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1. Introduction

Theoretical physicists have aimed to unify all four fundamental interactions for decades. This
quest has been a central focus within the scientific community, leading to numerous innovative
approaches in recent years. Notably, those involving additional dimensions have garnered substantial
attention and acclaim. The concept of extra dimensions is a cornerstone of superstring theories.
Among these, the heterotic string [1], defined in ten dimensions, is particularly promising due to its
potential for experimental validation. The heterotic string’s phenomenological aspects prominently
feature in the resulting Grand Unified Theories (GUTs), which crucially contain the Standard
Model (SM) gauge group. These GUTs arise from compactifying the ten-dimensional spacetime and
subsequent dimensional reduction often on Calabi-Yau (CY) spaces. It is important to highlight an
alternative framework that preceded superstrings, focusing on the dimensional reduction of higher-
dimensional gauge theories, offering another avenue for exploring the unification of fundamental
interactions. Forgacs-Manton and Scherk-Schwartz were pioneers in this area. Forgacs-Manton
introduced Coset Space Dimensional Reduction (CSDR) [2–4], while Scherk-Schwartz worked on
group manifold reduction [5]. These foundational works emphasized the dimensional reduction
of higher-dimensional theories and their implications for unification, laying the foundation for the
field.

A defining trait of higher-dimensional theories is their unification of the gauge and scalar sectors
of a 4𝐷 theory. In particular, within the framework of CSDR, the kinetic terms of fermions in higher
dimensions yield both kinetic and Yukawa terms in 4𝐷. Additionally, a N = 1 supersymmetric
theory in certain higher dimensions can feature only one vector supermultiplet, unifying its 4𝐷
gauge and fermionic components. Two notable features of CSDR are: i) starting from a vector-like
theory in 4𝑛+2 dimensions can result in chiral fermions in 4𝐷 [6, 7], and ii)N = 1 supersymmetry in
10𝐷 leads to softly broken supersymmetric theories in 4𝐷 when the coset space is non-symmetric,
and to non-supersymmetric theories if the coset is symmetric [8–11].

In the heterotic string framework, the use of compact internal CY manifolds gained prominence
because they preserve the supersymmetry of an initial 𝑁 = 1 supersymmetric gauge theory upon
dimensional reduction to four dimensions [12]. However, the challenge of moduli stabilization
led to the exploration of internal spaces with 𝑆𝑈 (3)-structure, particularly nearly-Kähler manifolds
[13–19]. The 6𝐷 homogeneous nearly-Kähler manifolds that permit a connection with torsion are
the non-symmetric coset spaces 𝐺2/𝑆𝑈 (3), 𝑆𝑝(4)/𝑆𝑈 (2) × 𝑈 (1)𝑛𝑜𝑛−𝑚𝑎𝑥 , 𝑆𝑈 (3)/𝑈 (1) × 𝑈 (1),
and the group manifold 𝑆𝑈 (2) × 𝑆𝑈 (2) [20–23]. In contrast to CY manifolds, CSDR can start
from a 10𝐷, 𝑁 = 1 theory and, by utilizing a non-symmetric coset space, yield 4𝐷 theories with
an inherently emerging soft supersymmetry breaking sector [8–11].

Here we review the dimensional reduction of aN = 1 𝐸8 theory over the modified flag manifold
𝑆𝑈 (3)/𝑈 (1) × 𝑈 (1) × Z3, which is the non-symmetric coset space 𝑆𝑈 (3)/𝑈 (1) × 𝑈 (1) with a
freely acting discrete symmetry Z3. This setup facilitates the Wilson flux breaking mechanism,
resulting in the 4𝐷 GUT 𝑆𝑈 (3)3 ×𝑈 (1)2 [3, 8, 21, 24] (also [25]). The resulting theory is a softly
broken N = 1 theory with small radii, aligning the compactification scale with the unification
scale. The geometric origin of the soft terms makes all sfermions superheavy, causing them to
decouple along with the additional fields from the trinification group (for older configurations with
similar setups, see [26], [27], and [28]). Due to a specific choice of radii, we obtain the Split
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Next-to-Minimal Supersymmetric Standard Model (NMSSM) [29, 30] (see also [31, 32]), where
the lighter supersymmetric particles have masses < 1 TeV. For the original work, see [33].

2. The Coset Space Dimensional Reduction

We begin by covering the basics of CSDR. A detailed examination of the geometric aspects of
coset spaces and the fundamental principles of CSDR (including the reduction methodology and its
constraints) can be found in [3]. Consider a 𝐷-dimensional space 𝑀4 × 𝑆/𝑅, where 𝐷 = 𝑑 + 4 and
𝑑 is the number of dimensions of 𝑆/𝑅. The extra dimensions of 𝑀4 × 𝑆/𝑅 are compactified on the
coset space 𝑆/𝑅, where 𝑆 is a Lie group and 𝑅 is its subgroup (with 𝑑 = 𝑑𝑖𝑚𝑆 − 𝑑𝑖𝑚𝑅). 𝑆 acts as
a symmetry group on the extra coordinates. The core idea of CSDR is that the transformations of
fields under the action of the symmetry group 𝑆 of 𝑆/𝑅 are compensated by gauge transformations.
As a result, since the Lagrangian is gauge invariant, there is no dependence on the extra coordinates,
effectively reducing the theory. It is important to note that fields defined in this manner are called
symmetric.

