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The on-going work presented in this article explores different technical approaches and
systems for management and analysis of data obtained from large physics simulations, optimising
the respective data-driven workflows across Cloud-Computing (IaaS) and HPC systems. The
work is carried out in the context of the EXA4MIND Horizon Europe project, which produces an
Extreme Data processing platform, bringing together specialised data management systems and
powerful computing infrastructures. We evaluate two typical use cases with physics simulations
carried out on supercomputing systems at LRZ (Garching b.M./DE) and IT4Innovations
(Ostrava/CZ). These use cases come from different areas of physics – they focus on the treatment
of low energy many-body systems of molecules, and of high-energy (relativistic) elementary
particles, respectively. Accordingly, molecular dynamics (MD, low energy) and plasma
simulation methods (FDTD, Particle-in-Cell, high energy) are used. As often in computationally
supported, data-driven science, a large fraction of the work then goes into postprocessing,
visualising and re-assessing the data, often several times in an iterative process. A well-managed,
integrated and efficient “next-generation” methodology to facilitate and manage such a (re-)use
of the valuable data – in particular in the context of parameter studies – with an eye on FAIR
research data management, is one of our final objectives.
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1. Introduction

Physics simulation modelling systems of atoms or subatomic particles are a typical
application challenging the capabilities of high performance computing (HPC) systems. These
simulations follow up to billions of particles, writing out their properties and location trajectories
in each time step. The production of such simulation outputs can take up to hundreds of thousands
CPU and GPU hours, and the particle and field data can occupy Gigabytes or Terabytes of storage
for one simulation. These then have to be postprocessed and evaluated in order to reach
conclusions that can be used for scientific advancement. Examples of such processing workflows
include aggregation of fields or particles over the domain partitions, like patches, divided over
several simulation processes, extraction of statistical information over particles or timesteps,
calculations of spatial distributions over the domain, like plasma densities or the time evolution
of distances between atoms in the molecule. Statistical evaluation or aggregation can happen on
various levels – from ensembles of simulations, for example parameter studies, down to single
particle trajectories or timesteps which are only a fraction of the whole output and have to be
extracted from much larger dataset. Even for one study, the datasets are revisited typically several
times, for example for visualisation, comparison against experimental data and evaluations of the
validity of force field parameters via reweighting techniques [1][2]. For such purposes, an
efficient and systematic data management is paramount.

While companies often use database management systems (DBMS) for dealing with data in
frequent re-use, scientific supercomputing makes little use of them. This is at least in part due to
a preference for direct file I/O without overheads and technical challenges in reaching DBMS
from HPC cluster nodes. However, the increasing re-usage of scientific output data, for which we
have given examples above, gives a strong motivation to re-visit the topic of proper data-
management methods and systems, also keeping in mind the FAIR principles (Findable,
Accessible, Interoperable, Reusable [3]) any modern research data management (RDM) should
obey. The work we present here makes a contribution in this. It has been conducted in the context
of the the Horizon Europe project EXA4MIND2 on Extreme Data processing. EXA4MIND aims
at bridging the ecosystems of DBMS, supercomputing, and European Data Spaces. It builds an
extreme data platform with an “Extreme Data Database” (EDD) at its core. This EDD integrates
specialised DBMS and storage systems, and interfaces them in an unified manner, facilitating
optimised data-driven workflows across top-notch Cloud-Computing and HPC systems at
IT4Innovations3 (Ostrava, CZ) and LRZ4 (Garching b.M./DE). It is to be connected to European
Data Ecosystems such as EUDAT5 and European Data Spaces such that FAIR RDM is facilitated
as well.

