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1. Introduction

The proposal of neutrino oscillations originated with Pontecorvo and collaborators [1–4], and
was later validated by numerous experiments [5–8].

Although many aspects of neutrino mixing and oscillations are comprehensively understood
[9–11], a consensus regarding their definitive description within quantum field theory (QFT) re-
mains elusive. Over the past three decades, various theoretical frameworks have been proposed
[12–22]. In the flavor Fock space approach [14], one starts from the observation of the unitary
inequivalence of the representations of equal-time anticommutation relations for flavor and mass
neutrino fields [23–27]. Then, one needs to construct a Fock space where flavor field operators
are defined. Here, oscillation probabilities are computed by taking the expectation value of lepton
currents/charges on one-particle neutrino states at a reference time. This approach modifies the
classic Pontecorvo result in two significant ways [28]: (i) introducing a fast-oscillation term depen-
dent on the sum of frequencies alongside the usual oscillation term dependent on the difference of
energies/frequencies, and (ii) including energy-dependent oscillation amplitudes as coefficients of
a Bogoliubov transformation [14].

Within such framework it has been pointed out that an intrinsic energy uncertainty for neutrinos
is implied by the inequivalence of flavor and mass representations [29, 30]. This result was derived
by computing the Mandelstam–Tamm time energy uncertainty relation (TEUR) and using the
flavor/lepton charges as “clock observables”. Similar results were also found in curved spacetimes
[31] (see Ref.[32] for a review).

In Ref.[33] we introduced a new approach to deal with neutrino oscillations in QFT, akin to
the treatment of unstable particles [34, 35], by employing the interaction (Dirac) picture. The
interaction Lagrangian in the Dyson series solely incorporates the mixing term between different
flavor fields. We computed amplitudes for various decay channels at the first order, describing both
flavor-changing and survival processes. Remarkably, within the adopted approximation, we found
non-trivial agreement between the neutrino flavor-transition formula derived with that perturbative
approach and the non-perturbative formula of the flavor Fock-space approach.

In the present work, we both review TEUR in the flavor Fock space approach to neutrino
flavor oscillations and the interaction picture approach. Such different angles of view converge to
evidentiate the importance of inherently having an energy uncertainty, which means that a finite-
time formulation of QFT must be employed: TEUR explicitly relates time and energy uncertainty,
while interaction pictures leads to non-trivial results only when one abandons the 𝑆-matrix in favor
of the time evolution operator 𝑈.

The paper is structured as follows: Section 2, basic notions on neutrino mixing in QFT are
presented. Then in Section 3, flavor Fock space and TEUR are briefly reviewed, while the interaction
picture approach is reported in Section 4. Finally, Section 5 is devoted to conclusions.
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2. Neutrino mixing: basic facts

Consider the weak decay of a 𝑊+ boson, 𝑊+ → 𝑒+ + 𝜈𝑒. This process can be described by the
Lagrangian

L =
∑︁

𝜎=𝑒,𝜇

[
𝜈𝜎

(
𝑖/𝜕 − 𝑚𝜎

)
𝜈𝜎 + 𝑙𝜎

(
𝑖/𝜕 − 𝑚̃𝜎

)
𝑙𝜎

]
+ L𝑚𝑖𝑥 + L𝑤𝑖𝑛𝑡 , (1)

with

L𝑚𝑖𝑥 = −𝑚𝑒𝜇

(
𝜈𝑒𝜈𝜇 + 𝜈𝜇𝜈𝑒

)
, (2)

L𝑤𝑖𝑛𝑡 = − 𝑔

2
√

2

∑︁
𝜎=𝑒,𝜇

[
𝑊+

𝜇 𝜈𝜎 𝛾𝜇 (1 − 𝛾5) 𝑙𝜎 + ℎ.𝑐.
]

(3)

The neutrino kinetic term (including L𝑚𝑖𝑥) can be diagonalized by the mixing transformation
[36, 37]

𝜈𝜎 =
∑︁
𝑗=1,2

𝑈∗
𝜎 𝑗𝜈 𝑗 , (4)

𝑈 is the mixing matrix. In the two flavor case, here analyzed, the matrix can be parametrized as

𝑈 =

(
cos 𝜃 sin 𝜃
− sin 𝜃 cos 𝜃

)
, (5)

with tan 2𝜃 = 2𝑚𝑒𝜇/(𝑚𝜇 − 𝑚𝑒).
In order to perform perturbative computations, one is led to decompose the above Lagrangian

into a free and an interaction part. A typical choice one finds in literature is to work in the mass
basis

L = L𝑚
0 + L𝑚

𝑖𝑛𝑡 , (6)

with

L𝑚
0 =

∑︁
𝑗

𝜈 𝑗

(
𝑖𝛾𝜇𝜕

𝜇 − 𝑚 𝑗

)
𝜈 𝑗 +

∑︁
𝜎

𝑙
(
𝑖𝛾𝜇𝜕

𝜇 − 𝑚̃𝜎

)
𝑙 , (7)

L𝑚
𝑖𝑛𝑡 = − 𝑔

2
√

2

∑︁
𝜎, 𝑗

[
𝑊+

𝜇 𝜈 𝑗 𝑈
∗
𝑗 𝜎 𝛾𝜇 (1 − 𝛾5) 𝑙𝜎 + ℎ.𝑐.

]
. (8)

In such a case the effect of mixing is entirely included in the weak-interaction vertex. However,
one should find an appropriate definition of flavor states [13]: in fact, in charged current weak
interaction processes as the one we mentioned, neutrinos are produced with a definite flavor. An
escape is represented by the external wave-packets approach [38–40], where neutrinos are only
treated as internal lines of macroscopic Feynman diagrams.