For a Yang-Mills-Dirac theory with gauge group 𝐺 defined on the 𝐷-dimensional manifold
𝑀𝐷 and compactified on 𝑀4 × 𝑆/𝑅, the action is:

𝑆 =

∫
𝑑4𝑥𝑑𝑑𝑦

√−𝑔
[
−1

4
Tr(𝐹𝑀𝑁𝐹𝐾Λ)𝑔𝑀𝐾𝑔𝑁Λ + 𝑖

2
𝜓̄Γ𝑀𝐷𝑀𝜓

]
(1)

where the spinor 𝜓 represents the fermions of the theory and belongs to the representation 𝐹 of the
gauge group.
The conditions that all fields of the theory that exist on the coset space are symmetric are given by:

𝐴𝜇 (𝑥, 𝑦) =𝑔(𝑠)𝐴𝜇 (𝑥, 𝑠−1𝑦)𝑔−1(𝑠)
𝐴𝑎 (𝑥, 𝑦) =𝑔(𝑠)𝐽 𝑏

𝑎 𝐴𝑏 (𝑥, 𝑠−1𝑦)𝑔−1(𝑠) + 𝑔(𝑠)𝜕𝑎𝑔−1(𝑠) (2)
𝜓(𝑥, 𝑦) = 𝑓 (𝑠)Ω𝜓(𝑥, 𝑠−1𝑦) 𝑓 −1(𝑠) ,

where 𝑔, 𝑓 are gauge transformations in the adjoint representation 𝐹 of 𝐺, corresponding to the 𝑠
transformation of 𝑆 acting on 𝑆/𝑅, 𝐽 𝑏𝑎 is the Jacobian for 𝑠 and Ω is the Jacobian plus the local
Lorentz rotation in tangent space. The fields 𝐴𝜇 and 𝐴𝛼 refer to the components of the higher
dimensional gauge field 𝐴𝑀 = (𝐴𝜇, 𝐴𝛼). The 𝐴𝜇 are the 4𝐷 gauge fields and the 𝐴𝛼 are the
extra-dimensional components, which "do not see" the Lorentz group, i.e. behave as 4𝐷 scalar
fields. The above conditions imply constraints that the 𝐷-dimensional fields should obey.

The solutions of these constraints determine the gauge group and the surviving field content
of the 4𝐷 theory (for details see e.g. [3]). The constraint referring to the 4𝐷 gauge fields, 𝐴𝜇
suggests that the surviving 4𝐷 gauge group is 𝐻 = 𝐶𝐺 (𝑅𝐺), i.e. the centralizer of 𝑅 in 𝐺 and 𝐴𝜇
do not depend on the coordinates of the coset. Concerning the 4𝐷 scalars, 𝐴𝛼, those that eventually
survive are identified as follows:

𝐺 ⊃ 𝑅𝐺 × 𝐻 , adj𝐺 = (adj𝑅, 1) + (1, adj𝐻) +
∑︁

(𝑟𝑖 , ℎ𝑖) , (3)

𝑆 ⊃ 𝑅 , adj𝑆 = adj𝑅 +
∑︁

𝑠𝑖 . (4)
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The scalars that survive in 4𝐷 are determined by the irreducible representations 𝑟𝑖 and 𝑠𝑖 of 𝑅.
When 𝑟𝑖 and 𝑠𝑖 match, the representation ℎ𝑖 of 𝐻 corresponds to a scalar multiplet. The remaning
scalars do not satisfy the constraints and are projected out i.e. do not survive in 4𝐷.

In a similar way, the third constraint of (2), which is associated with the spinorial content
of the theory, allows to determine the surviving 4𝐷 spinors, as the 4𝐷 spinors depend only on
the coordinates of the 4𝐷 theory. The 𝑓𝑖 representation of 𝐻 (to which fermions are assigned) is
determined by the decomposition of the representation 𝐹 of 𝐺 w.r.t. 𝑅𝐺 × 𝐻 and the spinorial
representation of the local ’Lorentz group’ of the tangent space, 𝑆𝑂 (𝑑), of the coset space 𝑆/𝑅
under 𝑅 (after embedding 𝑅 onto 𝑆𝑂 (𝑑)):

𝐺 ⊃ 𝑅𝐺 × 𝐻 , 𝐹 =
∑︁

(𝑟𝑖 , 𝑓𝑖), (5)

𝑆𝑂 (𝑑) ⊃ 𝑅 , 𝜎𝑑 =
∑︁

𝜎𝑗 . (6)

For each pair of identical 𝑟𝑖 and 𝜎𝑖 , a 𝑓𝑖 spinor multiplet survives in 4𝐷.
Concerning fermions it is necessary to add few further remarks. If the higher-dimensional

fermions are Dirac fermions, the surviving 4𝐷 fermions will not be chiral. However imposing the
Weyl on an even 𝐷-dimensional spacetime yields chiral fermions in 4𝐷. Fermions accommodated
in the adjoint representation in an initial theory defined in 𝐷 = 2𝑛 + 2 dimensions lead in 4𝐷 to
two sets of chiral fermions with identical quantum numbers for the components of each set. If
the Majorana condition is also imposed on the initial theory, the 4𝐷 theory does not feature the
doubling of the spectrum. In 𝐷 = 4𝑛 + 2 dimensions both Weyl and Majorana conditions can be
imposed.