In this contribution, we show first results on the way towards an optimal data management
for our use cases. We test the performance of different data-management backends (in particular
file-based storage vs. DBMS) with respect to data queries and iterative postprocessing steps.
Clearly, the performance also depends on data access and parallelization schemes, a topic which
we will briefly touch upon as well. In particular, row-based DBMS such as PostgreSQL will
behave differently to column-based DBMS such as MonetDB or MariaDB Columnstore. Potential
performance benefits may be reached with techniques like SciQL [4] which can operate using
live queries on large array-based datasets in memory.

https://cordis.europa.eu/project/id/101092944
https://www.it4i.cz
https://www.lrz.de
https://eudat.eu
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The test data sets we center this work upon are, on the one hand, from Molecular-Dynamics
(MD) simulations (Modelling for Nanotechnologies Lab, IT4Innovations, Ostrava/CZ), where
dynamical movement and structural description of biomolecules is calculated (predicted) via
empirical potentials (force fields, FF) [5]. On the other hand, we have outputs from the Plasma
Simulation Code [6-8], simulating the fields and trajectories of charged particles in plasma
physics (PP). Simulation-based research as at hand here typically includes multi-step
postprocessing and evaluation pipelines to gain insights and knowledge about the properties of
the physical systems represented. For example, plotting and visualization is an important step to
verify correct set-up and disseminate results. These workflows typically involve a lot of manual
labour and repeated adjustments requiring repetitive tasks and focused attention from the
researcher to avoid mistakes. Automating these workflows and managing the data in systematic
frameworks can potentially speed up these processes while reducing the risk of errors and
simplifying re-use at a later point. Besides storage optimisation, clearly also systematic
orchestration of tasks (e.g. via the LEXIS6 workflow and data-management platform) will play
an important role in increasing the efficiency of such research. FAIR RDM, finally, will hopefully
help to create synergies across scientific groups and allow for efficient collaboration, also
involving industry and SMEs. In this setting, EXA4MIND, LEXIS and the effort presented here
are positioned as technological enablers for data-driven research across Europe.

This paper is organised as follows: section 2 introduces the use cases in PP and MD in some
more detail. Section 3 gives some general considerations on data management, before we test –
based on the use cases described – the performance of example storage schemes (DBMS, files)
with representative data-analysis tasks. Section 4 describes aspects of FAIR data management to
be considered in our use-cases in the near and further future, before we conclude in Section 5.

https://lexis-project.eu
https://cordis.europa.eu/project/id/825532
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2. Applications (“Use Cases”) Considered in this Work

2.1 Plasma Physics Use Case

The PSC [6-8] was used to run an large parameter study to determine which target and laser
pulse properties produce the fastest ions in a simulation modelled after a Paul trap experiment
carried out at J. Schreiber’s group at LMU [9-13].

The modes of absorption of energy from electromagnetic fields to plasma are very complex
and the interplay of different set-up parameters can drastically alter the dynamics of the
production of fast particles leading to very varying outcomes in terms of particle spectrum.
The output files produced by these simulations contain the information of the particles position
on the grid (x,y,z coordinates) and there velocities. They are written out by each process (MPI
rank) separately and then later combined by postprocessing scripts. The sizes of these files
(written in HDF5 format) vary in size from 10s of MB to TB per timestep, depending on the
number of particles in the simulation, which ranges over many orders of magnitude from a few
thousands to several billions.
When evaluating such a parameter study, it is of interest to both find the optimal parameter
combination and understand the dynamic
of the plasma movement that lead to the
production of a high number of fast
particles.

Time evolution of the particle
density plotted as 2D slices or 3D iso-
surfaces can give an intuitive overview
of the dynamics, while the trajectory of
particularly fast electrons and ions can
give valuable insights into the
acceleration dynamics producing the
coveted ultra-fast ions.

The researcher may want to adjust
the parameters of the visualization like
the threshold at which particles are
sorted into the “fast” category, to
enhance the visibility of certain features.
Thus, the plotting process may be repeated several times for each of the dozens of simulation
runs.

