 3 protons per event, in
the window of analysis) – and the demand for high proton purity lowers it still more. There
is really no satisfactory solution to this issue, other than trying to increase event statistics.
Failing that, we must turn to Monte Carlo simulation to gain insight about the statistical
significance of our experimental data.

5. M-bins are correlated due to the fact that the same events are used to calculate all F2(M).
This biases the fit algorithm for the intermittency index φ2, and makes confidence interval
estimation hard. Note that bin correlations persist even when F2(M) is calculated through
the correlation integral, eq.(8,9), as can be evidenced by calculating the correlation matrix
between different M-values.

5.2 The statistical bootstrap and correlated fits

The method of the statistical bootstrap (see Section 2.2) can help us up to a point to resolve
issues #3-5, in providing unbiased estimators for themagnitude of statistical uncertainties of SSFMs.
As mentioned, however, it is not sufficient for taking into account M-bin correlations and systematic
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Figure 7: Correlated (left) and uncorrelated fit (right) for the NA61/SHINE Ar+Sc 10-20% most central
system at 150A GeV/c.

errors in SSFMs. Replication of events means bootstrap sets are not independent of the original:
magnitude of variance and covariance estimates can be trusted, but central values will be biased to
the original sample.

Correlated fits for obtaining φ2 can be performed, using M-correlation matrix estimated via the
bootstrap; however, these are known to be unstable: [21, 22]. Fig. 7 shows the results of a correlated
(left) vs an uncorrelated (right) fit for the NA61/SHINE Ar+Sc 10-20% most central system at
150A GeV/c. The correlated best fit line unintuitively passes below all experimental points, in
contrast to the uncorrelated fit, which passes through them; the two methods also give considerably
different values for φ2 and χ2 of fit. Another possible approach, the method of independent bins,
attempts to eliminate bin correlations by randomly partitioning the events into non-overlapping sets,
and using a different set to calculate F2(M) for different M (see, for example, [23] for an application
of this technique). This method, however, decimates the already low event statistics by spreading
it over too few bins, thus inflating per bin uncertainties. A way to handle bin correlations without
decimating the statistics will be presented in Section 5.4.

5.3 Performing a scan of models

The proposed solution to the problem of M-bin correlation is to avoid fitting for φ2 altogether;
rather, one should attempt to build a large number of Monte Carlo models, corresponding to
different values of power-law scaling and percentage of critical protons, then weigh (test) these
models against the experimental data. Fig. 8 (left) illustrates the main idea: F2(M) experimental
values are compared to the average F2(M) of a given model via a goodness-of-fit function, such as
the sum of their residual squares, χ2 =

∑
i res2(Mi); subsequently, a p-value is calculated for the

model by comparing the experimentally obtained χ2 value to the χ2-distribution of model samples.
By creating a grid of models spanning different values of φ2 and critical percentage of protons,
Fig. 8 (right), we can obtain a map of p-values, showing which models are more likely to fit the
experimental data.
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Figure 8: Left: A sketch of the comparison between model and experimental F2(M). A goodness-of-fit
function can be defined based on the residuals between model and data. Right: Aggregating p-values for a
grid of different models gives us a map of the likelihood of each model.

5.4 Handling bin correlations through Principal Component Analysis

As already mentioned, great caution must be exercised in defining a goodness-of-fit function
for the correlator ∆F2(M), because neighboring M-bins are strongly correlated. This is true even
when constructing CMC samples of independent events, since the events in a single sample are
used to calculate multiple M-scales. Additionally, when we attempt to study the joint distribution
of ∆F2(M) for all M , we are faced with a multi-dimensional structure of vast complexity (typically,
M ∈ [1,150]), which cannot possibly be probed with a few thousand samples (each independent
sample being a point in this multi-dimensional M-space). It is thus necessary to reduce the effective
dimensionality of this space, and untangle correlations between bins/dimensions.

