PROCEEDINGS

OF SCIENCE

INDIGO IAM migration to Spring Authorization Server
framework with a new customizable React user
dashboard

Federica Agostini,* Alessandra Casale,” Jacopo Gasparetto,”* Francesco

Giacomini,” Davide Marcato,“ Roberta Miccoli, Enrico Vianello“ and Stefano

Zotti“

¢INFN-CNAF, Viale Berti Pichat 6/2, Bologna, Italy

bINFN-LNGS, Via Giovanni Acitelli 22, L’Aquila, Italy

¢INFN-LNL, Viale dell’ Universita 2, Legnaro, Italy
E-mail: federica.agostini@cnaf.infn.it, alessandra.casale@lngs.infn.it,
jacopo.gasparetto@cnaf.infn.it, francesco.giacomini@cnaf.infn.it,
davide.marcato@lnl.infn.it, roberta.miccoli@cnaf.infn.it,

enrico.vianello@cnaf.infn.it, stefano.zotti@cnaf.infn.it

INDIGO Identity and Access Management (IAM) is a comprehensive service that enables orga-
nizations to manage and control access to their resources and systems effectively. It has been
chosen as the AAI solution by the WLCG community and has been used since years by the INFN
DataCloud, as well as by several other projects and experiments. INDIGO IAM is a Spring Boot
application, based on OAuth/OpenID Connect technologies provided by the MITREid Connect
library. A web interface based on the AngularJS framework is available to users and embedded
into the INDIGO IAM service. The constant evolution of identity and access management systems
like INDIGO IAM is imperative in the rapidly advancing landscape of cybersecurity and software
development.

This contribution encapsulates the transformative journey of the INDIGO IAM software, transi-
tioning from its existing above mentioned frameworks, to the more robust, secure, scalable and

contemporary Spring Authorization Server with a React-based new dashboard.

International Symposium on Grids and Clouds (ISGC2024)
24 -29 March, 2024
Academia Sinica Computing Centre (ASGC), Institute of Physics, Academia Sinica Taipei, Taiwan

*Speaker

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:federica.agostini@cnaf.infn.it
mailto:alessandra.casale@lngs.infn.it
mailto:jacopo.gasparetto@cnaf.infn.it
mailto:francesco.giacomini@cnaf.infn.it
mailto:davide.marcato@lnl.infn.it
mailto:roberta.miccoli@cnaf.infn.it
mailto:enrico.vianello@cnaf.infn.it
mailto:stefano.zotti@cnaf.infn.it
https://pos.sissa.it/

INDIGO IAM migration to Spring Authorization Server with a new dashboard J. Gasparetto

1. Introduction

Identity and Access Management (IAM) is a crucial component of modern IT infrastructures,
enabling organizations to securely manage and control access to their systems and data. INDIGO
IAM [1] is a powerful IAM service designed to meet the complex and evolving needs of research
and academic institutions served by INFN and by other computing centers distributed in Europe.
Developed as a part of the European Commission-funded INDIGO DataCloud project [2], INDIGO
IAM provides a comprehensive solution for managing identities, roles, and access policies within
a distributed and heterogeneous environment. The IAM service has been selected by the WLCG
management board to be the core of the future, token-based WLCG AAI and exemplifies INFN
commitment for the foreseeable future, with the current support of several Italian and European
projects ([3], [4], [5], [6]).

The ongoing development of identity and access management systems, such as INDIGO IAM,
is crucial in the ever-changing field of cybersecurity and software development. This article outlines
the evolution of the INDIGO IAM software, moving away from its previous frameworks, MITREid
Connect [8] and Angular]S [9] web interface, to the modern Spring Authorization Server [10] with
a new dashboard based on React [11].

