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For a few decades now it has been commonly believed that the near-lack of nova eruptions in
cataclysmic variable (CV) systems with orbital periods in the range 2− 3 hours may be explained
by the donor red dwarf (RD) being eroded down to below roughly ∼ 0.35𝑀⊙ , for which the
star becomes fully convective, deeming magnetic braking as an inefficient angular momentum
sink. Thus, the donor radius shrinks and Roche-lobe overflow (RLOF) resumes only after the
orbital period emerges at the bottom of the period gap. However, this theory does not explain
the existence of the occasional nova (or dwarf nova, or nova-like) detected within the period gap.
The mechanism proposed here explains both the existence of the gap and of eruptions within the
gap by using a self-consistent evolution code that accounts for both stellar components and their
binary separation simultaneously. The method reveals that mass transfer resumes well before the
orbital period shrinks below the gap, thus explaining the observed eruptions within the gap as well
as exhibiting an orbital period distribution remarkably similar to that observed.
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1. Introduction

A cataclysmic variable (CV) is a class of binary systems that comprises a primary white dwarf
(WD) and a companion red dwarf (RD). As implied by its name, these celestial objects exhibit
powerful sudden variability, i.e., eruptions that culminate as sharp, temporary brightenings. Be
that as it may, the wealth of even the basic features exhibited by CVs has led to convenient sub-
categorizing. The CV family comprises of novae (classical novae (CN) and recurrent novae (RN)),
dwarf novae (DN), and nova-likes (NL), while CVs may also be detached, in which case will not
exhibit any form of eruption. Since the physical processes that are responsible for each eruption type
are entirely different [1–4], it became allegedly clear that there should be certain system parameters
that are affiliated with each type, yet these were never defined, and for good reason.

Nova simulations show that the rate that mass is accreted onto the WD, along with the mass
of the WD, are the two primary ingredients that are responsible for the nature of the outcome of
the nova eruption [5–7], however, these models use a constant, external, arbitrary accretion rate.
Recently, While accounting for the major physical processes at work (e.g., angular momentum
removal, mass lost from the system, irradiation of the companion during the nova eruption etc.),
long-term self-consistent numerical simulations of CVs undergoing tens of thousands of consecutive
nova eruptions, have demonstrated that the rate that mass is transferred from the donor to the WD
is not at all constant but rather experiences considerable changes throughout the system’s lifetime,
both increasing and decreasing. The changes were found to be vast, both secularly and on a
cyclic timescale, and to have immense repercussions on the outcoming eruption [8, 9]. While
in symbiotic systems there are semi-chaotic factors that affect the mass transfer rate, e.g., the
companion producing wind which can vary over relatively short periods of time, and a radius that
can endure extensive fluctuations (especially if it is in the AGB and experiencing thermal pulses)
[10, 11], in CVs the mass accretion rate changes slowly and steadily [8, 9]. More importantly, the
accretion rate in CVs can be followed via models based on the stellar masses and their orbital period
(𝑃orb). Understanding the connection between the basic CV system parameters —– the stellar
components’ masses, and the accretion rate —– are the key to understanding CVs.

2. The period gap

One of the important findings of the long-term self-consistent simulations is the deficiency of
systems within a regime of orbital periods that is very similar to the well known period gap derived
from observations. This well known observed period gap was derived by the simple process of
dividing the range of orbital periods of observed eruptions in CVs (including novae, DNe, and NLs),
into random equal bins, and summing the number of systems observed for each bin [12, 13]. This
reveals a regime, roughly between two and three hours, for which it seems like there is a lack of
CVs. The conventional explanation for this is that as the companion loses mass, the orbital period
decreases. When the mass becomes below roughly 0.35M⊙, the star becomes fully convective,
resulting in the magnetic braking (MB) becoming inefficient in removing angular momentum from
the system. This leaves gravitational radiation (GR) as the primary angular momentum sink, which
is much weaker than MB, thus, the separation shrinkage slows, delaying the increase of the mass
transfer rate, allowing the companion radius to relax and shrink back to its natural radius (undisturbed
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thermally by mass loss). Finally, the system becomes detached. The common reasoning for the
period gap follows from this by assuming that the system will only resume mass transfer after
emerging on the other side of the gap [12, 13].