Another possibility is to take the following split

L = L0 + L𝑔

𝑖𝑛𝑡
, (9)

with

L0 =
∑︁

𝜎=𝑒,𝜇

𝜈𝜎
(
𝑖/𝜕 − 𝑚𝜎

)
𝜈𝜎 +

∑︁
𝜎=𝑒,𝜇

𝑙𝜎
(
𝑖/𝜕 − 𝑚̃𝜎

)
𝑙𝜎 , (10)

L𝑔

𝑖𝑛𝑡
= L𝑚𝑖𝑥 + L𝑤𝑖𝑛𝑡 . (11)
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In this approach, L𝑤𝑖𝑛𝑡 is diagonal in the asymptotic fields appearing in Eq.(10): with this choice,
we can give a natural definition of flavor/lepton charges and then of flavor states. In fact, one can
easily see that the Lagrangian L is invariant under the action of the global 𝑈 (1) transformations
𝜈 → 𝑒𝑖𝛼𝜈 and 𝑙 → 𝑒𝑖𝛼𝑙. From Nother’s theorem, this symmetry leads to the conservation of the
total flavor charge 𝑄𝑡𝑜𝑡

𝑙
, which can be physically interpreted as the total lepton number [37]. The

total charge can be thus written in terms of the flavor charges for neutrinos and charged leptons

𝑄𝑡𝑜𝑡
𝑙 =

∑︁
𝜎=𝑒,𝜇

𝑄𝑡𝑜𝑡
𝜎 (𝑡) , 𝑄𝑡𝑜𝑡

𝜎 (𝑡) = 𝑄𝜈𝜎 (𝑡) +𝑄𝜎 , (12)

with

𝑄𝑒 =

∫
d3x 𝑒†(𝑥)𝑒(𝑥) , 𝑄𝜈𝑒 (𝑡) =

∫
d3x 𝜈†𝑒 (𝑥)𝜈𝑒 (𝑥) ,

𝑄𝜇 =

∫
d3x 𝜇†(𝑥)𝜇(𝑥) , 𝑄𝜈𝜇 (𝑡) =

∫
d3x 𝜈†𝜇 (𝑥)𝜈𝜇 (𝑥) . (13)

Because [L𝑤𝑖𝑛𝑡 (x, 𝑡), 𝑄𝜈𝜎 (𝑡)] = 0, it is clear that neutrinos are produced and detected with a
definite flavor, i.e. as eigenstates of 𝑄𝜈𝜎 , at some reference time1. However, [L𝑚𝑖𝑥 , 𝑄𝜈𝜎 (𝑡)] ≠ 0,
leading to the flavor oscillation phenomenon. In the next Section we will show how to build
the eigenstates of 𝑄𝜈𝜎 (𝑡). From now we will disregard L𝑤𝑖𝑛𝑡 (zeroth-order in 𝑔), so that the
charged-lepton part also decouples.

3. The flavor Fock space approach and the flavor-energy uncertainty

A key observation is that the field mixing transformation (4) can be exactly rewritten as [14]

𝜈𝛼𝜎 (𝑥) = 𝐺−1
𝜃 (𝑡)𝜈𝛼𝑗 (𝑥)𝐺 𝜃 (𝑡) , (𝜎, 𝑗) = (𝑒, 1), (𝜇, 2) (14)

where the mixing generator reads

𝐺 𝜃 (𝑡) = exp
[
𝜃

∫
d3x

(
𝜈
†
1 (𝑥)𝜈2 − 𝜈

†
2 (𝑥)𝜈1(𝑥)

)]
. (15)

The mass operator can be Fourier expanded as usual

𝜈 𝑗 (𝑥) =
∑︁
k,𝑟

𝑒𝑖k·x
√
𝑉

[
𝑢𝑟k, 𝑗 (𝑡) 𝛼

𝑟
k, 𝑗 (𝑡) + 𝑣𝑟−k, 𝑗 (𝑡) 𝛽

𝑟†
−k, 𝑗 (𝑡)

]
, 𝑗 = 1, 2 , (16)

with 𝑢𝑟k, 𝑗 (𝑡) = 𝑒−𝑖𝜔k, 𝑗 𝑡 𝑢𝑟k, 𝑗 , 𝑣𝑟k, 𝑗 (𝑡) = 𝑒𝑖𝜔k, 𝑗 𝑡 𝑣𝑟k, 𝑗 , 𝜔k, 𝑗 =
√︃
|k|2 + 𝑚2

𝑗
.

An important issue is that the vacuum |0⟩1,2 , which is annihilated by mass neutrino ladder
operators 𝛼𝑟

k, 𝑗 (𝑡) |0⟩1,2 = 𝛽𝑟k, 𝑗 (𝑡) |0⟩1,2 = 0, is not invariant under the action of the mixing generator
𝐺 𝜃 (𝑡). In fact, one has

|0(𝑡)⟩𝑒,𝜇 ≡ 𝐺−1
𝜃 (𝑡) |0⟩1,2 . (17)

1The above considerations are exact at tree level. Of course, loop corrections can spoil flavor conservation in the
vertices, but such corrections are negligible for the present discussion.
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The state (17) is known as flavor vacuum because it is annihilated by the flavor ladder operators
𝛼𝜎 (𝑡) and 𝛽𝜎 (𝑡) defined by

𝛼𝑒 (𝑡) |0(𝑡)⟩𝑒,𝜇 ≡ 𝐺−1
𝜃 (𝑡)𝛼1𝐺 𝜃 (𝑡) 𝐺−1

𝜃 (𝑡) |0⟩1,2 = 0 , (18)

and similarly for 𝛽𝜎 (𝑡). Their explicit form is

𝛼𝑟
k,𝑒 (𝑡) = cos 𝜃 𝛼𝑟

k,1 + sin 𝜃
(
𝑈∗

k(𝑡) 𝛼
𝑟
k,2 + 𝜖𝑟𝑉k(𝑡) 𝛽𝑟†−k,2

)
, (19)