2. INDIGO IAM

INDIGO IAM is a Spring Boot application, based on OAuth/OpenlID Connect technologies
([12], [13]) and the MITREid Connect library. It offers support for multiple authentication mech-
anisms, such as local authentication, SAML identities and federations like EQuGAIN [14], social
identity providers such as Google [15] or GitHub [16], etc. INDIGO IAM allows a user to link
several authentication credentials (OpenID Connect and SAML accounts, but also X.509 certificates
and SSH keys) to a single account. The platform provides a registration service for both moderated
and automatic user enrollment, with the option to disable it as needed, and supports the enforce-
ment of Acceptable Use Policies (AUP). INDIGO IAM exposes identity information, attributes
and capabilities to services through JWT tokens [17], including the capability of delegation and
token renewal. Thanks to its integration with OpenlD Connect and OAuth, the system seamlessly
integrates with ready-to-use components. A Virtual Organization Membership Service Attribute
Authority (VOMS AA) microservice replaces the legacy VOMS [18] functionalities. In particular,
it allows for Virtual Organization access control in distributed services and can easily integrate
with existing VOMS-aware services. Figure 1 shows an high level overview of the INDIGO IAM
architecture.

An interactive web interface, utilizing the AngularJS framework, is embedded into the INDIGO
IAM service, providing users with easy accessibility. Within this interface, users can navigate var-
ious features and functionalities. Figure 2 illustrates a snapshot of the IAM dashboard, showcasing
different aspects. On the right side, the homepage is displayed, tailored for administrator users,
offering a comprehensive overview. Meanwhile, on the left side, views of other pages (i.e. the
list of OAuth Client registered in INDIGO IAM and the available System Scopes) are presented,
accessible by clicking on their respective tabs.

INDIGO IAM migration to Spring Authorization Server with a new dashboard J. Gasparetto

. edu 3 O

Brokered
AuthN
AuthN & Certificate
Consent generation
Online
<> R
IAM VOMS CA
AA ==
=Q

OAuth/OIDC X.509/VOMS
aware service aware service

Figure 1: The INDIGO IAM overview, including the VOMS AA microservice. IAM is responsible for user
and agent authentication, supporting several authentication mechanisms and exposing identity information
through standard OpenID Connect interfaces. This approach simplifies the integration in relying services.

2.1 INDIGO IAM deployment

The INDIGO IAM service is structured to optimize performance and scalability. It usually
operates behind an NGINX reverse proxy, ensuring efficient handling of incoming requests. Data
management is facilitated by a MySQL database, providing a reliable storage solution. Horizontal
scalability is achieved through the utilization of Redis, which efficiently manages sessions and
external caching.

Deployed as a containerized service on Kubernetes, INDIGO 1AM benefits from advanced
orchestration capabilities. Autoscaling ensures that resources are dynamically allocated based
on demand, allowing for seamless handling of fluctuating workloads. Moreover, zero downtime
rolling updates guarantee continuous availability and uninterrupted service delivery, enhancing
overall reliability and user experience. To date, around 30 instance of INDIGO IAM are deployed
at the INFN-CNAF for experiments and project of different purposes, while about 10 IAM services
are deployed outside CNAF with custom configuration.

2.2 Current development

The current development roadmap of INDIGO IAM is centered in elevating the functionality,
efficiency, and security of the platform. At the forefront of these endeavors is a comprehensive

INDIGO IAM migration to Spring Authorization Server with a new dashboard J. Gasparetto

o Clients

0 Limitsesch to dymamicalyregisterd cients

.................

Federica Agostini

& Scopes

sssss

Qe

T YO oY A
a

o o 0o 0 o ¥ T

Figure 2: Screenshots of the current INDIGO IAM dashboard based on AngularJS. Right side: homepage
displayed to an administrator user. Left side: views of other pages (list of OAuth Clients and System Scopes)
as example, accessible by clicking on their respective tabs.

overhaul of our auditing capabilities, with a focus on enhancing tracking, analysis, and reporting
functionalities. This initiative will empower users and administrators alike with deeper insights
into system activities and interactions. Another key area of the roadmap, main topic of this article,
is addressing obsolete dependencies to ensure the longevity and relevance of our technology stack.
This involves transitioning from legacy frameworks such as MITREid to more modern and robust
solutions like Spring Authorization Server, as well as migrating from AngularJS to the increasingly
popular and versatile React JS framework. Among others, an advantage of this transitioning is to
streamline development processes, future-proof the service against evolving industry standards, etc.