The main steps of this process (comp. Figure 1 ) are: Load the timestep at which particles have reached their maximum energy Sort by particle type and energy Store the fast particles’ UID in list Load each earlier timestep Filter by fast particle UID list to generate coordinate and velocity information for
these individual ions

Figure 1: Sketch of Fast Particle Tracking workflow.
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Figure 2: Example timestep showing the protons that will later on be accelerated to highest energies
(red), medium energies (green) and low eneries (blue) at the beginning of the simulation, when the laser
field starts impinging on the target. Plots show the grid position in x, z dimension (above left),
phasespace in lateral (y) position and momentum (above right), early spectrum in number of particles
(log10) vs. Kinetic energy (MeV), and phasespace in lateral (y) dimension and kin. Energy (bottom right)

This workflow requires the loading of large datasets several times. The time expensive parts
of this task are particularly the loading of data from storage and the sorting/filtering by criteria
such as matching UID. Therefore the performance of these process is of particular importance to
streamlining the execution of these repetitive workflows.

Another important aspect, is finding the right simulation matching the selection criteria for
evaluation, such as the same size but different densities of the target or the same target properties
but different pulse shapes. In the planned database set-up, the simulations and their evaluation
output are ordered in a hierarchical form, with general set-up parameters that only have a few
possible values, like ion constellation or pulse polarization and metadata at the top level and the
individual runs of the parameter study as an information table linking (via an id, path and name)
to the actual files. Finished postprocessing output, such as rough statistics and existing plots can
then be linked from this table to avoid unnecessary re-processing.
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2.2 Molecular Dynamics Use Case

Having important applications ranging from drug discovery over structure and function
relationships to protein/nucleic acid design, MD simulations support a wide ranging field of
physical chemistry research. The field has mainly been advanced by the development of empirical
potentials, or force fields (FF), which can capture and predict many structural features of
biologically relevant systems. One challenge is, that researchers often encounter problems in
simulations, which stem from overparameterization and overfitting of the FF (artifacts). Current
developments in the methods of force-field elicitation and improvement (e.g. through additional
force-field terms) suggest that better alternatives of processing than manual or semi-automatic
tuning/development of FF parameters are needed, as humans cannot capture the whole complexity
involved in this process. We are certain that the next step of FF tuning must be automated and
assisted by machine learning (ML) approaches on top of huge datasets acquired from HPC MD
simulations. For this project work, MD simulation datasets, i.e. topologies and trajectories of
simple RNA motifs (e.g., tetranucleotides and tetraloops) obtained by the state-of-the-art force
field, are taken from [14], reference evaluations are from [15].

Figure 3: Sketch of table scheme for plasma physics DB set-up.
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To facilitate the fully automatic processing of
the assessment and re-weighting cycle, the
EXA4MIND project partners are building a
DBMS to store and access MD simulations. We
execute benchmarks of typical involved queries,
such as calculation of distances and dihedral
angles of atoms within the simulated molecules
to help design decisions for the storage structure
in these DBs.
The main steps of a preliminary evaluation
workflow is shown in Figure 4. The current
implementation uses C++ based tools (cpptraj)
and AWK based scripts. It is now being re-
implemented in python using a postgres and hdf5
for storing metadata and simulation data
respectively.

3. Performance of Typical Data-Analysis Workflows Using Different Data Management
Approaches

In this section, we discuss the performance of different data-management approaches, in
particular when running a few typical data analysis and re-use tasks from our use cases.
Subsection 3.1 first considers general trade-offs to be considered when devising a data
management methodology for our use cases. The other subsections then discuss the backend-
dependency of the performance of our sample data-evaluation tasks.

For an optimized set-up, the nature of the typical or most expensive queries should be
evaluated to determine the optimal structure of the datasets in storage.

3.1 Trade-Offs to be Considered when Devising a Data Management Methodology

3.1.1 Flexibility vs. Efficiency

When designing data structure layout and analysis tools, one often encounters strong
constraints related to the anticipated main usage. An example from the use cases in this study is
the sorting of the data points by either timesteps or particle types in storage, when the main
application is evaluating trajectories of particles. A trajectory of a single atom or electron can be
plotted much faster, when the time ordered coordinates of this particle are stored consecutively
rather than distributed over lists of tens to hundred thousands (as in MD) or billions (in PP) of
particles lumped together by timestep.