3. Dimensional Reduction of 𝐸8 over 𝑆𝑈 (3)/𝑈 (1)2

We may now focus on a realistic implementation of the CSDR. We start from a 10𝐷, N = 1
supersymmetric 𝐸8 with a vector supermultiplet and Weyl-Majorana fermions, which is reduced
over the non-symmetric space 𝑆𝑈 (3)/𝑈 (1) ×𝑈 (1) [3, 8, 25]. The 4𝐷 action is then given by:

𝑆 =𝐶

∫
𝑑4𝑥 tr

[
−1

8
𝐹𝜇𝜈𝐹

𝜇𝜈 − 1
4
(𝐷𝜇𝜙𝑎) (𝐷𝜇𝜙𝑎)

]
+𝑉 (𝜙) + 𝑖

2
𝜓̄Γ𝜇𝐷𝜇𝜓 − 𝑖

2
𝜓̄Γ𝑎𝐷𝑎𝜓 ,

where the scalar potential is given by

𝑉 (𝜙) = −1
4
𝑔𝑎𝑐𝑔𝑏𝑑tr

(
𝑓 𝐶
𝑎𝑏 𝜙𝐶 − 𝑖[𝜙𝑎, 𝜙𝑏]) ( 𝑓 𝐷

𝑐𝑑 𝜙𝐷 − 𝑖[𝜙𝑐, 𝜙𝑑]
)
, (7)

where 𝐶 is the coset volume, 𝐷𝜇 the 4𝐷 covariant derivative, 𝐷𝑎 the one of the coset, the metric
of the coset is 𝑔𝛼𝛽 = diag(𝑅2

1, 𝑅
2
1, 𝑅

2
2, 𝑅

2
2, 𝑅

2
3, 𝑅

2
3) and 𝑅𝑖 are the coset radii.

The way 𝑅 = 𝑈 (1) ×𝑈 (1) is embedded in𝐺 = 𝐸8 determines the 4𝐷 gauge group. Our choice
is that the two 𝑈 (1)s are identified with the diagonal generators of 𝑆𝑈 (3) (Cartan subalgebra) in
the following maximal decomposition of 𝐸8:

𝐸8 ⊃ 𝑆𝑈 (3) × 𝐸6 . (8)

The gauge group in 4𝐷 is the centralizer of 𝑅 in 𝐺:

𝐻 = 𝐶𝐸8 (𝑈 (1)𝐴 ×𝑈 (1)𝐵) = 𝐸6 ×𝑈 (1)𝐴 ×𝑈 (1)𝐵 . (9)
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The surviving scalars and fermions are obtained by examining the decomposition of the vector
and spinor representations of 𝑆𝑂 (6), respectively, under 𝑅 = 𝑈 (1)𝐴 × 𝑈 (1)𝐵 (following the
methodology above).

Therefore the surviving 4𝐷 gauge fields fields are assigned in three𝑁 = 1 vector supermultiplets
of the 𝐸6 ×𝑈 (1)𝐴 ×𝑈 (1)𝐵, while the matter fields into six chiral supermultiplets, of which three
are 𝐸6 singlets and the other three transform under 𝐸6 ×𝑈 (1)𝐴×𝑈 (1)𝐵. The unconstrained matter
fields are:

𝐴𝑖 ∼ 27(3, 1
2 )
, 𝐵𝑖 ∼ 27(−3, 1

2 )
, Γ𝑖 ∼ 27(0,−1) , 𝐴 ∼ 1(3, 1

2 )
, 𝐵 ∼ 1(−3, 1

2 )
, Γ ∼ 1(0,−1)

and the scalar potential -which is positive definite- becomes:

𝑉 =
𝑔2

2

[
2
5

(
1
𝑅4

1
+ 1
𝑅4

2
+ 1
𝑅4

3

)
+

( 4𝑅2
1

𝑅2
2𝑅

2
3
− 8
𝑅2

1

)
𝛼𝑖𝛼𝑖 +

( 4𝑅2
1

𝑅2
2𝑅

2
3
− 8
𝑅2

1

)
𝛼̄𝛼

+
( 4𝑅2

2
𝑅2

1𝑅
2
3
− 8
𝑅2

2

)
𝛽𝑖𝛽𝑖 +

( 4𝑅2
2

𝑅2
1𝑅

2
3
− 8
𝑅2

2

)
𝛽𝛽 +

( 4𝑅2
3

𝑅2
1𝑅

2
2
− 8
𝑅2

3

)
𝛾𝑖𝛾𝑖 +

( 4𝑅2
3

𝑅2
1𝑅

2
2
− 8
𝑅2

3

)
𝛾̄𝛾

+
[
80

√
2
(
𝑅1
𝑅2𝑅3

+ 𝑅2
𝑅1𝑅3

+ 𝑅3
𝑅2𝑅1

)
𝑑𝑖 𝑗𝑘𝛼

𝑖𝛽 𝑗𝛾𝑘 + 80
√

2
(
𝑅1
𝑅2𝑅3

+ 𝑅2
𝑅1𝑅3

+ 𝑅3
𝑅2𝑅1

)
𝛼𝛽𝛾 + ℎ.𝑐

]
+ 1

6

(
𝛼𝑖 (𝐺𝛼) 𝑗

𝑖
𝛼 𝑗 + 𝛽𝑖 (𝐺𝛼) 𝑗𝑖 𝛽 𝑗 + 𝛾

𝑖 (𝐺𝛼) 𝑗
𝑖
𝛾 𝑗

)2
+ 10

6

(
𝛼𝑖 (3𝛿 𝑗

𝑖
)𝛼 𝑗 + 𝛼̄(3)𝛼 + 𝛽𝑖 (−3𝛿 𝑗

𝑖
)𝛽 𝑗 + 𝛽(−3)𝛽

)2

+ 40
6

(
𝛼𝑖 ( 1

2 𝛿
𝑗

𝑖
)𝛼 𝑗 + 𝛼̄( 1

2 )𝛼 + 𝛽𝑖 ( 1
2 𝛿
𝑗

𝑖
)𝛽 𝑗 + 𝛽( 1

2 )𝛽 + 𝛾
𝑖 (−1𝛿 𝑗

𝑖
)𝛾 𝑗 + 𝛾̄(−1)𝛾

)2

+ 40𝛼𝑖𝛽 𝑗𝑑𝑖 𝑗𝑘𝑑𝑘𝑙𝑚𝛼𝑙𝛽𝑚 + 40𝛽𝑖𝛾 𝑗𝑑𝑖 𝑗𝑘𝑑𝑘𝑙𝑚𝛽𝑙𝛾𝑚 + 40𝛼𝑖𝛾 𝑗𝑑𝑖 𝑗𝑘𝑑𝑘𝑙𝑚𝛼𝑙𝛾𝑚

+ 40(𝛼̄𝛽) (𝛼𝛽) + 40(𝛽𝛾̄) (𝛽𝛾) + 40(𝛾̄𝛼̄) (𝛾𝛼)
]
, (10)

where 𝛼𝑖 , 𝛼, 𝛽𝑖 , 𝛽, 𝛾𝑖 , 𝛾 are the scalar components of 𝐴𝑖 , 𝐵𝑖 , Γ𝑖 and 𝐴, 𝐵, Γ and 𝑑𝑖 𝑗𝑘 the fully sym-
metric 𝐸6 invariant tensor. One can indentify 𝐹−, 𝐷− and soft supersymmetry breaking terms
in the potential of Eq. (10) The 𝐹-terms are identified in the last two lines and come from the
superpotential:

W(𝐴𝑖 , 𝐵 𝑗 , Γ𝑘 , 𝐴, 𝐵, Γ) =
√

40𝑑𝑖 𝑗𝑘𝐴𝑖𝐵 𝑗Γ𝑘 +
√

40𝐴𝐵Γ , (11)

The 𝐷-terms (lines 4-5 of Eq. (10)) have their usual structure and the remaining terms of Eq. (10)
(except from the first term which is constant) are the soft scalar masses and soft trilinear terms. The
gaugino mass is also of geometrical origin, although it behaves differently than the soft masses:

𝑀 = (1 + 3𝜏)
𝑅2

1 + 𝑅
2
2 + 𝑅

2
3

8
√︃
𝑅2

1𝑅
2
2𝑅

2
3

, (12)

For a generic choice the gauginos would obtain compactification scale mass [3]. This is prevented
by the appropriate choice of the contorsion 𝜏 (details can be found in [10]). Its value is chosen to
be such that the following model features a electroweak (EW) scale unified gaugino mass.

4. Wilson Flux and the Surviving Theory

In the above, the 27 multiplet that contains the three 𝐸6 ×𝑈 (1)𝐴 ×𝑈 (1)𝐵 supermultiplets is
insufficient to break 𝐸6 to a GUT leading to the SM gauge group. To achieve further gauge breaking,

5
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we make use of the Wilson flux breaking mechanism [35–37]. What follows is a brief review of the
basics of the Wilson flux mechanism and its application to the case at hand.

In the above, the dimensional reduction was performed over the simply connected manifold
𝐵0 = 𝑆/𝑅. However, the manifold can be multiply connected. This is achieved by considering
𝐵 = 𝐵0/𝐹𝑆/𝑅, where 𝐹𝑆/𝑅 is a freely-acting discrete symmetry of 𝐵0. For each element 𝑔 ∈ 𝐹𝑆/𝑅,
there is a corresponding element𝑈𝑔 in the 4𝐷 gauge group 𝐻, which may be viewed as the Wilson
loop:

𝑈𝑔 = P𝑒𝑥𝑝
(
−𝑖

∮
𝛾𝑔

𝑇𝑎𝐴 𝑎
𝑀𝑑𝑥

𝑀

)
, (13)

where 𝐴 𝑎
𝑀

are the gauge fields, 𝛾𝑔 a contour representing the element 𝑔 of 𝐹𝑆/𝑅,𝑇𝑎 are the generators
of the group and P denotes the path ordering. In the case where the considered manifold is simply
connected, the vanishing of the field strength tensor implies that the gauge field can be set to zero
through a gauge transformation. However, when 𝛾𝑔 is chosen to be non-contractible to a point,
we have 𝑈 [𝛾] ≠ 1, and the gauge field cannot be gauged away. This means that the vacuum field
strength does not lead to 𝑈𝑔 = 1. As a result, a homomorphism of 𝐹𝑆/𝑅 into 𝐻 is induced with an
image 𝑇𝐻 , which is the subgroup of 𝐻 generated by𝑈𝑔. Furthermore, consider a field 𝑓 (𝑥) defined
on 𝐵0. It is evident that 𝑓 (𝑥) is equivalent to another field on 𝐵0 that satisfies 𝑓 (𝑔(𝑥)) = 𝑓 (𝑥) for
every 𝑔 ∈ 𝐹𝑆/𝑅. The presence of 𝐻 generalizes this statement:

𝑓 (𝑔(𝑥)) = 𝑈𝑔 𝑓 (𝑥) . (14)

Regarding the gauge symmetry that remains by the vacuum, in the vacuum state it is given that
𝐴𝑎𝜇 = 0, and consider also a gauge transformation by the coordinate-dependent matrix𝑉 (𝑥) of 𝐻. In
order to keep 𝐴 𝑎

𝜇 = 0 and preserve the vacuum invariance, the matrix 𝑉 (𝑥) must be chosen to be
constant. Additionally, 𝑓 → 𝑉 𝑓 is consistent with Eq. (14) only if

[𝑉,𝑈𝑔] = 0 (15)

for every 𝑔 ∈ 𝐹𝑆/𝑅. Hence, the subgroup of 𝐻 that remains unbroken is the centralizer of 𝑇𝐻 in 𝐻.
As for the matter fields that survive in the theory, meaning the matter fields that satisfy the condition
in Eq. (14), they must be invariant under the combination:

𝐹𝑆/𝑅 ⊕ 𝑇𝐻 .