Moreover, the efforts are directed towards improving usability for both users and administrators,
enhancing scalability, and boosting performance. Specifically, the measures implemented to reach
the goal include not storing access tokens in the database, introducing a dedicated garbage collector
service to remove unused data, implementing fine-grained authorization with an external, more
reliable service such as Open Policy Agent [19], etc. In addition, interoperability is a central
objective, with initiatives to support OIDC Federations [20] and improve conformance with AARC
Blueprint Architecture [21] and its associated guidelines.

Finally, security remains the central point of the service, and the focus is for continuously
enhancing the defenses to safeguard against evolving threats and vulnerabilities. One notable
initiative in this domain is the integration of Multi-Factor Authentication, which adds an additional
layer of protection to user accounts and sensitive data.

INDIGO IAM migration to Spring Authorization Server with a new dashboard J. Gasparetto

3. Migration to Spring Authorization Server

The MITREid framework has served as a reliable foundation for INDIGO IAM, providing
essential identity management capabilities. However, in order to address the requirements for
improved security, scalability and modern features, the decision was made to transition to Spring
Authorization Server. This framework, built on top of Spring Security, provides a secure, lightweight
and customizable foundation for building an OAuth 2.1 and OpenID Connect 1.0 Authorization
Server implementation thus offering a more robust and flexible IAM solution. This migration
signals a strategic effort to bring INDIGO IAM up to date with the latest industry standards and
practices. Spring Authorization Server boasts a wide range of features, including support for OAuth
2.1 draft and OpenlID Connect, adaptive authentication, and a modular architecture that enables
seamless integration with other Spring ecosystem components.

The forked and self-maintained version of the MITREid Connect library that INDIGO IAM
currently relies on has not seen any significant support or evolution in years. Transitioning to Spring
Authorization Server allows for alignment with the natural evolution of the current Java/Spring-
based architecture. This change also ensures long-term support and easier maintainability, as well
as better compliance with OIDC/OAuth standards.

3.1 Proof of concept

In order to showcase the capabilities of the Spring Authorization Server, preliminary tests were
conducted using the OAuch [22] tool, a compliance testing framework for the OAuth 2.0 protocol.
OAuch thoroughly evaluates the adherence to standards and mitigation of known threats in the
implementation of an OAuth 2.0 Authorization Server. The tool generates a detailed report based
on the test analysis and identifies any potential vulnerabilities.

The comparison was made between a CNAF development instance of IAM based on the
MITREIid Connect library and the OAuth 2.0 standard, and a rough application as proof of concept
built on top of Spring Authorization Server. The results (Figure 3 and 4) confirmed what has been
said theoretically so far, namely that switching to Spring Authorization Server increases compliance
and support for OAuth/OpenID Connect standards. More specifically, it was verified that Spring
Authorization Server already supports many standard OAuth grant types (also known as flows)
and that many OIDC/OAuth endpoints are supported by default without requiring any additional
development. Tests on the entire set of functionalities currently supported by INDIGO IAM are
still in progress.

4. A React based new dashboard

Currently, INDIGO IAM provides the OIDC/OAuth functionalities, the REST API endpoints
and a custom web dashboard based on the MITREid library, extended with custom AngularJS
components, as one single service. Since both MITREid and AngularJS are now discontinued, the
need for a new modern dashboard naturally arises. On the other hand, given this necessity, to improve
the current user interface and user experience embracing modern web design techniques becomes
an opportunity, as well as making the development and maintenance processes more sustainable
using tools and frameworks extensively adopted by the web development community. Another key

INDIGO IAM migration to Spring Authorization Server with a new dashboard J. Gasparetto