3. Eruptions in the period gap — the challenge

If the theory described above were complete, it would mean that CVs in the period gap, since
assumed to be detached, would experience negligible to no mass transfer from the companion to
the WD, hence there would be no eruption of any type — no novae, no DNe and no NLs — because
they all require a non-negligible mass transfer rate. However, the observational distribution clearly
shows some detections within the gap. Such as, the CN V Per with 𝑃orb = 2.57 hr or the NL
V348 Pup with 𝑃orb = 2.44 hr [14–16] strongly implying that the above theory is imprecise. There
should not be any eruptions within the period gap if the CV is presumably detached the entire time.

4. The missing puzzle piece — methods and solution

The self-consistent binary evolution code settles this discrepancy [8, 9]. The code follows the
evolution of a the binary system from initial contact, i.e., Roch-lobe overflow (RLOF), through long
accretion epochs and nova eruptions, calculating the accretion rate ( ¤𝑀) at each time step adopting
[8, 9, 17]:

¤𝑀 ∝ ¤𝑀0 × 𝑒
𝑅RD−𝑅RL

𝐻𝑃 (1)

where 𝐻𝑃 is the pressure scale height and ¤𝑀0 is the mass transfer rate for the case in which the
donor exactly fills its Roche-lobe (RL), i.e., the RD’s radius (𝑅RD) equals its RL radius (𝑅RL), and
depends on several system’s parameters, i.e., the donors’ effective temperature, mass, RL radius and
surface density, as well as the WD’s mass. The accretion rate is calculated following Eq.1 at every
time step during accretion, while updating these system’s parameters at each time step to account
for angular momentum loss (AML) due to two major mechanisms — magnetic braking (MB) and
gravitational radiation (GR) following [8, 9, 18]:

¤𝐽MB ∝ 𝑀RD𝑅
4
RD𝑃

−3
orb (2)

¤𝐽GR ∝ (𝑀RD𝑀WD)2

𝑃
7
3
orb(𝑀RD + 𝑀WD)

2
3

(3)

where ¤𝐽MB and ¤𝐽GR are the (negative) change in angular momentum as a result of MB and GR
respectively. The AML due to these mechanisms cause the binary separation (𝑎) to shrink [8, eq.4],
decreasing the RL radius [19], which increases the mass overflow, i.e., the accretion rate.

The mass that is ejected during a nova eruption may be considered to occur momentarily
(relative to the accretion time scale) and this mass is considered to be lost from the system taking
with it angular momentum. This is applied after the cessation of ejection, before resuming accretion,
following:

Δ𝑎

𝑎
= 2

(
𝑚ej − 𝑚acc

𝑀WD
+ 𝑚acc
𝑀RD

)
(4)
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Figure 1: Example simulation for initial
𝑀WD = 1.0𝑀⊙ and 𝑀RD = 0.7𝑀⊙ showing the ac-
cretion rate vs. time from the beginning of accretion
for each sample cycle. Adapted from [8].

Figure 2: Illustration of the phases that a CV may go
through following one curve from Figure 1.

where 𝑚acc and 𝑚ej are the accreted and ejected masses of the previous nova cycle respectively.
This separation change is positive for all but extreme rare cases.

Additionally accounted for is the heat blast that the RD endures during the nova eruption,
causing its envelope to temporarily expand in order to regain thermal equilibrium, and then retract.
This causes the mass transfer rate to be enhanced for a short time (of order 102 years) after each
eruption [8, eq.8-11]. These mechanisms explain how ¤𝑀 varies throughout evolution. In fact, it
was found [8, 9] that for a certain regime of stellar masses, ¤𝑀 becomes so low — a negligible
mass transfer rate — that the system is essentially detached for long epochs of tens or hundreds of
thousands of years, while ¤𝑀 slowly increases back to a non-negligible rate towards the next nova
eruption. This is demonstrated in Figure 1 where the ¤𝑀 changes are clear over a single cycle’s
accretion phase as well as secularly changing as the evolution progresses.

