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We introduce our recent studies on the double-degenerate (DD) scenario, especially the
Dynamically-Driven Double-Degenerate Double-Detonation (D6) model. We have performed
hydrodynamics simulations of the D6 model. At the first step, we have reproduced the D6 explo-
sion, and found that its supernova ejecta has a non-spherical shape. At the second step, we have
followed the supernova remnant evolution of the supernova ejecta, and found that the non-spherical
shape survives during a few 103 years, and it will be detected by detail observations. We have also
assessed if multi-messenger observations can identify the relation between double white dwarfs
and some transients. We have found that Japanese space-borne gravitational-wave observatory
DECIGO should play a dominant role fot that.
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1. Introduction

Type Ia supernovae (SNe Ia) have been recorded since ancient times because of their brightness
and high occurrence rate. In the present day, SNe Ia are still important; they are used as a cosmic
standard candle, and they should be a dominant source of iron group elements. There is broad
consensus that SNe Ia are thermonuclear explosion of carbon-oxygen (CO) white dwarfs (WDs) in
binary stars [1]. However, the stellar type of the WDs’ companion stars remains unsettled. They
can be non-degenerate stars (Single degenerate scenario: SD scenario) [2, 3], another WDs (Double
degenerate scenario: DD scenario) [4, 5], or stellar cores of giant stars [6] (core degenerate scenario:
CD scenario).

Observations of a nearby SNe Ia SN2011fe have put strong constraints on the nature of the
companion star of SN2011fe. The companion star cannot be a red-giant star [7], helium star, nor
main-sequence star [8]. This has ruled out most of the SD scenario. Moreover, hypervelocity WDs
have been discovered with the help of Gaia mission [9, 10]. This strongly supports the Dynamically-
Driven Double-Degenerate Double-Detonation (D6) model. Note that such hypervelocity WDs are
are by-products of D6 model, one of the DD scenario.

As described above, the DD scenario, especially D6 model, have rapidly attracted attention as a
promising SN Ia progenitor model. Here, we introduce our three studies related to the DD scenario,
especially the D6 model. First, we show our hydrodynamics simulations to reproduce the D6 model.
Second, we present our study to examine supernova remnant (SNR) phases of the D6 model, based
on the first study. Finally, we suggest multi-messenger astronomy for the DD scenario.

2. Explosion simulations of the D6 model

We have performed the explosion simulations of the D6 model by means of smoothed particle
hydrodynamics (SPH) simulation coupled with nuclear reaction networks. The SPH code is par-
allelized by FDPS numerical library [11], and vectorized by SIMD technique [12, 13]. The SPH
code is equipped with the Helmholtz equation of state [14] and the Aprox 13 reaction networks
[15]. As an initial condition, we prepare a double WD system: 1.0M⊙ CO WD with 0.05M⊙
helium outer shell as a primary WD and 0.6M⊙ CO WD as a secondary WD. We put a hot spot in
the helium outer shell to start helium detonation artificially. Then, the primary WD successfully
achieves double detonation explosion.

We have investigated the supernova ejecta properties [16] (see also [17]). The chemical
components are typical of SNe Ia: 0.55M⊙ 56Ni, 0.15M⊙ Si, and 0.07M⊙ O. On the other hand, the
ejecta has a non-spherical shape because of the presence of the secondary WD. This is called “ejecta
shadow”. The ejecta shadow will survive the SNR phase, and could be evidence of the D6 model
(see the next section). The chemical element distribution also has asymmetry. The supernova ejecta
strips surface materials of the secondary WD. It shapes a stream-like CO structure. Since the CO
component stays at the central region of the supernova ejecta, it could be seen in the nebular phase
of the D6 model.

Additionally, we show several WD explosion simulations [18]. Among them, both of two
WDs explode, and the supernova ejecta contains ∼ 1M⊙ 56Ni, and has non-spherical shapes more
significantly than the above simulations. However, in these simulations, the separation of the two
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WDs is unrealistically close, and the helium outer shell mass is unrealistically massive. Such
explosions might be unfeasible in reality.

3. SNR simulation of the D6 model

The ejecta shadow of the D6 supernova ejecta motivates us to examine if it survives during its
SNR phase. We have performed a hydrodynamics simulation based on the WD explosion simulation
in Tanikawa et al. (2018) [16] to investigate the SNR evolution during more than 104 years [19].

The ejecta shadow survives during a few 103 years. The ejecta shadow has smaller number
density than the other region, and thus the reverse shock of the SNR proceeds more rapidly.
Consequently, the SNR does not have a spherical shape. This shape is prominent, in particular
before the reverse shock reaches the center of the SNR. This SNR property can be made use of to
identify the SNR of the D6 explosion.

4. Multi-messenger astronomy for the DD scenario

Japanese space-borne gravitational-wave (GW) observatory DECIGO [20] has high sensitivity
at the GW frequency of 0.1 Hz. This means that DECIGO can observe a double WD just before one
of the two WD is tidally disrupted, and the two WDs merge. Assets of DECIGO are its accuracy
for WD mass estimate (≲ 10 %), sky localization (≲ 0.1 deg2), and time resolution (≲ 1 second)
for a double WD merger at the redshift of 0.08 within which several 103 SNe Ia happen during one
year.

We have found that multi-messenger astronomy should be a powerful tool to identify the SN
Ia progenitors [21]. DECIGO can detect the dissapearance of GWs from a double WD. If some
transient can be observed by electromagnetic telescopes a few days later at the same place, the
double WD should be the progenitor of the transient. DECIGO can determine the masses of the
two WDs, and electromagnetic telescopes can determine the transient type. Currently, there are
various types of transients suspected of involvement by WD explosions [22]. Such multi-messenger
observations will resolve the relation between double WDs and these transients.

5. Summary

We summarize our recent studies related to the DD scenario and the D6 model. We have
investigated the D6 model from its explosion phase to the SNR phase [16, 18, 19]. Its SNR has
an unique shape. Detail observations of SN Ia SNRs should reveal if SN Ia SNRs are generated
from the D6 model or not. When combined with electromagnetic telescopes, Japanese space-borne
GW observatory DECIGO should be powerful to identify the relation between double WDs and
transients related to WD explosions [21].
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