IAM dev

Latest test: 19 maart 2024

Unmitigated threats a
Deprecated features 5
Missing countermeasures [25%]

Figure 3: Result of OAuch test against the current IAM instance based on MITREid Connect

Threats

* Mitigated threats: 22

* Partially mitigated threats: 5
¢ Unmitigated threats: 1

Deprecated features
* Deprecated features detected: 0

Countermeasures

¢ Mandatory test cases failed: 5 (10,2%)

* Recommended test cases failed: 4 (28,6%)
* Optional test cases failed: 4 (80,0%)
 Overall test cases failed: 13 (19,1%)

Figure 4: Result of OAuch test against the proof of concept based on Spring Authorization Server

aspect for the development of the new dashboard is the complete decoupling of its source code
from the INDIGO IAM code-base. In this new context, the INDIGO IAM core service, based on
Spring Authorization Server will be responsible, together with the above mentioned tasks, for the
authentication and authorization procedures as well as for serving the APIs, while the dashboard
will be a completely independent service. With this model, the core service can be deployed
headless without any dashboard if not required, therefore making the deployment more flexible.
Because of the MITREid dashboard requires a Jakarta Server Pages (JSP) session to interact with
the API endpoints, the INDIGO IAM APIs currently must support also this authentication method
other than OIDC/OAuth, increasing the complexity and reducing the maintainability.

INDIGO IAM migration to Spring Authorization Server with a new dashboard J. Gasparetto

’ INDIGO IAM ‘

’ Authorization Server ‘ ‘ Resource Server ‘

Dashboard ‘ ’ Authorize Endpoint ‘ ’ Token Endpoint ‘ ’ API ‘

T T T
! !

(1) GET Request for Auth Code

1
I
|
Auth Code }
I
|

(2) POST Request for Access Token

T
!
I
Access Token (and Refresh Token)
I
!

(3) HTTP Request for a Resource w/Access Token as authorization header

T
|
I
Resource Content (e.g., user’s profile)
T T
!
I
I
I
I
I

I
|
|
|
1
|
|
|
|
!
!
|
|
i
|
|
|
|
|
|
|
|
k
!
|
|
|
|
'

Figure 5: Authorization Code flow (PKCE not shown). 1. The user clicks on the login button and they are
redirected to the Authorize Endpoint. After a successful log in, they are redirected back to the dashboard
with the Authorization Code. 2. The dashboard makes a POST request to the Token Endpoint, providing the
previously received Authorization Code. If the user is authorized to receive the claims they asked for, they
receive an Access Token (and optionally a Refresh Token). 3. The dashboard can now query the INDIGO
IAM APIs with the received Access Token.

Using the OAuth terminology, the new IAM core service will play both the roles of the
Authorization Server for the OIDC/OAuth procedures, and the Resource Server for what concerns
the APIs, as shown in Figure 5. Since INDIGO IAM naturally supports OIDC/OAuth, its usage
for the dashboard login would be ideal, making the dashboard a full-fledged IAM Client which
processes protected resources (the IAM endpoints) on behalf of the user. As a consequence, the
JSP session to access the API is not required anymore and can be removed simplifying the code
and making it less prone to bugs and vulnerabilities.

The choice of the technological stack fell onto the popular HTML 5, JavaScript/TypeScript
and CSS web stack, that is the de facto state of the art of web development, making it the most
reasonable option. On the other hand, React has been chosen as rendering framework for its simple
declarative and component-based architecture, which offers a modern and efficient approach for
building interactive and responsive user interfaces and web applications. React is also widely used
by a huge number of major players and supported by a large community, an aspect that make the
development more sustainable facilitating the inclusion of new collaborators.

The adoption of React also yields the advantage of creating reusable components for subsequent
web applications developed by INFN. By leveraging the React component-based architecture,
developers can encapsulate specific functionalities into modular units that can be easily reused
across different projects. This not only streamlines the development process but also enhances

INDIGO IAM migration to Spring Authorization Server with a new dashboard J. Gasparetto

maintainability and scalability, as updates or modifications to these components can be propagated
seamlessly throughout the application ecosystem.