The freely-acting discrete symmetries, 𝐹𝑆/𝑅, of 𝐵0 = 𝑆/𝑅 are the center of 𝑆, 𝑍 (𝑆) and 𝑊 =

𝑊𝑆/𝑊𝑅, where it is understood that 𝑊𝑆 and 𝑊𝑅 are the Weyl groups of 𝑆 and 𝑅, respectively. In
this case we have

𝐹𝑆/𝑅 = Z3 ⊆ 𝑊 = 𝑆3, (16)

since the original coset was 𝐵0 = 𝑆𝑈 (3)/𝑈 (1) ×𝑈 (1).

The Wilson breaking projects the theory in a manner that the surviving fields are the ones that
remain invariant under Z3 on their gauge and geometric indices. In our case, the Z3’s non-
trivial action on the gauge indices of the fields is parameterized by the matrix [38]:

𝛾3 = diag{13, 𝜔13, 𝜔
213} , (17)
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where 𝜔 = 𝑒𝑖
2𝜋
3 is the phase that acts on the gauge fields. The remaining gauge fields satisfy the

condition:
[𝐴𝑀 , 𝛾3] = 0 ⇒ 𝐴𝑀 = 𝛾3𝐴𝑀𝛾

−1
3 (18)

and the new gauge symmetry is 𝑆𝑈 (3)𝑐×𝑆𝑈 (3)𝐿×𝑆𝑈 (3)𝑅×𝑈 (1)𝐴×𝑈 (1)𝐵. The𝑈 (1)s are the 𝑅-
symmetry of the theory, which is closely interrelated to supersymmetry. The matter counterpart of
Eq. (18) is:

𝐴𝑖 = 𝛾3𝐴
𝑖 , 𝐵𝑖 = 𝜔𝛾3𝐵

𝑖 , Γ𝑖 = 𝜔2𝛾3Γ
𝑖 , 𝐴 = 𝐴, 𝐵 = 𝜔𝐵, Γ = 𝜔2Γ . (19)

By examining the decomposition of the 27 representation of𝐸6 under the 𝑆𝑈 (3)𝑐 × 𝑆𝑈 (3)𝐿 × 𝑆𝑈 (3)𝑅
gauge group, (1, 3, 3̄) ⊕ (3̄, 1, 3) ⊕ (3, 3̄, 1), one can obtain the representations of the trinification
part of the gauge group in which the above fields are accommodated. Thus, the matter content of
the projected theory is:

𝐴1 ≡ 𝐿 ∼ (1, 3, 3) (3,1/2) , 𝐵3 ≡ 𝑞𝑐 ∼ (3, 1, 3) (−3,1/2) , Γ2 ≡ 𝑄 ∼ (3, 3, 1) (0,−1)

𝐴 ≡ 𝜃 ∼ (1, 1, 1) (3,1/2)

where the former three are the remaining components of 𝐴𝑖 , 𝐵𝑖 , Γ𝑖 . All together they form a 27
representation of 𝐸6, which corresponds to the content representing one generation in the remaining
theory. To end up with three generations, one can introduce non-trivial monopole charges in the
𝑈 (1)s in 𝑅. This leads to three copies of the aforementioned fields, subsequntly resulting in three
generations [39]. The trinification multiplets 𝐿, 𝑞𝑐, 𝑄 can be now assigned and written in the more
standard way:

𝐿 (𝑙) =
©­­«
𝐻0
𝑑

𝐻+
𝑢 𝜈𝐿

𝐻−
𝑑

𝐻0
𝑢 𝑒𝐿

𝜈𝑐
𝑅

𝑒𝑐
𝑅

𝑁

ª®®¬ , 𝑞𝑐 (𝑙) =
©­­«
𝑑𝑐1
𝑅

𝑢𝑐1
𝑅

𝐷𝑐1
𝑅

𝑑𝑐2
𝑅

𝑢𝑐2
𝑅

𝐷𝑐2
𝑅

𝑑𝑐3
𝑅

𝑢𝑐3
𝑅

𝐷𝑐3
𝑅

ª®®¬ , 𝑄 (𝑙) =
©­­«
𝑑1
𝐿

𝑑2
𝐿

𝑑3
𝐿

𝑢1
𝐿

𝑢2
𝐿

𝑢3
𝐿

𝐷1
𝐿

𝐷2
𝐿

𝐷3
𝐿

ª®®¬ ,
where 𝑙 = 1, 2, 3 is the generation index. 𝑞𝑐 and 𝑄 are quark multiplets, while 𝐿 containts both the
lepton and the Higgs sector. The quark multiplets also contain the vector-like down-type quarks
𝐷 (𝑙) , which will eventually be 𝑆𝑈 (2)𝐿 singlets, while 𝐿 also features the right-handed neutrinos
𝜈
𝑐 (𝑙)
𝑅

and the sterile neutrino-like fields 𝑁 (𝑙) . It is useful to note that there are three generations of
Higgs doublets. Finally, there are three trinification singlets, 𝜃 (𝑙) .