3.1.2 Redundancy/Speed vs. Compactness

Naively-conceptualised data representations used by typical simulation codes often contain
redundant information, which can actually accelerate data processing, depending on the
circumstances. However, when such information is dumped to disc in the simulation output, it
unnecessarily uses storage space and certain analytics on the output data might become more
difficult: the volume of the entire dataset may be too large to fit reasonable portions into RAM,
and convolved data structures can slow down data analytics. Well-understood data organisation
is thus a prerequisite for efficient re-usage of scientific outputs in the longer term.

3.1.3 Performance of DBMS vs. File Storage

In HPC, input and output data are traditionally stored in files, with an increasing use of
container file formats (e.g. HDF5 [16]) for which parallelized read/write access has been

Figure 4: Rough sketch of evaluation steps for MD output.
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implemented in special libraries. The EXA4MIND project aims to evaluate in which cases the
use of DBMS instead of files, or mixed with files (e.g. for the largest portions of input/output
data) is beneficial to overall performance. The general idea to be confirmed by tests is, that DBMS
have their strengths when the data retrieval is preceded by a complex query, which is the correct
data portion to be loaded. A higher performance can then be achieved when the data is in a format
for which the respective database software and access pattern is optimised.

However, in any case, when intending to use DBMS for high-performance data analytics one
has to consider that the DBMS is an additional layer between the file system and the data analytics
or simulation software, coming with overhead. Thus, DBMS can generally only accelerate data-
driven workflows when these overheads are minimised.

Considering this, and the fact that the data organisation has to be intuitively understandable
and accessible for the domain researcher, a typical use case requires design decisions following
tests and benchmarks. These design choices include the structure of the tables in the DBMS. In
addition, it must be understood whether it is beneficial to store large datasets (e.g. complete
simulation data) in the database or whether it is preferable to restrict the database to metadata and
simulation parameters, while keeping most of the raw data in files (which can be referenced in
the database).

When choosing either DB tables or files, the hierarchy and arrangement of data can make
several orders of magnitude difference to query performance. Also, parallel performance depends
strongly on the data management backend and its parallel-access capabilities, where HPC centres
have built most of their experience with direct file access and not with DBMS.

3.2 Data Retrieval Evaluation on Row vs. Column DBMS

The layout of the data in storage can have a big influence on data retrieval time. If the queries
are suitable for array-like execution, cache misses can be significantly reduced. For a simulation
dataset of 2 GB, for example, we identified a significant improvement of runtime with MariaDB
Columnstore as compared to the regular row based storage engine of MariaDB (see Table 1).

Two benchmark queries were executed in this example: one obtaining a simple value typical
for first time evaluation of plasma physics runs - the total energy of the particles, and another
calculating average distances of particles from the origin. These aggregations were calculated
within the database, fetching all values from a large single table for one simulation (second and
third column of Table 1, for regular/row and Columnstore storage). For a HDF5/NumPy7-based
reference calculation (first column), the same data was stored in a hierarchical HDF5 file using
groups for different chunks of timesteps and datasets for particle types. Comparing the runtimes
shows that the assumption that DBMS overhead will in all cases mean a slower execution time
than classical file access is not necessarily true. In the case here, datasets from the HDF5 files had
to be re-aggregated in memory by the script, making it slower for the distance queries than the
direct calculation in the database.

https://numpy.org/
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The picture changes,
however, for a different data
layout (compare Table 3 for MD
use c

ase), where entire atom
trajectories are stored in one
dataset of the HDF5 files.
Comparing the load times in this
scenario, we see a considerable
overhead compared to
HDF5/NumPy (at least for small
datasets of 300MB) for fetching
data from the database by
queries on large tables
containing join statements. It is
then not relevant, whether the
calculation is executed inside
the database with a SQL query or using NumPy. The processing in NumPy is very fast if the
necessary coordinates can be retrieved in full directly from a few datasets within the HDF5, but
less so, if many chunks have to be looped over to be opened and the contained data reassembled
in an NumPy array in memory.