4.1 Proof of Concept

To assess the feasibility of the previously described requirements, a preliminary test dashboard
has been developed as a full browser-based Single Page Application (SPA) which runs exclusively
on the browser. The OIDC/OAuth responsibilities also run within the browser. In particular, the
Authorization Code grant [12] with the Proof for Key Code Exchange (PKCE) [23] OAuth extension
is used by the web application (the Client) to authenticate and authorize the user, receiving an Access
Token from the INDIGO IAM service (Authorization Server) that the dashboard will then use to
make HTTP requests to the INDIGO IAM protected API endpoints (Resource Server), as shown in
Figure 5.

An example of the new INDIGO IAM dashboard based on the React framework is shown in
Figure 6. Atthe time of writing, the implementation includes the homepage of an ITAM administrator
or normal user. Left tab should still incorporate the functionalities shown in the current dashboard
(Figure 2).

eoe a|v + v
it 143 9 @ H 0@ =
INDIGO IAM for
cnafsd
JACOPO GASPARETTO GROUPS
g Jacopo Gasparetto
Userld 5031 cab6-19e4-4cid-acfd-a60116679572 testvo [© occ]

Email Jacopo.gasparetto@enat infnit

ACCOUNT MANAGEMENT Status active

A Home Created Long time ago.

ORGANIZATION MANAGEMENT Last Modified Long time ago
GROUP REQUESTS

& Users

% Groups /’ Edit Details A Change Password

o Clients

& Tokens

LINKED ACCOUNTS
CERTIFICATES

OpeniD Connect

SamL SubjectcN=Jacopo io=Istituto
Nucleare,C=IT0C=tcs DC=terenaDC=o0rg
nttps:/idp infn t/sami2/idp/metadata php Issuer CN=GEANT TCS Authentication RSA CA 4B,0=GEANT Vereniging C=NL

unoid136141592311.1.13 D Last Modified 2024-03-29T16:4258.000+01:00
690 i

@ Privacy Policy

@ 1AM Documentation

Vo

Figure 6: Example of the new React-based INDIGO IAM homepage as Single Page Application.

4.2 Security Concerns

Given the sensitive nature of INDIGO IAM, prioritizing security is imperative and every
security flow must be considered. On one hand, the SPA model, which is completely browser-
based, makes development simple and direct, allowing for a quick and efficient implementation of a

INDIGO IAM migration to Spring Authorization Server with a new dashboard J. Gasparetto

lightweight and high-performance application. On the other hand, it presents security issues. Due to
its nature, the static website cannot be protected by confidential secrets and must therefore be a public
IAM Client. As a result, it becomes challenging to prevent an unauthorized user from requesting
more privileges than they are allowed to get, since the same OAuth Client constantly shares the same
scopes and claims for all users. To overcome this limitation, a custom implementation of INDIGO
IAM APIs would be required to perform the endpoint authorization on the basis of user identity.
Additionally, a more significant issue is due to the exposure of the Access Token and Refresh Token
to the JavaScript code. If not properly mitigated with PKCE extension, which is mandatory for a full
browser-based app, and Cross Site Request Forgery countermeasures to contrast phishing, a user
can be induced to land on a maliciously crafted website that, after a legitimate Authorization Code
flow, can steal the Access Token. When the access token is in the hands of the attacker, they can
make legitimate requests to the Resource Server on behalf of the user. Even worse, if the attacker
is able to collect the Refresh Token, once the Access Token expires they can ask for a new set of
credentials without the user intervention.