𝛼𝑟
k,𝜇 (𝑡) = cos 𝜃 𝛼𝑟

k,2 − sin 𝜃
(
𝑈k(𝑡) 𝛼𝑟

k,1 − 𝜖𝑟𝑉k(𝑡) 𝛽𝑟†−k,1

)
, (20)

𝛽𝑟−k,𝑒 (𝑡) = cos 𝜃 𝛽𝑟−k,1 + sin 𝜃
(
𝑈∗

k(𝑡) 𝛽
𝑟
−k,2 − 𝜖𝑟𝑉k(𝑡) 𝛼𝑟†

k,2

)
, (21)

𝛽𝑟−k,𝜇 (𝑡) = cos 𝜃 𝛽𝑟−k,2 − sin 𝜃
(
𝑈k(𝑡) 𝛽𝑟−k,1 + 𝜖𝑟𝑉k(𝑡) 𝛼𝑟†

k,1

)
. (22)

In these equations we have defined 𝜖𝑟 ≡ (−1)𝑟 , while 𝑈k and 𝑉k are the Bogoliubov coefficients

𝑈k(𝑡) ≡ 𝑢
𝑟†
k,2𝑢

𝑟
k,1 𝑒𝑖 (𝜔k,2−𝜔k,1 )𝑡 = |𝑈k | 𝑒𝑖 (𝜔k,2−𝜔k,1 )𝑡 , (23)

𝑉k(𝑡) ≡ 𝜖𝑟 𝑢
𝑟†
k,1𝑣

𝑟
−k,2 𝑒𝑖 (𝜔k,2+𝜔k,1 )𝑡 = |𝑉k | 𝑒𝑖 (𝜔k,2+𝜔k,1 )𝑡 , (24)

and the time-independent part of the coefficients is given by

|𝑈k | ≡ 𝑢
𝑟†
k,2 𝑢

𝑟
k,1 = 𝑣

𝑟†
−k,1 𝑣

𝑟
−k,2

=

(
𝜔k,1 + 𝑚1

2𝜔k,1

) 1
2
(
𝜔k,2 + 𝑚2

2𝜔k,2

) 1
2
(
1 + k2

(𝜔k,1 + 𝑚1) (𝜔k,2 + 𝑚2)

)
, (25)

|𝑉k | = 𝜖𝑟 𝑢
𝑟†
k,1 𝑣

𝑟
−k,2 = −𝜖𝑟 𝑢𝑟†k,2 𝑣

𝑟
−k,1

=
|k|√︁

4𝜔k,1𝜔k,1

(√︂
𝜔k,2 + 𝑚2

𝜔k,1 + 𝑚1
−

√︂
𝜔k,1 + 𝑚1

𝜔k,2 + 𝑚2

)
. (26)

Notice that |𝑈k |2 + |𝑉k |2 = 1. It is straightforward to check that in the relativistic limit 𝜔k, 𝑗 ≈ |k|,
|𝑈k | → 1 and |𝑉k | → 0. Also, |𝑉k | = 0 when 𝑚1 = 𝑚2 and/or 𝜃 = 0, i.e. when no mixing
occurs. |𝑉k |2 has the maximum at |k| = √

𝑚1𝑚2 with |𝑉k |2𝑚𝑎𝑥 → 1/2 for (𝑚2−𝑚1 )2

𝑚1𝑚2
→ ∞, and

|𝑉k |2 ≃ (𝑚2−𝑚1 )2

4 |k |2 for |k| ≫ √
𝑚1𝑚2 at the first non-vanishing order.

The flavor fields can be thus expanded as

𝜈𝜎 (𝑥) =
∑︁
k,𝑟

𝑒𝑖k·x
√
𝑉

[
𝑢𝑟k, 𝑗 (𝑡) 𝛼

𝑟
k,𝜎 (𝑡) + 𝑣𝑟−k, 𝑗 (𝑡) 𝛽

𝑟†
−k,𝜎 (𝑡)

]
, (𝜎, 𝑗) = (𝑒, 1), (𝜇, 2) . (27)

A flavor Fock space (at some reference time, say 𝑡 = 0) is defined as H𝑒,𝜇 =

{
𝛼
†
𝑒,𝜇 , 𝛽

†
𝑒,𝜇 , |0⟩𝑒,𝜇

}
,

with |0⟩𝑒,𝜇 ≡ |0(𝑡 = 0)⟩𝑒,𝜇. Such Hilbert space is different with respect to the mass-neutrino Fock
space, spanned by mass-neutrino ladder operators on the vacuum |0⟩1,2 . In fact, one can verify that

lim
𝑉→∞ 1,2 ⟨0|0(𝑡)⟩𝑒,𝜇 = lim

𝑉→∞
𝑒
𝑉

∫
𝑑3k
(2𝜋)3

ln (1−sin2 𝜃 |𝑉k |2)2

= 0 , (28)
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i.e. flavor and massive fields belong to unitarily inequivalent representations of the anticommutation
relations.

The previous discussions suggest that flavor states |𝜈𝑟k,𝜎⟩ can be built as one particle states of
the flavor Fock space

|𝜈𝑟k,𝜎⟩ ≡ 𝛼
𝑟†
k,𝜎 |0⟩𝑒,𝜇 , (29)

and similarly for the antineutrino (|𝛽𝑟k,𝜎⟩ ≡ 𝛽
𝑟†
k,𝜎 |0⟩𝑒,𝜇). One can prove that these states are exact

eigenstates of the charge operators at the reference (production/detection) time, i.e.