It is useful to recall that if an effective 4𝐷 theory is renormalizable by power counting, then it is
consistent to consider it a renormalizable theory [40]. In this context, we respect all the symmetries
and the model structure derived from the higher-dimensional theory and its dimensional reduction.
However, we treat all the parameters of the effective theory as free parameters, to the extent allowed
by symmetries. Specifically, all kinetic terms and 𝐷-terms of the action have the gauge coupling
𝑔, as dictated by the gauge symmetry of the model. All superpotential terms must also share
the same coupling to respect supersymmetry. The flexibility afforded by this treatment is evident
in the soft sector, where each term is allowed its own coupling. Thus, the superpotential of the
𝑆𝑈 (3)𝑐 × 𝑆𝑈 (3)𝐿 × 𝑆𝑈 (3)𝑅 ×𝑈 (1)𝐴 ×𝑈 (1)𝐵 effective theory is given by:

W (𝑙) = 𝐶 (𝑙)𝑑𝑎𝑏𝑐𝐿 (𝑙)
𝑎 𝑞

𝑐 (𝑙)
𝑏

𝑄
(𝑙)
𝑐 , (20)
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since the 𝐵 and Γ trinfication singlets were projected out. Similarly, the soft sector of the scalar
potential is now:

𝑉
(𝑙)
soft =

©­«
𝑐
(𝑙)
𝐿1
𝑅2

1

𝑅2
2𝑅

2
3
−
𝑐
(𝑙)
𝐿2

𝑅2
1

ª®¬
〈
𝐿 (𝑙) |𝐿 (𝑙) 〉 + ©­«

𝑐
(𝑙)
𝜃1
𝑅2

1

𝑅2
2𝑅

2
3
−
𝑐
(𝑙)
𝜃1

𝑅2
1

ª®¬ |𝜃 (𝑙) |2
+ ©­«

𝑐
(𝑙)
𝑞𝑐1
𝑅2

2

𝑅2
1𝑅

2
3
−
𝑐
(𝑙)
𝑞𝑐2

𝑅2
2

ª®¬
〈
𝑞𝑐 (𝑙) |𝑞𝑐 (𝑙)

〉
+ ©­«

𝑐
(𝑙)
𝑄1
𝑅2

3

𝑅2
1𝑅

2
2
−
𝑐
(𝑙)
𝑄1

𝑅2
3

ª®¬
〈
𝑄 (𝑙) |𝑄 (𝑙) 〉

+
(
𝑅1
𝑅2𝑅3

+ 𝑅2
𝑅1𝑅3

+ 𝑅3
𝑅1𝑅2

)
(𝑐 (𝑙)𝛼 𝑑𝑎𝑏𝑐𝐿 (𝑙)

𝑎 𝑞
𝑐 (𝑙)
𝑏

𝑄
(𝑙)
𝑐 + 𝑐 (𝑙)

𝑏
𝑑𝑎𝑏𝑐𝐿

(𝑙)
𝑎 𝐿

(𝑙)
𝑏
𝐿
(𝑙)
𝑐 + ℎ.𝑐)

=𝑚2
𝐿 (𝑙)

〈
𝐿 (𝑙) |𝐿 (𝑙) 〉 + 𝑚2

𝑞𝑐 (𝑙)

〈
𝑞𝑐 (𝑙) |𝑞𝑐 (𝑙)

〉
+ 𝑚2

𝑄 (𝑙)

〈
𝑄 (𝑙) |𝑄 (𝑙) 〉 + 𝑚2

𝜃 (𝑙)
|𝜃 (𝑙) |2

+ (𝛼 (𝑙)𝑎𝑏𝑐𝐿 (𝑙)
𝑎 𝑞

𝑐 (𝑙)
𝑏

𝑄
(𝑙)
𝑐 + 𝑏 (𝑙)𝑎𝑏𝑐𝐿 (𝑙)

𝑎 𝐿
(𝑙)
𝑏
𝐿
(𝑙)
𝑐 + ℎ.𝑐) , (21)

where 𝑐 (𝑙)
𝑖

are free parameters of O(1) and the above equation only involves the scalar components
of the denoted superfields. It is evident that all sfermions, Higgs bosons and trinification singlet
scalars acquire a soft mass parameter. Since supersymmetry is softly broken in the model, the
associated R-symmetry can also be considered softly broken. Therefore, we introduce R-symmetry
breaking terms 𝐿3 to eventually generate a superheavy B-term, facilitating the standard rotation
in the Higgs sector as featured in the Split NMSSM (see Sect. 7 below). These terms completely
break R-symmetry, meaning any residual R-parity will also be broken once R-symmetry is broken.

5. Radii and GUT Breaking

In the case at hand the compactification scale, 𝑀𝐶 is very high, thus Kaluza-Klein modes that
occur from the dimensional reduction are irrelevant. Additionally, we consider 𝑀𝐶 = 𝑀𝐺𝑈𝑇 ; this
means that the coset radii are small:

𝑅𝑙 ∼
1

𝑀𝐺𝑈𝑇
, 𝑙 = 1, 2, 3 .

Since the trilinear soft terms and the soft scalar masses depend on the geometry of the coset,
Eq. (21) suggests that they are ∼ O(𝑀𝐺𝑈𝑇 ). The choice 𝑅2 = 𝑅3 translates to 𝑚2

𝑞𝑐 (𝑙)
= 𝑚2

𝑄 (𝑙) , but

we employ a slightly different 𝑅1. Together with appropriate selection of values for 𝑐 (𝑙)
𝜃𝑖

this leads
to a cancellation among terms that dictate 𝑚2

𝜃 (3)
and guarantees that it is ∼ O(𝐸𝑊).