4.3 Exploring a backend mediated dashboard implementation

In order to overcome these issues, a backend can be inserted between the dashboard and the
INDIGO IAM core service as security layer to offload the OAuth responsibilities from the browser to
the server. It is possible to identify two main backend designs: a Mediating-Token Backend (MTB)
and a full Backend For Frontend (BFF). The MTB is essentially a small service that processes
the Authorization Code flow server side on behalf of the user and returns the Access Token to the
dashboard, establishing with it a cookie-based session to identify the user. The dashboard can thus
directly perform requests to the Resource Server with the Access Token until it expires. Once the
Access Token is expired, the dashboard can resume the cookie-based session and asks the backend
to perform a Refresh Flow and obtain a new Access Token. This architecture mitigates the risk of
Refresh Token exploitation, since no Refresh Token is exposed to the JavaScript code. Moreover,
it permits to secure the OAuth Client with a confidential secret and allows for custom fine-grained
authorization mechanism. Nevertheless, this is considered only a partial solution. This architecture
is slightly more secure than a full browser-based web application, but since the JavaScript code still
possesses the Access Token and makes requests to the Resource Server with it, it shares some of
the same attack surface.

The BFF architecture is an extension of the MTB that, beyond the OAuth responsibilities,
proxies every request from the dashboard to the Resource Server. In this framework, the web Client
receives no tokens at all and thus there are no risks of token exploitation. Once the Authorization
Code flow is completed server side, a cookie-based session between the web application and the
BFF is established, and every request made by the frontend is proxied by the backend, which
augments them with the Access Token associated to the user session. Of course, this complexity
increases implementation challenges but provides enhanced security by avoiding exposure of any
confidential information to the public JavaScript code.

4.3.1 Next.js

To develop a backend component as described above, the Next.js [24] framework is currently
under exploration. In addition to being the officially recommended framework by React devel-

INDIGO IAM migration to Spring Authorization Server with a new dashboard J. Gasparetto

opers, it offers many solutions to build server-side rending web applications, exploiting the same
programming paradigms used to build a simple static SPA based on React, making relatively easy
the porting from a client-side rendering website to server-side rendering based application. A
preliminary experiment of OIDC/OAuth server-side authentication and authorization, using the
NextAuth.js [25] library for Next.js, was successful, demonstrating the feasibility of this approach.
Next.js also offers out of the box tools to implement cookie-based sessions, which, in combination
with the server-side authentication and authorization mechanisms, makes it an ideal candidate to
build a full BFF to increase the overall security of the INDIGO IAM dashboard.

5. Future looks and conclusions

In conclusion, the future of INDIGO IAM looks promising with the migration to Spring
Authorization Server and the development of a new dashboard. These steps will not only improve
compliance with standards but also ensure a more supported and modern framework. The transition
to a Single-Page App built in React has shown great potential for enhancing user interface and
security. Overall, these developments will further solidify INDIGO IAM as a critical service for
scientific communities.

Acknowledgements

The work presented in this paper has been supported by the NextGenerationEU European
initiative through the Italian Ministry of University and Research, PNRR Mission 4, Component
2 - ICSC [5]: Investment 1.4, Project code CN0O0000013 - CUP I53C21000340006; TeRABIT
[6]: Investment 3.1, Project code IRO000022 - CUP I53C21000370006. This research was also
co-funded by the Italian Complementary National Plan PNC-I.1 "Research initiatives for innovative
technologies and pathways in the health and welfare sector” D.D. 931 of 06/06/2022, "DARE [7] -
DigitAl lifelong pRevEntion" initiative, code PNC0000002.