𝑄𝜈𝜎 (0) |𝜈𝑟k,𝜎⟩ = |𝜈𝑟k,𝜎⟩ . (30)

In this approach the flavor oscillation probability is computed by taking the expectation value
of the time-dependent flavor charges with respect to a reference time flavor state [28]

Q𝜎→𝜌 (𝑡) = ⟨𝑄𝜈𝜌 (𝑡)⟩𝜎 , (31)

where ⟨· · · ⟩𝜎 ≡ ⟨𝜈𝑟k,𝜎 | · · · |𝜈
𝑟
k,𝜎⟩, which gives

Q𝜎→𝜌 (𝑡) = sin2(2𝜃)
[
|𝑈k |2 sin2

(
Ω−

k
2
𝑡

)
+ |𝑉k |2 sin2

(
Ω+

k
2
𝑡

) ]
, 𝜎 ≠ 𝜌 , (32)

Q𝜎→𝜎 (𝑡) = 1 − Q𝜎→𝜌 (𝑡) , 𝜎 ≠ 𝜌 , (33)

with Ω±
k ≡ 𝜔k,1 ± 𝜔k,2. Note the presence of the term proportional to |𝑉k |2 in the oscillation

probability Eq. (32), which introduces rapid oscillations not found in the conventional quantum
mechanics formula. As previously mentioned, |𝑉k |2 → 0 in the relativistic limit |k| ≫ 𝑚 𝑗 , 𝑗 = 1, 2,
and Ω−

k ≈ 𝛿𝑚2

4 |k | = 𝜋
𝐿𝑜𝑠𝑐 , where we introduced the oscillation length 𝐿𝑜𝑠𝑐. Consequently, the

oscillation formula reduces to the standard result

Q𝜎→𝜌 (𝐿) ≈ sin2(2𝜃) sin
(
𝜋𝐿

𝐿𝑜𝑠𝑐

)
, (34)

where we took 𝑡 ≈ 𝐿, i.e. the distance travelled by the neutrino. It has been demonstrated,
particularly in the case of scalar field mixing, that the oscillation formula (32) represents the time
component of a Lorentz-covariant formula, although the presence of the flavor vacuum breaks
Lorentz invariance [41].

We have already seen that the lepton charges 𝑄𝜈𝜎 (𝑡) do not commute with the neutrino
Hamiltonian 𝐻 [

𝑄𝜈𝜎 (𝑡) , 𝐻
]
= 𝑖

d𝑄𝜈𝜎 (𝑡)
d𝑡

≠ 0 . (35)

This fact suggested to compute TEUR in the Mandelstam–Tamm form [42], which is a flavor–energy
uncertainty relation [29]

Δ𝐸 Δ𝑄𝜈𝜎 ≥ 1
2

����dQ𝜎→𝜎 (𝑡)
d𝑡

���� . (36)

where Δ indicates the standard deviations on the neutrino state Δ𝑂 ≡
√︃
⟨𝑂2

𝜈𝜎 (𝑡)⟩𝜎 − ⟨𝑂𝜈𝜎 (𝑡)⟩2
𝜎 .

Explicitly

Δ𝐸
√︁
Q𝜎→𝜎 (𝑡) (1 − Q𝜎→𝜎 (𝑡)) ≥ 1

2

����dQ𝜎→𝜎 (𝑡)
d𝑡

���� . (37)
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Because the square root on the l.h.s. has the maximum value 1
2 , it follows

Δ𝐸 ≥
����dQ𝜎→𝜎 (𝑡)

d𝑡

���� . (38)

Integrating both members and using the triangular inequality, we get

Δ𝐸 𝑇 ≥ Q𝜎→𝜌 (𝑇) , 𝜎 ≠ 𝜌. (39)

Evaluating the inequality (39) at the leading order in the relativistic limit and for 𝑇 ≈ 𝐿 =

𝐿𝑜𝑠𝑐/2, one finds

Δ𝐸 ≥ 2 sin2(2𝜃)
𝐿𝑜𝑠𝑐

. (40)

Conditions like (40) are known in literature and are usually interpreted in the following way:
if neutrino energies or masses are measured with great accuracy, it becomes possible to infer
which massive neutrino was produced in the weak interaction. Consequently, in such a scenario,
oscillations would not occur [43]. This line of reasoning relies on the notion that flavor neutrinos are
essentially a superposition of the“physical” massive neutrinos. In other words, the flavor eigenstates
|𝜈𝜎⟩ of neutrinos are just linear combinations of the mass eigenstates |𝜈 𝑗⟩. Therefore, if one could
precisely determine the masses or energies of neutrinos, it could be distinguished which mass
eigenstate was produced, and consequently, no oscillations would be observed. However, the above
analysis suggests a different interpretation of the inequality (40). In fact, Eq. (28) implies

lim
𝑉→∞

⟨𝜈𝑟k,𝑖 |𝜈
𝑟
k,𝜎⟩ = 0 , 𝑖 = 1, 2 , (41)

i.e. neutrino flavor eigenstates, which are are the exact eigenstates of the lepton charges, and which
are produced in weak decays, cannot be generally written as a linear superposition of single-particle
massive neutrino states. Therefore, if we accept the physical basis is the flavor one, the inequality
(40) imposes a fundamental lower bound on neutrino energy uncertainty.