3.3 Impact of General Dataset Structure and Parallelization Approaches

To evaluate the impact of general data structure on query speeds in an example, we compare
the performance of two data structures for storing MD data in a PostgreSQL database (Table 2):
All trajectory points for all atoms in one table vs. separate tables for each atom. For atom-distance
calculations from MD examples, we find that the lookup-time for the coordinates of an atom from
a PostgreSQL database, using the Python API, is reduced by a factor of 10-50 when separate
tables are used for each atom instead of one table for the complete simulation (second vs. third
data column of Table 2). With respect to a query evaluating the distance for all atoms in the dataset

(the example dataset used for
this test contained 149
atoms) which are in the
combined table (Table 2,
first column), pre-filtering
for a single atom with a
“where” clause and doing
the calculation only for this
atom is faster (column 2),
which is not a surprise.
However, we observed that
for an atom-to-fixed-point
distance evaluation, there is
only a factor ~2 difference
between calculating that
distance for all atoms vs. one
atom (first vs. second column
of first/second row of Table
2). This suggests that, in case
of a combined table, lots of
time is actually spent in

Table 2: Runtime of query (with data evaluation) showing the difference
in look-up time of MD data for either 2008 timesteps (short), or 1000000
timesteps (long) caculating the distance between either an atom and a
fixed point (1 atom) or two (2) atoms in these scenarios (columns): 1)
c all atoms in the simulation in one table, 2) as 1, retrieving an atom
with a “where” clause, 3) with retrieving atoms from separate tables
for each atom type.

Table 1 HDF5 re-assembly vs. RDBMS vs. CDBMS; numbers in
brackets are the execution time when the data is already in cache, after

prior work on the same data chunk.
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loading the table (and rather little time in the actual computation), were the DBMS apparently
succeeds in avoiding a re-load when evaluating 149 distances instead of one. The “caching
benefit” however vanishes (third/fourth row of Table 2 and also Table 3) when access patterns
are too complicated (dihedral comptutation requiring several fields from 4 atoms) or datasets do
not fit completely into memory.

The measurements we show in Table 3 again touch upon the question whether it is faster to
evaluate file-based or database data. Calculating a single dihedral angle for four atoms takes
about the same time in the both HDF5/NumPy set-up and accessing PostgreSQL via the python
API (see Table 3, second row). Also a mixed approach, where the data is fetched via a query and
the calculation is done with NumPy yields approximately the same execution time. While the
distance calculation for two atoms is faster in PostgreSQL for a single query (Table 3, first row),
repeated serial accesses to the database lead to long runtimes (Table 3, last two rows). In contrast,
accessing the HDF5 many times, when it is already loaded to memory remains fast. Testing a
typical MD script to evaluate a molecule, requiring 40 distance calculations among critically

positioned atoms, we
measure 11 seconds for the
40 consecutive HDF5
accesses compared to vs
3.7 seconds for the
calculation of a single pair,
and 62 seconds vs 1.6
seconds for 40 consecutive
DB queries. This shows
that multiple repeated
accesses to the database
have probably not been
accelerated by any caching
in our set-up. This points to
a likely efficiency issue
when using DBs for large

datasets and should be addressed when planning such a set-up. Retrieval of small data portions
however can be very performant in this setting.

Typical memory and cache sizes must be considered in optimal data division, because, as seen
in the above tests, re-loads significantly decrease performance. A single table or file object (e.g.
HDF5 dataset) should not be larger than the typically available memory divided by the number
of concurrent processes times the number of datasets concurrently in use by the calculation. For
example in a distance calculation in MD, these are the 3 space coordinates for 2 atoms. If several
distances are calculated from the same atom, it is beneficial to order the execution to keep the one
atom in memory for all calculations. Here, shared memory parallelization (such as OpenMP or
python multiprocessing) can be helpful, to avoid loading a dataset several times by separate
processes.