References

[11 INDIGO IAM, URL https://indigo-iam.github.io/v/current/

[2] INDIGO DataCloud, URL https://www.indigo-datacloud.eu/, last seen April 2024
[3] EOSC beyond, URL https://eosc.eu/eu-project/eosc-beyond/, last seen April 2024
[4] AARC, URL https://aarc-project.eu/, last seen April 2024

[5] ICSC, URL https://www.supercomputing-icsc.it/en/icsc-home/, last seen April
2024

[6] TeRABIT, URL https://www.terabit-project.it/it/, last seen April 2024
[7] DARE, URL https://www.fondazionedare.it/en/, last seen April 2024

[8] MITREid Connect, URL https://github.com/mitreid-connect/

10

https://indigo-iam.github.io/v/current/
https://www.indigo-datacloud.eu/
https://eosc.eu/eu-project/eosc-beyond/
https://aarc-project.eu/
https://www.supercomputing-icsc.it/en/icsc-home/
https://www.terabit-project.it/it/
https://www.fondazionedare.it/en/
https://github.com/mitreid-connect/

INDIGO IAM migration to Spring Authorization Server with a new dashboard J. Gasparetto

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

(20]

[21]

[22]

[23]

[24]

[25]

AngularJS — Superheroic JavaScript MVW Framework, URL https://angularjs.org/,
last seen April 2024

Spring Authorization Server, URL
https://spring.io/projects/spring-authorization-server

React, URL https://react.dev/, last seen April 2024

The OAuth 2.0 Authorization Framework , DOI 10.17487/RFC6749, URL https://wuw.
rfc-editor.org/rfc/rfc6749

OpenlD Connect Core 1.0,
URL https://openid.net/specs/openid-connect-core-1_0.html

EduGAIN interfederation, URL http://www.geant.org/Services/Trust_identity_
and_security/eduGAIN, last seen April 2024

The Google Identity Platform, URL https://developers.google.com/identity, last
seen April 2024

The Github OAuth API reference, URL https://docs.github.com/en/apps/
oauth-apps/building-oauth-apps/authorizing-oauth-apps, last seen April 2024

JSON Web Tokens, DOI 10.17487/RFC7519, URL https://datatracker.ietf.org/
doc/html /rfc7519

Virtual Organisation Membership Service (VOMS), DOI 10.5281/zenodo.12634651, URL
https://italiangrid.github.io/voms

Open Policy Agent, URL https://www.openpolicyagent.org/, last seen April 2024

OpenlID Federation 1.0, URL https://openid.net/specs/openid-federation-1_0.
html, last seen April 2024

AARC Blueprint Architecture, URL https://aarc-community.org/architecture/, last
seen April 2024

OAuch, URL https://oauch.io/, last seen April 2024

Proof for Key Code Exchange, DOI 10.17487/RFC7636, URL https://www.rfc-editor.
org/rfc/rfc7636

Next.js, https://nextjs.org, last seen April 2024

NextAuth, https://next-auth. js.org, last seen April 2024

11

https://angularjs.org/
https://spring.io/projects/spring-authorization-server
https://react.dev/
https://www.rfc-editor.org/rfc/rfc6749
https://www.rfc-editor.org/rfc/rfc6749
https://openid.net/specs/openid-connect-core-1_0.html
http://www.geant.org/Services/Trust_identity_and_security/eduGAIN
http://www.geant.org/Services/Trust_identity_and_security/eduGAIN
https://developers.google.com/identity
https://docs.github.com/en/apps/oauth-apps/building-oauth-apps/authorizing-oauth-apps
https://docs.github.com/en/apps/oauth-apps/building-oauth-apps/authorizing-oauth-apps
https://datatracker.ietf.org/doc/html/rfc7519
https://datatracker.ietf.org/doc/html/rfc7519
https://italiangrid.github.io/voms
https://www.openpolicyagent.org/
https://openid.net/specs/openid-federation-1_0.html
https://openid.net/specs/openid-federation-1_0.html
https://aarc-community.org/architecture/
https://oauch.io/
https://www.rfc-editor.org/rfc/rfc7636
https://www.rfc-editor.org/rfc/rfc7636
https://nextjs.org
https://next-auth.js.org

	Introduction
	INDIGO IAM
	INDIGO IAM deployment
	Current development

	Migration to Spring Authorization Server
	Proof of concept

	A React based new dashboard
	Proof of Concept
	Security Concerns
	Exploring a backend mediated dashboard implementation
	Next.js

	Future looks and conclusions