The breaking of the 𝑆𝑈 (3)𝐿 × 𝑆𝑈 (3)𝑅 × 𝑈 (1)𝐴 × 𝑈 (1)𝐵 gauge group involves the vacuum
expectation values (vevs):

⟨𝐿 (1)
𝑠 ⟩ =

©­­«
0 0 0
0 0 0
0 0 𝑉1

ª®®¬ , ⟨𝐿 (2)
𝑠 ⟩ =

©­­«
0 0 0
0 0 0
𝑉2 0 0

ª®®¬ , ⟨𝐿 (3)
𝑠 ⟩ =

©­­«
0 0 0
0 0 0
𝑉3 0 𝑉4

ª®®¬ ,
⟨𝜃 (1)𝑠 ⟩ = 𝑉5 , ⟨𝜃 (2)𝑠 ⟩ = 𝑉6 ,

where with the 𝑠 index we denote the respective scalar components of the fields. We proceed with
the above-mentioned non-minimal vev content, which will prove useful in the low-energy model
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and we get the breaking:

𝑆𝑈 (3)𝑐 × 𝑆𝑈 (3)𝐿 × 𝑆𝑈 (3)𝑅 ×𝑈 (1)𝐴 ×𝑈 (1)𝐵
𝑉𝑖−−→ 𝑆𝑈 (3)𝑐 × 𝑆𝑈 (2)𝐿 ×𝑈 (1)𝑌 .

6. Radiative terms

The superpotential (20) lacks the bilinear terms that would serve as 𝜇-terms in the low-energy
model at tree level. These terms would violate the two 𝑈 (1)s. However, since R-symmetry is
broken, trilinear terms among the Higgs doublets and the gauge singlets appear radiatively:

𝐻
(𝑙)
𝑢 𝐻

(𝑙)
𝑑
𝜃
(𝑙)
. (22)

These terms feature a (natural) generation diagonality, which leads to an interesting phenomenology.
Since these terms are effectively 𝜇-like terms, the Higgs doublets of the two first generations acquire
a superheavy 𝜇 term, since ⟨𝜃 (1,2)𝑠 ⟩ ∼ O(𝐺𝑈𝑇), while the term of the third generation survives in
the low-energy model. The missing lepton Yukawa terms get the same treatment. Both these terms
also emerge via dim-5 operators [42]:

𝐻
(𝑙)
𝑢 𝐻

(𝑙)
𝑑
𝜃 (𝑙)

𝐾 (𝑙)

𝑀
, 𝐿 (𝑙)𝑒 (𝑙)𝐻 (𝑙)

𝑑

𝐾 (𝑙)

𝑀
, (23)

where 𝐾 (𝑙) can be any of the fields that acquire superheavy vevs, namely 𝑁 (1,3) , 𝜈 (2,3)
𝑅

, 𝜃 (1,2) or
any combination of them (provided the generation index is respected). An additional Z2 discrete
symmetry in the lepton sector is needed to protect from dangerous radiative or higher-dimensional
terms. The rest of the allowed terms lead to superheavy masses for all trinification singlet fields but
𝜃
(3)
𝑓

, in which case a cancellation among terms leads to a ∼ O(𝐸𝑊) mass.

7. The Split NMSSM Low-Energy Theory

The next step is to sort the particle content left under the surviving SM gauge group. The
vector-like quarks 𝐷 (𝑙) along with 𝑁 (𝑙) , 𝜈 (𝑙)

𝑅
, 𝜃 (1,2) and 𝐻 (1,2)

𝑢,𝑑
(this holds for fermion and scalar

components).
As explained in Sect. 3, the torsion value is selected such that the gauginos get masses of a

few TeV, while all sfermions get superheavy due to the geometric origin of the soft masses. The
third generation soft Higgs mass parameters 𝑚2

𝐿 (3) ≡ 𝑚2
𝐻𝑢,𝑑

are superheavy, while the last term of
Eq. (21) contains a soft B-like term ∼ O(𝐺𝑈𝑇):

𝑏 (3)𝐻 (3)
𝑢 · 𝐻 (3)

𝑑
≡ 𝑏𝐻𝑢 · 𝐻𝑑 . (24)

Following the approach of [30], the Higgs doublets and the singlet field of the third generation
𝐻

(3)
𝑢,𝑑

≡ 𝐻𝑢,𝑑 and 𝜃 (3) ≡ 𝑆 are light and survive down to the EW scale, with an interaction term
from Eq. (22):

𝜆𝑆𝐻𝑢 · 𝐻𝑑 , (25)

where the family indices are now implicit, as we focus on the third generation from now on.
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The scenario described above corresponds to the split NMSSM [29, 30] (we adopt the nota-
tion from [30]). The unification scale soft Higgs mass parameter makes the heavy Higgs scalars
(𝐻0, 𝐴𝐻 , 𝐻

±) superheavy, causing them to decouple. Consequently, the light scalar sector contains
only the light Higgs boson ℎ, the scalar 𝑆 (which also acquires a vev), and its CP-odd counterpart
𝐴. The higher-energy theory imposes another constraint on the Yukawa sector of the model, as the
structure of its superpotential implies matching top and bottom couplings at the unification scale.
Therefore, a large value of 𝑡𝑎𝑛𝛽 is naturally expected.