4. Neutrino oscillations in the interaction picture

As seen in the previous Section, TEUR deeply encodes flavor oscillations. This fact reveals the
importance of treating neutrino oscillations in finite-time QFT. In fact, energy uncertainty which is
required by TEUR is only observed at finite time (see Eq.(39)). This considerations suggested to
compute the transition amplitudes among different flavors, performing a perturbative calculation of
the time evolution operator [33]

𝑈 (𝑡𝑖 , 𝑡 𝑓 ) = T exp
[
𝑖

∫ 𝑡 𝑓

𝑡𝑖

d4𝑥 : L𝑖𝑛𝑡 (𝑥) :
]
= T exp

[
−𝑖

∫ 𝑡 𝑓

𝑡𝑖

d4𝑥 : H𝑖𝑛𝑡 (𝑥) :
]
, (42)

where L𝑖𝑛𝑡 ≡ L𝑔=0
𝑖𝑛𝑡

= −𝑚𝑒𝜇

(
𝜈𝑒𝜈𝜇 + 𝜈𝜇𝜈𝑒

)
, H𝑖𝑛𝑡 (𝑥) = −L𝑖𝑛𝑡 (𝑥) is the interaction Hamiltonian

density and T is the chronological product. In the following we stop at the second order in 𝑚𝑒𝜇:

𝑈 (𝑡𝑖 , 𝑡 𝑓 ) = 1 − 𝑖

∫ 𝑡 𝑓

𝑡𝑖

d𝑡1 𝐻𝑖𝑛𝑡 (𝑡1) + (−𝑖)2
∫ 𝑡 𝑓

𝑡𝑖

d𝑡1 𝐻𝑖𝑛𝑡 (𝑡1)
∫ 𝑡1

𝑡𝑖

d𝑡2 𝐻𝑖𝑛𝑡 (𝑡2) + ... (43)
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where 𝐻𝑖𝑛𝑡 =
∫

d3xH𝑖𝑛𝑡 (𝑥) is the interaction Hamiltonian.
Although this approach is apparently unrelated to the flavor Fock space construction we have

reviewed in the previous section, we will show that it leads to the same oscillation formula (32),
within the approximation employed. Let us emphasize the importance of examining the time
evolution operator rather than the 𝑆-matrix. This choice stems from the fact that the phenomenon
of flavor oscillations can only be adequately described at finite time intervals, as deduced from the
TEUR. Consequently, it follows that flavor neutrino states are not well-defined as asymptotically
stable states. As elucidated by the examples below, the limits 𝑡𝑖 → −∞ and 𝑡 𝑓 → +∞ preclude the
flavor-changing processes, while simultaneously ensuring strict energy conservation, as required
by TEUR. This bears resemblance to the treatment of unstable particles [34, 35, 44–47] (see also
[48, 49], where the significance of finite-time Quantum Field Theory in the analysis of decay
processes has been underscored). Indeed, both the decay of unstable particles [50] and neutrino
oscillations can be understood in terms of TEUR.

In the interaction picture 𝜈𝜎 (𝜎 = 𝑒, 𝜇), defined by the Lagrangian Eq.(1), can be expanded as
free fields, whose evolution is only due to L0:

𝜈𝜎 (𝑥) =
1
√
𝑉

∑︁
k,𝑟

[
𝑢𝑟k,𝜎 (𝑡) 𝛼

𝑟
k,𝜎 + 𝑣𝑟−k,𝜎 (𝑡) 𝛽

𝑟†
−k,𝜎

]
𝑒𝑖k·x , (44)

with 𝑢𝑟k,𝜎 (𝑡) = 𝑒−𝑖𝜔k,𝜎 𝑡 𝑢𝑟k,𝜎 , 𝑣𝑟k,𝜎 (𝑡) = 𝑒𝑖𝜔k,𝜎 𝑡 𝑣𝑟k,𝜎 , 𝜔k,𝜎 =
√︁
|k|2 + 𝑚2

𝜎 . Annihilation
operators satisfy

𝛼𝑟
k,𝜎 |0⟩ = 0 = 𝛽𝑟k,𝜎 |0⟩ . (45)

Let us stress that the perturbative vacuum |0⟩ does not coincide with the flavor vacuum |0⟩𝑒,𝜇 or
with mass vacuum |0⟩1,2 above introduced. The anticommutation relations are

{𝛼𝑟
k,𝜌, 𝛼

𝑠†
q,𝜎} = 𝛿kq𝛿𝑟𝑠𝛿𝜌𝜎 , {𝛽𝑟k,𝜌, 𝛽

𝑠†
q,𝜎} = 𝛿kq𝛿𝑟𝑠𝛿𝜌𝜎 , (46)

and the spinors are normalized so that

𝑢
𝑟†
k,𝜌𝑢

𝑠
k,𝜌 = 𝑣

𝑟†
k,𝜌𝑣

𝑠
k,𝜌 = 𝛿𝑟𝑠 , 𝑢

𝑟†
k,𝜌𝑣

𝑠
−k,𝜌 = 0 . (47)

Then, the interacting part of the Hamiltonian reads:

𝐻𝑖𝑛𝑡 (𝑡) = 𝑚𝑒𝜇

∑︁
𝑠,𝑠′=1,2

∑︁
p

[
𝛽𝑠p,𝜇𝛽

𝑠†
p,𝑒𝛿𝑠𝑠′𝑊

∗
p (𝑡) + 𝛼

𝑟†
p,𝜇𝛼

𝑟
p,𝑒𝛿𝑠𝑠′𝑊p(𝑡)

+ 𝛽𝑠−p,𝜇𝛼
𝑠′
𝑒,p

(
𝑌 𝑠𝑠′

p (𝑡)
)∗

+ 𝛼
𝑠†
p,𝜇𝛽

𝑠′†
−p,𝑒𝑌

𝑠𝑠′
p (𝑡) + 𝑒 ↔ 𝜇

]
, (48)

where we introduced the notation

𝑊p(𝑡) = 𝑢𝑠p,𝜇𝑢
𝑠
p,𝑒𝑒

𝑖(𝜔k,𝜇−𝜔k,𝑒)𝑡 = 𝑊p 𝑒
𝑖(𝜔p,𝜇−𝜔p,𝑒)𝑡 (49)