In the plasma physics use case, in contrast, most steps of the workflow can be performed
concurrently in an embarassingly parallel fashion. Evaluation scripts or plotting functions are
typically performed separately for each timestep. If a comparison of values over several timesteps,
e.g maximum energy, is required, it is beneficial to store it in a metafile after the first processing
run (see table scheme in Figure 3). Parallelisation can be approached in scripts by classical
parallelisation via python modules like mpi4py, subprocess or dask, where each process loads
data from one timestep.

4. FAIR Research Data Management Aspects, Treatment of Metadata

As stated above, our work – in addition to the focus on performance – has the ambition of
implementing FAIR [6] RDM in the data lifecycle to an adequate degree. Core requirements in

Table 3: MD evaluation example runtime comparision - details in text
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FAIR RDM center on the assignment of persistent identifiers and appropriate metadata to datasets.
Our final data products of general interest shall be published with Digital Object Identifiers
(DOIs, [17]). However, already at the data-production and data-management stages, the scene
has to be set for making our outputs intrinsically FAIR and reproducible. Our approach to this
foresees the assignment of persistent identifiers (PIDs, e.g. B2HANDLE handles [18]) to
intermediate results, and – most importantly – the annotation of intermediate and final results
with technical, structural and descriptive metadata. Examples on this, in the context of the use
cases presented above, are given below.

4.1 Structural and Technical Metadata

The use of DBMS implies the creation of a proper database schema, and also when using file
based storage, we devise an adequate structure in our use cases. We document the relation of the
storied entities; a glimpse on this has been given in Figure 1. In addition to this structural
information, technical metadata facilitate a proper understanding of the data held.

In the plasma physics use cases, technical parameters that need to be part of the annotation
include (i) atom- or particle types contained in the target, (ii) the initial temperature and density
distribution, including target shape and size, (iii) pulse parameters like focal size, pulse shape and
length, field-strength, polarisation (linear or circular) and wavelength, and (iv) spatio-temporal
domain and resolution parameters, such as the size of the simulation domain, the grid resolution,
the number of simulation timesteps and output frames, grid coordinates, and the particle
resolution.

4.2 Descriptive Metadata

FAIR research data management relies to a large part on descriptive metadata, including
standard elements such as the dataset creators with their affiliations, the dataset title and a high-
level description of the dataset as well as the usage license or conditions. The assignment of
certain flavours of PIDs, in particular of DOIs via registration agencies such as DataCite8, already
requires the submission of descriptive metadata to a central registry.

4.3 Implementation: Storing Metadata

A standard method to store the metadata elements outlined above is adding them to a data
catalogue for one or more research projects. However, when having a DBMS at hand to store
actual scientific data in a database, adding metadata into a separate table in the database has
clearly an appeal, in particular when using relational databases. Detailed metadata, e.g. describing
only parts of the dataset or even single data points, can then be collected and technically related
to these data points with standard relational-database methods.

5. Conclusion and Outlook

During the ongoing EXA4MIND project we aim to show that modern data storage concepts
involving DBMS can be employed to improve performance, long term data use and enable data
sharing and systematic metadata management for data on the 1-100 TB scale generated by HPC
simulations in (bio-)physics. We aim at facilitating a research data management scheme that helps
scientists leverage the full potential of their simulation results over time frames, and envision
incorporating the FAIR principles from the start to sharpen the researchers awareness of their
benefits and foster in-built sustainability in data evaluation processes.

To this end, our work will continue with extensive benchmarks pertaining to data querying
and retrieval on HPC systems, considering file- and DBMS-based back-ends for data
management.

https://datacite.org/
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