This can be achieved through the well-established statistical tool of Principal Component
Analysis (PCA). PCAworks by taking a set of (in general) correlatedmulti-dimensional observations
– seen as a cloud of points in a high-dimensional space – and identifying the principal axes going
through it, i.e. the directions along which variance of points is maximal. The first principal axis
accounts for the largest variance present in the set; subsequent axes account for progressively less
and less variance, in a hierarchical structure. If we then rotate the original axes (in our case, the
F2(M)) to the principal axes directions, we can define new quantities, the Principal Components
(PCs), which are by construction statistically independent linear combinations of the original M-
bins. Finally, we keep only the first few significant PCs, by applying an appropriately chosen metric
to determine the number of PCs that optimizes reconstruction of the original set of points; ideally,
we want to keep only the main features of the original distribution, discarding the noise.

Fig. 9 illustrates the action of PCA: in the top left plot, we show the ∆F2(M) of a synthetic
data set based on EPOS Monte Carlo [24] adapted to the SHINE detector (black points). The
original EPOS set corresponds to the conditions of SHINE non-central (10-20%) Ar+Sc collisions
at 150A GeV/c; it is infused with CMC-generated critical protons at a critical component of 1.5%.
Particles in this synthetic set are assigned dE/dx values, then candidate protons are “pseudo”-
identified, and their ∆F2(M) calculated. On the same plot, we show the ∆F2(M) of ∼ 8K samples
of CMC-generated events (colored bands) with parameters adjusted as to closely approximate the

13



P
o
S
(
C
O
R
F
U
2
0
2
3
)
1
4
4

Robust intermittency analysis in heavy ion collisions Nikolaos Davis

0 5 10 15 20 25
×103

1.0

0.5

0.0

0.5

1.0

1.5
(

)

median
68% C.I.
95% C.I.
99.7% C.I.
EPOS infusion

CMC,  = 2.158, crit.=1.10%, =  0.750

0 20 40 60 80 100 120
#PCs

4

2

0

2

4

sc
al

ed
 

,

median
68% C.I.
95% C.I.
99.7% C.I.
EPOS infusion

CMC,  = 2.158, crit.=1.10%, =  0.750

Figure 9: (Top Row) Left: Correlator ∆F2(M) of synthetic EPOS + CMC data set (black points) as well
as ∼ 8K independent samples of CMC-generated events (colored bands); Middle/Right: The correlation
matrix between M-bins, for CMC and synthetic EPOS datasets, respectively. (Bottom Row) Left: The
correlator ∆F2(M) for the same EPOS and CMC data sets, transformed to the PC coordinates;Middle/Right:
The correlation matrix between PCs, for CMC and synthetic EPOS datasets, respectively. Colored bands
correspond to 1-(yellow), 2-(light blue), and 3-σ (dark blue) confidence intervals of independent sample
variation, respectively.

synthetic set. The top middle and top right plots show the correlation matrices of ∆F2(M) values
between different bins M for CMC and EPOS-infused data sets, respectively. We notice the two
correlation matrices are qualitatively very similar, and both exhibit strong correlations around the
main diagonal.

The bottom row of Fig. 9 shows the transformed ∆F2(M) of CMC and synthetic set, and
their correlation matrices, in the rotated coordinates of the PCs. We use the correlation matrix of
the ∆F2(M) of the independent CMC samples in order to determine the PC directions, then we
apply the transformation consistently to both CMC and synthetic data sets. It must be noted that a
different subset of CMC samples is used in the construction of the rotation, and a different one in
the illustration of the effect, thus averting overfitting. Nevertheless, we clearly see the decoupling
effect the PCA rotation has on the ∆F2(M) values: the rotated correlation matrices of both CMC
and synthetic data set are diagonal to an excellent approximation, and therefore we can define
χ2 of samples simply as the sum of squares of their PC values (in the rotated coordinates, zero
corresponds by construction to the average model behavior, illustrated by the dark blue line on the
bottom left plot, Fig. 9).
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5.5 The exclusion plot