𝑌 𝑠𝑠′
p (𝑡) = 𝑢𝑠p,𝜇𝑣

𝑠′
−p,𝑒𝑒

𝑖(𝜔k,𝜇+𝜔k,𝑒)𝑡 = 𝑌 𝑠𝑠′
p 𝑒𝑖(𝜔p,𝜇+𝜔p,𝑒)𝑡 (50)
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Explicitly

𝑊p =

√︄ (
𝜔p,𝑒 + 𝑚𝑒

) (
𝜔p,𝜇 + 𝑚𝜇

)
4𝜔p,𝑒𝜔p,𝜇

(
1 − |p|2

(𝜔p,𝑒 + 𝑚𝑒) (𝜔p,𝜇 + 𝑚𝜇)

)
, (51)

𝑌22
p = −𝑌11

p =
𝑝3√︁

4𝜔p,𝑒𝜔p,𝜇

(√︄
𝜔p,𝜇 + 𝑚𝜇

𝜔p,𝑒 + 𝑚𝑒

+
√︄

𝜔p,𝑒 + 𝑚𝑒

𝜔p,𝜇 + 𝑚𝜇

)
, (52)

𝑌12
p =

(
𝑌21

p

)∗
= − 𝑝1 − 𝑖𝑝2√︁

4𝜔p,𝑒𝜔p,𝜇

(√︄
𝜔p,𝜇 + 𝑚𝜇

𝜔p,𝑒 + 𝑚𝑒

+
√︄

𝜔p,𝑒 + 𝑚𝑒

𝜔p,𝜇 + 𝑚𝜇

)
. (53)

A first non-trivial process we study is

|𝜈𝑟p,𝑒⟩ → |𝜈𝑠k,𝜇⟩ , |𝜈𝑟p,𝜎⟩ ≡ 𝛼
𝑟†
p,𝜎 |0⟩ . (54)

Its first-order amplitude can be written as

A𝑟𝑠
𝑒→𝜇 (p, k, ; 𝑡𝑖 , 𝑡 𝑓 ) ≈ −𝑖𝑚𝑒𝜇𝛿𝑟𝑠𝛿k,p𝑊p

∫ 𝑡 𝑓

𝑡𝑖

d𝑡 𝑒𝑖(𝜔k,𝜇−𝜔p,𝑒)𝑡

= 𝑚𝑒𝜇 𝛿𝑟𝑠𝛿k,p

(
𝑒𝑖(𝜔p,𝜇−𝜔p,𝑒)𝑡 𝑓 − 𝑒𝑖(𝜔p,𝜇−𝜔p,𝑒)𝑡𝑖

) 𝑊p

𝜔k,𝑒 − 𝜔k,𝜇

= 𝛿𝑟𝑠𝛿k,p Ã𝑒→𝜇 (k; 𝑡𝑖 , 𝑡 𝑓 ) , (55)

where
Ã𝑒→𝜇 (p; 𝑡𝑖 , 𝑡 𝑓 ) =

𝑚𝑒𝜇𝑊p

𝜔p,𝑒 − 𝜔p,𝜇

(
𝑒𝑖(𝜔p,𝜇−𝜔p,𝑒)𝑡 𝑓 − 𝑒𝑖(𝜔p,𝜇−𝜔p,𝑒)𝑡𝑖

)
. (56)

The oscillation probability is computed including a sum over the final density of states

P𝑒→𝜇 (p;Δ𝑡) =
∑︁
k,𝑠

|A𝑟𝑠
𝑒→𝜇 (p, k; 𝑡𝑖 , 𝑡 𝑓 ) |2 = |Ã𝑒→𝜇 (p, 𝑡𝑖 , 𝑡 𝑓 ) |2

= 𝑊2
p

2𝑚2
𝑒𝜇(

𝜔p,𝑒 − 𝜔p,𝜇
)2

[
1 − cos

[ (
𝜔p,𝜇 − 𝜔p,𝑒

)
Δ𝑡

] ]
, Δ𝑡 ≡ 𝑡 𝑓 − 𝑡𝑖 . (57)

A second non-trivial process to consider is the decay

|𝜈𝑟p,𝑒⟩ → |𝜈𝑠1
k1,𝑒

⟩|𝜈𝑠2
k2,𝜇

⟩|𝜈𝑠3
k3,𝑒

⟩ . (58)

Its amplitude reads

A𝑟𝑠1𝑠2𝑠3
𝑒→𝑒𝑒𝜇

(p, k1, k2, k3; 𝑡𝑖 , 𝑡 𝑓 ) ≈ −𝑖 𝑚𝑒𝜇 𝑌
𝑠3𝑠2
k2

𝛿k1,p𝛿k2,−k3 𝛿𝑟𝑠1

∫ 𝑡 𝑓

𝑡𝑖

d𝑡 𝑒−𝑖(𝜔k2 ,𝜇+𝜔k2 ,𝑒)𝑡

= −𝑚𝑒𝜇 𝛿𝑟𝑠1 𝛿k1,p𝛿k2,−k3

(
𝑒−𝑖(𝜔k2 ,𝜇+𝜔k2 ,𝑒)𝑡 𝑓 − 𝑒−𝑖(𝜔k2 ,𝜇+𝜔k2 ,𝑒)𝑡𝑖

) 𝑌
𝑠2𝑠3
k2

𝜔k2,𝑒 + 𝜔k3,𝜇

= 𝛿k1,p𝛿k2,−k3 𝛿𝑟𝑠1 Ã
𝑠2𝑠3
𝑒→𝑒𝜇𝜇

(k2; 𝑡𝑖 , 𝑡 𝑓 ) , (59)
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where