Figure 2 illustrates the evolution of a cycle: After a nova eruption (𝑡 = 0) the accretion rate is
high, of order 10−8 − 10−9𝑀⊙yr−1. This is because it is enhanced due to irradiation of the RD from
the nova eruption. During this time the CV will exhibit nova-like (NL) features. As the RD radius
relaxes the accretion rate declines, becoming of order 10−10 − 10−11𝑀⊙yr−1 which is suitable for
producing instabilities in the accretion disk that culminate as dwarf novae (DN). The accretion rate
will then continue to decline and may eventually become negligible, i.e., the system will become
detached. Eventually, AML will pull the stars closer together, slowly increasing the accretion rate
back up to the DN regime, and then the NL regime, until a critical amount of mass is accumulated,
triggering the next nova eruption. As shown in Figure 1, not every cycle will pass through all the
stages. In fact, only systems for which the RD mass is low enough for the MB to have become
inefficient (to the right of "MB off" in Figure 1) will endure DNe and become detached while more
massive RDs lose angular momentum faster due to MB thus the accretion rate remains high.
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Figure 3: Average ¤𝑀 per cycle and 𝑡rec vs. evolu-
tionary time. Simulation input stellar masses are as
described in Figure 1. Adapted from [8].

Figure 4: 𝑃orb vs. cycle number. Simulation input
stellar masses are as described in Figure 1. Adapted
from [8].

These simulations support almost all the stages of the theory behind the period gap — while
neglecting one crucial finding. The common explanation stated earlier is that the radius shrinkage
caused by "turning off" the MB (for 𝑀WD ≲ 0.35𝑀⊙ which is correlated with 𝑃orb ≈ 3 hr) will lead
to the system becoming detached, and remaining that way until the separation shrinks enough to
yield an orbital period of ≈ 2 hr. The results of these simulation [9] have demonstrated for a range
of seven models that indeed when the MB becomes inefficient in removing angular momentum the
separation shrinkage slows down substantially, and GR is the main AML sink that remains, but has
roughly only a few percent the efficiency of MB in removing angular momentum. The results of
these simulations show that this causes a delay in the increase of the accretion rate by the order
of a tenth to one hundredth of the previous timescale, leading to recurrence times of order ten to
one hundred times longer, meaning that it takes that much longer to accrete the required triggering
mass. This may be seen clearly in Figure 3 as the stark decrease (increase) in ¤𝑀 (𝑡rec) at ∼ 3 × 108

yr which is correlated with the RD mass being eroded below ∼ 0.35𝑀⊙ rendering the MB an
inefficient AML sink. However, this process occurs much before the orbital period shrinks down
to ∼ 2 hours. Figure 4 demonstrates, for two regimes, the number of eruption that occur while the
system’s orbital period shrinks one hour. The first regime is from 4 to 3 hours, i.e., while MB is still
"on", and the second regime is from 3 to 2 hours, — the period gap — i.e., after the MB is "turned
off". The first regime exhibits a total of approximately 5 × 103 nova eruptions (cycles) while the
second regime exhibits only about half this amount of novae. The implication of this finding is that
there should be nova (and DN) eruptions within the "period gap", just substantially less than the
number that occur outside the gap. Figure 5 shows the orbital period distribution for one complete
simulation, exhibiting a remarkable similarity with the observed period gap [12, 13], meaning that
the presence of some novae in the gap is supported by modeling.

Not only do the results of the simulations explain the period gap, but by showing that the
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Figure 5: Distribution of percentage of eruptions per 𝑃orb bin. Simulation input stellar masses are as
described in Figure 1. Adapted from [9].

accretion rate evolves, they validate the long since theorized hibernation theory that states that
systems that exhibit nova, DN and NL eruptions are not each a different class of systems, but rather
one class at different evolutionary epochs [20].

5. Orbital period of symbiotic novae

Turning to nova that occur in symbiotic systems reveals an entirely different behavior. While
the accretion rate in CVs is governed by RLOF culminating as slow secular changes, in wide
symbiotic systems, the accretion is from wind that is expelled from the donor red giant (RGB). This
means that the accretion rate depends strongly on the wind rate [e.g., 10, eq. 7-8] which can vary
considerably. If the donor is on the asymptotic giant branch (AGB) then it may experience thermal
flashes that radically change the wind rate on a relatively short, and somewhat chaotic timescale.
Long-term simulations of symbiotic binaries that produce nova eruptions have demonstrated the
evolution of 𝑃orb for an AGB donor mass (𝑀AGB) of 1.0𝑀⊙ with a range of WD masses and binary
separations [10, 11]. The code used for these simulations is an adaption of the long-term code used
for CVs. It calculates the accretion rate via the Bond-Hoyle-Lyttleton (BHL) prescription [21–23]
and accounts for mass lost from the system constantly due the wind from the donor as well as for
AML due to drag being inflicted on the WD from this cloud of wind [10, eq. 4-9].
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Figures 6 and 7 demonstrate the relationships between the separation, orbital period and donor
mass for the evolution of a CV and a symbiotic system respectively. Clearly, for the CV example
these three parameters are closely bound to each other, i.e., all three behave in a similar manner.
The RD loses mass, thus the orbital period and separation decrease. This may be understood from
the following three equations. The first, Kepler’s third law of motion which gives:

𝑃2
orb ∝ 𝑎3

𝑀RD + 𝑀WD
, (5)

the second which is deduced from Roche geometry:

𝑃orb ∝
(
𝑅3

RD
𝑀RD

)0.5

(6)

and the third stems from stellar evolution of a main sequence star:

𝑅RD ∝ 𝑀𝛼
RD (7)

where 𝛼 ∼ 1. Combining Equations 5 through 7 yields:

𝑃orb ∝ 𝑀RD ∝ 𝑎 (8)

which explains the strong correlation between these three parameters in figure 6. On the other hand,
glancing at Figure 7 firmly conveys that this correlation does not hold for symbiotic stars. This
is because Equation 6 is not relevant for BHL accretion since the separation is large and there is
no RLOF. Equation 7 is also irrelevant since it does not apply to a RGB or AGB star. This leaves
Equation 5 alone to determine the behavior. Now since in CVs mass is only lost from the system
during nova eruptions, the decrease in separation (𝑎) due to AML will always entail a decrease in
𝑃orb. However, simulations show that in symbiotic systems mass is rapidly lost from the system
at a rate comparable to the separation decrease [10, 11]. Moreover, as mentioned above, the mass
loss (wind) rate can radically change. This results in a competing process in which at some epochs
separation decreases faster while at other epochs the total mass decreases faster. When the former
ensues, the orbital period decreases as well, however when the latter has the upper hand, the orbital
period will increase even though both the total mass and the separation decrease. This explains the
peculiar behavior exhibited in Figure 7.

6. Summary and conclusions

The common assumption that a CV system is detached in the period gap forbids the existence
of any type of eruption within the gap, yet, there is evidence of novae, DNe and NLs well within the
gap, casting serious doubt on this theory. A detached system should not produce ANY novae, DNe
or NLs at all.

The results presented here approach the problem from am unbiased point of view, allowing the
CV to evolve self-consistently from initial RLOF. The findings introduce a critical refinement to
the earlier simplistic approach by realizing that indeed the accretion rate increases at a much slower
pace within the period gap and the system may experience detached epochs, however, AML allows
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Figure 6: 𝑎(𝑀RD),𝑃orb (𝑎) and 𝑃orb (𝑀RD) for a CV
long-term simulation with input stellar masses are as
described in Figure 1.

Figure 7: 𝑎(𝑀AGB), 𝑃orb (𝑎) and 𝑃orb (𝑀AGB) for a
symbiotic system hosting a WD and AGB with masses
of 𝑀WD = 1.25𝑀⊙ and 𝑀AGB = 1.0𝑀⊙ respectively.

the RLOF to resume and the accretion rate to become non-negligible on a time scale of order ∼ 10
times shorter than that above the gap, leading to recurrence times of order 105 − 106 years. Within
this recurrence time, the orbital period shrinks only a fraction of an hour (of order a few hundred
ppm), thus leading to less eruptions within the gap. Comparing the percentage of eruption within
the gap that occur in the models, with the observed distribution yields a remarkable compatibility.

This lends support to the decades old hibernation theory by showing for the first time via a
"hands off" numerical simulation, that novae, DNe and NLs are not different system types, but
rather one type of system at different evolutionary epochs.

In addition, the timescales derived from the binary simulations emphasizes that the observed
period gap is highly influenced by observational bias. In fact —- there should exist about X100
more CVs in the gap than above it. This is revealed by normalizing the number of nova eruptions
(i.e., system detections) by the time between two consecutive eruptions.

Finally, it is noted that the 𝑃orb−𝑎 relation, which is highly correlated in CVs, is entirely chaotic
for novae in symbiotic systems for which 𝑃orb can decrease OR increase while the separation (𝑎)
monotonically decreases. Whether 𝑃orb will decrease or increase depends on the rate that mass is
lost from system, and can rapidly change during evolution on relatively short timescales [10, 11].
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