We implemented the above in SARAH [43] and generated a SPheno code [44, 45] to produce the
(light) particle spectrum. The 2-loop renormalisation group equations (RGEs) use the relations
among couplings at the unification scale as boundary conditions and they are ran down to the
EW level. We take into account threshold corrections originating from the decoupling superheavy
particles, allowing for an extra 5% uncertainty on the Yukawa couplings boundary condition. For
the analysis we use the on-shell values in case of the top quark and the MS in case of the bottom
quark:

𝑚𝑡 = (172.69 ± 0.30) GeV , 𝑚𝑏 (𝑚𝑏) = (4.18 ± 0.03) GeV , (26)

as given in [46]. As expected, in order to satisfy these limits we have 70 < tan 𝛽 < 80. 𝛽

is the angle between 𝐻𝑢 and 𝐻∗
𝑑
, which determines the light Higgs doublet at the high scale at

which the second doublet is integrated out. Both, 𝐻 and 𝑆, get vevs denoted by 𝑣𝐻 and 𝑣𝑆 ,
respectively. The combination 𝜇 = 𝜆𝑣𝑆/

√
2 is the mass parameter for the higgsinos like fermions

and has to be sufficiently large to be consistent with existing LHC searches.
The light Higgs boson mass is shown in Fig. 1 as a function of the unified gaugino mass 𝑀𝑈

(left) and the trilinear coupling 𝜆 (right). Only points that satisfy the experimental limits of the
top and bottom masses are included. For the unified gaugino mass we obtain 𝑀𝑈 < 1800GeV, and
the most points that satisfy the experimental limits on the Higgs boson mass [46],

𝑚
𝑒𝑥𝑝

ℎ
= (125.25 ± 0.17) GeV , (27)

are the ones that have 1600GeV < 𝑀𝑈 < 1700 GeV. We consider a theoretical uncertainty of 2 GeV
[47].

The difference between the lightest chargino mass and the lightest neutralino, which is the
lowest supersymmetric particle (LSP), is given in Fig. 2 w.r.t. the lightest chargino mass. For
all points the Higgs mass is within the 2 GeV theoretical uncertainty of [47] and satisfy the lower
exclusion bounds for the lightest chargino mass [46]. The ATLAS and CMS experiments of the LHC
have searched for charginos and neutralinos and they have obtained bounds of up to 1.4 TeV, which,
however, depend on the mass difference among the lighter chargino and the lightest neutralino and,
to some extent, also on the details of the decays [48–51]. The points below the orange line feature
a chargino mass of above 180 GeV and the mass difference to the lightest neutralino is below 30
GeV, impyling that these points pass the experimental bounds as these are higgsino-like states. For
the other points a more detailed investigation is required which we postpone to a future work.

Fig. 3 features the predicted particle spectrum. The (mainly) CP-even singlet scalar is denoted
as 𝑆, while its CP-odd counterpart as 𝐴. Interestingly, in the parameter region in which our
model agrees with the observed Higgs boson mass, 𝑆 is always heavier than ∼ 300 GeV. The
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Figure 1: Left: the light Higgs boson mass as a function of the unified gaugino mass. Right: the light Higgs
boson mass as a function of the trilinear parameter 𝜆. In both plots the black line denotes the experimental
value of the Higgs mass, 𝑚ℎ = 125.25 GeV, while the orange dashed lines denote the 2 GeV theoretical
uncertainties.
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Figure 2: The plot shows the mass difference between the lightest chargino and the lightest neutralino, for
points that satisfy the Higgs mass theoretical uncertainty of [47]. The orange dashed line denotes the 30 GeV
mass difference limit.

singlet component of the Higgs boson ℎ is sufficiently small to be consistent with the existing
coupling measurements to vector bosons and fermions. They are not affected by existing searches
as they can hardly be produced at the LHC because they are gauge singlets. 𝜒̃0

𝑖
, 𝜒̃±1 and 𝑔̃ are the

neutralinos, charginos and the gluinos, respectively. The points shown correspond to the ones below
the orange line in Fig. 2 to ensure that they are compatible with existing searches at the LHC. Adding
the other points wouldn’t change the picture significantly and the most important change would be
somewhat smaller values for mass of the lightest neutralino. Note, that the gluino is predicted
to be heavier than 2 TeV in this model and, thus, this model can explain why so far no sign for
supersymmetry has been found at the LHC. This also implies that this model will be difficult to probe
in the coming LHC runs. The reach of the high luminosity LHC for the lightest chargino can go
up to 200 GeV if the systematics are well under control [52]. Other possibilities are the combined
production of a heavier neutralino together with the lightest chargino which we will investigate in
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an upcoming work. Last but not least we point out that the lightest neutralino is an admixture of
the singlet fermion and a higgsino and thus it can be a cold dark matter candidate consistent with
observations, which we will investigate together with details of the collider searches.

100
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m
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)
Mh=125.25 ± 2 GeV

Figure 3: The plot shows the predicted particle spectrum. The green points are the CP-even and CP-odd
singlet scalar masses; the purple points are the neutralino masses; the red ones are the chargino masses,
followed by the blue points indicating the gluino masses.

8. Conclusions

We reviewed a theory that starts from a 10𝐷, N = 1, 𝐸8 gauge theory dimensionally re-
duced over the manifold 𝑆𝑈 (3)/𝑈 (1) × 𝑈 (1) × Z3. We are led first to a softly-broken N = 1,
𝑆𝑈 (3)3 ×𝑈 (1)2, 4𝐷 effective theory and consequnently to the Split NMSSM. The top, bottom and
light Higgs masses within the experimental limits, while the model predicts gluino masses beyond
the reach of the high-luminosity LHC. However, the lighter charginos and neutralinos are below the
TeV in most cases with a small mass splitting. The reach of the high-luminosity LHC for scenarios
with a larger mass splitting will be investigated in a future work.
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