Ã𝑠2𝑠3
𝑒→𝑒𝑒𝜇

(k; 𝑡𝑖 , 𝑡 𝑓 ) = −
𝑚𝑒𝜇 𝑌

𝑠2𝑠3
k

𝜔k,𝑒 + 𝜔k,𝜇

(
𝑒−𝑖(𝜔k,𝜇+𝜔k,𝑒)𝑡 𝑓 − 𝑒−𝑖(𝜔k,𝜇+𝜔k,𝑒)𝑡𝑖

)
. (60)

We thus find the probability as

P𝑒→𝑒𝑒𝜇 (p;Δ𝑡) =
∑︁

k1,k2,k3

∑︁
𝑠1,𝑠2,𝑠3

|A𝑟𝑠1𝑠2𝑠3
𝑒→𝑒𝑒𝜇

(p, k1, k2, k3; 𝑡𝑖 , 𝑡 𝑓 ) |2 =
∑︁

k

∑︁
𝑠2,𝑠3

|Ã𝑠2𝑠3
𝑒→𝑒𝑒𝜇

(k; 𝑡𝑖 , 𝑡 𝑓 ) |2 .

(61)
In the large-𝑉 limit we get

P𝑒→𝑒𝑒𝜇 (p;Δ𝑡) = 𝑉
∑︁
𝑠2,𝑠3

∫
d3k
(2𝜋)3

(
𝑌
𝑠2𝑠3
k

)2(
𝜔k,𝑒 + 𝜔k,𝜇

)2 sin2
( (
𝜔k,𝜇 + 𝜔k,𝑒

)
Δ𝑡

2

)
. (62)

This is an infrared divergent expression due to a vacuum diagram which must be subtracted from
the final result.

Finally, we consider the process

|𝜈𝑟p,𝑒⟩ → |𝜈𝑠1
k1,𝑒

⟩|𝜈𝑠2
k2,𝑒

⟩|𝜈𝑠3
k3,𝜇

⟩ , k1 ≠ k2 ∨ 𝑠1 ≠ 𝑠2 . (63)

Its amplitude explicitly reads

A𝑟𝑠1𝑠2𝑠3
𝑒→𝑒𝑒𝜇

(p, k1, k2, k3; 𝑡𝑖 , 𝑡 𝑓 ) = 𝛿k1,p𝛿k2,−k3 𝛿𝑟𝑠1 Ã
𝑠2𝑠3
𝑒→𝑒𝑒𝜇

(k2; 𝑡𝑖 , 𝑡 𝑓 )

− 𝛿k2,p𝛿k1,−k3 𝛿𝑟𝑠2 Ã
𝑠1𝑠3
𝑒→𝑒𝑒𝜇

(k1; 𝑡𝑖 , 𝑡 𝑓 ) . (64)

where Ã𝑠2𝑠3
𝑒→𝑒𝑒𝜇

(k; 𝑡𝑖 , 𝑡 𝑓 ) = Ã𝑠2𝑠3
𝑒→𝑒𝑒𝜇

(k; 𝑡𝑖 , 𝑡 𝑓 ). Let us observe that this expression goes to zero when
k1 = k2 and 𝑠1 = 𝑠2, as it should be due to the Pauli principle. We thus compute the probability as

P𝑒→𝑒𝑒𝜇 (p;Δ𝑡) =
1
2

∑︁
k1,k2,k3

∑︁
𝑠1,𝑠2,𝑠3

|A𝑟𝑠1𝑠2𝑠3
𝑒→𝑒𝑒𝜇

(p, k1, k2, k3; 𝑡𝑖 , 𝑡 𝑓 ) |2

=
∑︁

k,𝑠2,𝑠3

|Ã𝑠2𝑠3
𝑒→𝑒𝑒𝜇

(k; 𝑡𝑖 , 𝑡 𝑓 ) |2 −
∑︁
𝑠3

|Ã𝑟𝑠3
𝑒→𝑒𝑒𝜇

(p; 𝑡𝑖 , 𝑡 𝑓 ) |2 . (65)

Because of the Pauli principle, the vacuum cannot carry the contribution with 𝒌 = 𝒑.Thus, we must
isolate the contribution with k = p

P𝑒→𝑒𝑒𝜇 (p;Δ𝑡) =
∑︁

k≠p,𝑠2,𝑠3

|Ã𝑠2𝑠3
𝑒→𝑒𝑒𝜇

(k; 𝑡𝑖 , 𝑡 𝑓 ) |2 +
∑︁
𝑠2,𝑠3

|Ã𝑠2𝑠3
𝑒→𝑒𝑒𝜇

(p; 𝑡𝑖 , 𝑡 𝑓 ) |2 −
∑︁
𝑠3

|Ã𝑟𝑠3
𝑒→𝑒𝑒𝜇

(p; 𝑡𝑖 , 𝑡 𝑓 ) |2

=
∑︁

k≠p,𝑠2,𝑠3

|Ã𝑠2𝑠3
𝑒→𝑒𝑒𝜇

(k; 𝑡𝑖 , 𝑡 𝑓 ) |2 +
∑︁
𝑠3

|Ã𝑟𝑠3
𝑒→𝑒𝑒𝜇

(p; 𝑡𝑖 , 𝑡 𝑓 ) |2 . (66)

In the large-𝑉 limit

P𝑒→𝑒𝑒𝜇 (p;Δ𝑡) = 𝑉
∑︁
𝑠2,𝑠3

∫
d3k
(2𝜋)3 |Ã𝑠2𝑠3

𝑒→𝑒𝑒𝜇
(k; 𝑡𝑖 , 𝑡 𝑓 ) |2 +

∑︁
𝑠3

|Ã𝑟𝑠3
𝑒→𝑒𝑒𝜇

(p; 𝑡𝑖 , 𝑡 𝑓 ) |2 . (67)
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The first piece diverges and must be subtracted, while the second piece gives a finite contribution.
Explicitly