Armed with the PCA analysis technique, we can systematically scan a wide range of CMC
models and compare them against any experimental data set – in particular, the EPOS synthetic
data set presented in Section 5.4. First, we match the overall characteristics of the models (proton
multiplicity and momenta distributions, total number of events) to that of the experimental data
set. Then, we form a grid of models, with the percentage of critical protons ranging from 0-2% in
steps of 0.05%, and the intermittency index φ2 ranging from 0.1 to 1.0, in steps of 0.025. For each
grid point, we simulate ∼ 10K independent CMC samples, and for each sample we calculate the
correlator ∆F2(M), using the sets with zero critical component as a substitute for the mixed events.
Finally, we perform the PCA rotation for both CMC and data moments, and compare the χ2 of
experimental to Monte Carlo samples per PC dimension. Our investigation on the reconstruction
of the original CMC distributions indicates that ∼ 35 PCs should be kept in the analysis.

The results are shown in Fig. 10. Plotting the p-values of any given experimental set against a
grid ofmodel parameters gives us an exclusion plot – amap of likely& unlikelymodels; Fig. 10 (left)
shows the exclusion plot for the CMC-infused EPOS synthetic data set. We can consider p-values
below ∼ 0.1 as essentially excluded, based on the experimental data. We see than only the top-
right corner (models strong in exponent and critical component) is excluded, with everything else
appearing more or less equally likely. That is to be expected, as for weaker values of critical
exponent and component, the behavior of CMC models varies slowly; that fact, combined with the
considerable internal variance of any given CMC model, makes it essentially impossible to discern
between neighboring models at this level of event statistics.

Fig. 10 (right) shows a consistency check: a comparison of one CMC model (φ2 = 0.825,
crit. component = 0.7%) against all CMC models. We observe a narrow band of “favored” models
running along the top-right corner of the plot; on the one hand, this band includes our plug-in,
and thus the method passes the consistency check. On the other hand, the map fails to uniquely
determine a parameter set. Again, this is to be expected at the level of predictive power we can
achieve with such statistics, and also the fact that increasing the critical exponent φ2 has similar
effect to the moments ∆F2(M) as increasing the critical component.

6. Concluding remarks

We have presented a review of the current status of experimentally-oriented intermittency
analysis, focusing on proton intermittency. Intermittency analysis of proton density is a promising
strategy for detecting the Critical Point of strongly interacting matter. However, it poses certain
challenges in the context of an actual heavy-ion collision experiment, which is always constrained in
terms of available event statistics, particle multiplicity, and proton identification. Furthermore, it is
evident that large uncertainties in the determination of factorial moments, and especially strong bin
correlations between different scales cannot be handled by the conventional analysis methodology.

New techniques have been developed, and are constantly being perfected, that allow us to
handle statistical and systematic uncertainties without sacrificing event statistics. This is achieved
through building Monte Carlo models of both critical behaviour and the non-critical background
of a heavy-ion collision system near the critical point. These models are then compared against
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Figure 10: Left: Map of p-values (exclusion plot) for the critically infused EPOS data set vs a CMC grid of
model parameters in critical component (percentage of critical protons) and intermittency index φ2. Lower
p-values correspond to less likely models, given the data; Right: Exclusion plot for a CMC model with
parameters (φ2 = 0.825, crit. component = 0.7%) against all CMC models. The plugged in-model is among
the favored models, by p-value.

the experimental data via a scan in parameter space. At the same time, rotating from the original
M-bins to appropriately determined principal components eliminates bin correlations, and ensures
that the results of model comparison remain valid.

Detailed exploration of refined models with critical and non-critical components is certainly
needed, in order to assess experimental data. Finally, we intend to systematically apply the method-
ology presented here to as broad a collection of experimental data sets as possible, in order to
determine their proximity to the critical point.
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