P𝑒→𝑒𝑒𝜇 (p;Δ𝑡) =
4𝑚2

𝑒𝜇𝑌
2
p(

𝜔p,𝑒 + 𝜔p,𝜇
)2 sin2

( (
𝜔p,𝜇 + 𝜔p,𝑒

)
Δ𝑡

2

)
, (68)

where
𝑌2

p =
∑︁

s

(
𝑌 𝑟𝑠

p

)∗
𝑌 𝑟𝑠

p , (69)

and

𝑌p =
|p|√︁

4𝜔p,𝑒𝜔p,𝜇

(√︄
𝜔p,𝜇 + 𝑚𝜇

𝜔p,𝑒 + 𝑚𝑒

+
√︄

𝜔p,𝑒 + 𝑚𝑒

𝜔p,𝜇 + 𝑚𝜇

)
. (70)

Therefore, the total decay probability of 𝜈𝑒 is

P𝑒
𝐷 (p;Δ𝑡) = 4𝑚2

𝑒𝜇

[
𝑊2

p(
𝜔p,𝑒 − 𝜔p,𝜇

)2 sin2
( (
𝜔p,𝜇 − 𝜔p,𝑒

)
Δ𝑡

2

)
+

𝑌2
p(

𝜔p,𝑒 + 𝜔p,𝜇
)2 sin2

( (
𝜔p,𝜇 + 𝜔p,𝑒

)
Δ𝑡

2

)]
. (71)

It is noteworthy that transitions between neutrino flavors, or flavor decays, are generally not permitted
when considering the time evolution from 𝑡𝑖 to 𝑡 𝑓 as 𝑡𝑖 → −∞ and 𝑡 𝑓 → +∞, unless the masses of
the involved neutrinos are equal (i.e., 𝑚𝑒 = 𝑚𝜇). Such transitions are typically forbidden due to the
conservation of energy. In such scenarios, the three-dimensional delta functions appearing in the
above transition amplitudes would be replaced by delta functions which ensures the conservation
of four-momentum. In other words, uncertainty in energy is fundamental to the occurrence of
neutrino flavor oscillations, as it allows for the transition between different flavor eigenstates. These
considerations agree with the ones derived by TEUR (39).

We now recognize that, at the leading order in 𝑚𝑒𝜇,

|𝑈p | = 𝑊p
𝑚𝜇 − 𝑚𝑒

𝜔p,𝑒 − 𝜔p,𝜇
=

√︄ (
𝜔p,𝑒 + 𝑚𝑒

) (
𝜔p,𝜇 + 𝑚𝜇

)
4𝜔p,𝑒𝜔p,𝜇

(
1 + |p|2(

𝜔p,𝑒 + 𝑚𝑒

) (
𝜔p,𝜇 + 𝑚𝜇

) ) ,(72)

|𝑉p | = 𝑌p
𝑚𝜇 − 𝑚𝑒

𝜔p,𝑒 + 𝜔p,𝜇
=

√︄ (
𝜔p,𝑒 + 𝑚𝑒

) (
𝜔p,𝜇 + 𝑚𝜇

)
4𝜔p,𝑒𝜔p,𝜇

(
|p|

𝜔p,𝑒 + 𝑚𝑒

− |p|
𝜔p,𝜇 + 𝑚𝜇

)
. (73)

Then, we write the probability as

P𝑒
𝐷 (p;Δ𝑡) = sin2 2𝜃

[
|𝑈p |2 sin2

( (
𝜔p,𝜇 − 𝜔p,𝑒

)
Δ𝑡

2

)
+ |𝑉p |2 sin2

( (
𝜔p,𝜇 + 𝜔p,𝑒

)
Δ𝑡

2

)]
. (74)

with 𝜃 = 𝑚𝑒𝜇/(𝑚𝜇 −𝑚𝑒) ≈ sin 𝜃. In the approximation we used, this coincides with the oscillation
probability (32). This fact is relevant because in computing it we did not use flavor vacuum or Fock
space construction and it thus represents an independent derivation of the QFT oscillation formula
Eq.(32) [33].

The survival probability is the one associated to the process

|𝜈𝑟p,𝑒⟩ → |𝜈𝑠k,𝑒⟩ . (75)
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The final result is

P𝑒
𝑆 (p;Δ𝑡) = 1 − sin2 2𝜃

[
|𝑈p |2 sin2

( (
𝜔p,𝜇 − 𝜔p,𝑒

)
Δ𝑡

2

)
+ |𝑉p |2 sin2

( (
𝜔p,𝜇 + 𝜔p,𝑒

)
Δ𝑡

2

)]
, (76)

so that
P𝑒
𝐷 (p;Δ𝑡) + P𝑒

𝑆 (p;Δ𝑡) = 1 , (77)

as expected.

5. Conclusions

We delved into the significance of finite time and energy uncertainties within the framework
of QFT for describing neutrino oscillations. To accomplish this, we revisited TEUR in the flavor
Fock-space approach and the interaction picture approach to flavor oscillations.

TEUR, in the Mandelstam-Tamm form, relates energy and flavor charge uncertainties. This
relation, coupled with the distinction between mass and flavor neutrino Fock spaces, imposes a
lower bound on the energy uncertainty for neutrino with a definite flavor.

Similar insights emerge from a perturbative analysis of flavor transitions, where the Dirac
picture is utilized to compute the probability of finite time flavor transitions. Remarkably, both the
flavor Fock-space and the interaction picture approaches yield identical oscillation probabilities,
given the approximation employed in the perturbative calculation. It is important to stress that time-
evolution operator must be used instead of 𝑆-matrix, which would lead to an exact four-momentum
conservation leading to a trivial result, in agreement with TEUR.
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