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Signal model parameter scan using Normalizing Flow Masahiko Saito

The discovery of Beyond the Standard Model (BSM) is a major subject of many experiments,
such as the ATLAS and CMS experiments with the Large Hadron Collider, which has the world’s
highest centre-of-mass energy. Many types of BSM models have been proposed to solve the issues
of the Standard Model. Many of them have some or many model parameters, e.g. the Minimal
Supersymmetric Standard Model, which is one of the most famous BSM models, has more than
100 model parameters. These model parameters are free parameters; they cannot be predicted
from theories and need to be determined experimentally.
Data analysis of BSM model searches involves comparing observed experimental data with a
particular BSM model. If the BSM model parameters are multidimensional, it is difficult to
perform an analysis covering the whole phase space. Instead, it is often performed by fixing all the
model parameters except for one or two interesting parameters to focus on, or by using community
defined benchmark points, resulting in phase space holes that are not covered by the search.
This talk presents a parameter scan technique for BSM signal models based on normalizing
flow. Normalizing flow is a type of deep learning model that transforms a simple probability
distribution into a complex probability distribution as an invertible function. By learning an
invertible transformation between a complex multidimensional distribution, such as experimental
data observed in collider experiments, and a multidimensional normal distribution, the normalizing
flow model gains the ability to sample (or generate) pseudo experimental data from random
numbers and to evaluate a log-likelihood value from multidimensional observed events. The
normalizing flow model can also be extended to take multidimensional conditional variables as
arguments. Thus, the normalizing flow model can be used as a generator and evaluator of pseudo
experimental data conditioned by the BSM model parameters. The log-likelihood value, the
output of the normalizing flow model, is a function of the conditional variables. Therefore, the
model can quickly calculate gradients of the log-likelihood to the conditional variables. Following
this property, it is expected that the most likely set of conditional variables that reproduce the
experimental data, i.e. the optimal set of parameters for the BSM model, can be efficiently
searched. This paper demonstrates this on a simple dataset and discusses its limitations and future
extensions.
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1. Introduction

The discovery of beyond the Standard Model (BSM) is one of the most important targets for
high energy physics. The LHC, as the highest energy collider, has been expected to discover BSM
phenomena, but no evidence of BSM has been obtained so far, even after 15 years of operation.
Although many physics analyses have been performed [1–4], not all possible BSM models and their
phase space are covered. To fully exploit the potential of the collected data, a more comprehensive
physics analysis should be performed, not only focusing on a limited BSM phase space, such as
benchmark points or simplified models.

One of the comprehensive physics analysis methods is one that uses anomaly detection. In
recent years, many methods have been proposed that use anomaly detection based on machine
learning techniques [5, 6]. Some of them search for anomalies using only observed data, i.e.
unsupervised data, without assuming any signal model, or with assuming only a specific signal
topology. Such methods lead to improve the discovery sensitivity for BSM models that physicists
did not anticipate, but worsen it for the known BSM models due to the lack of the assumptions on
the models.

This study focuses on an analysis that assumes a specific signal model and explores the entire
phase space of BSM model parameters, i.e., it is a signal model parameter scan. The assumption
of a specific BSM model results in a loss of sensitivity to other BSM models, but it is possible to
explore an entire phase space that cannot be accessed by normal searches such as simplified models,
and to search for the target BSM signals with more sensitivity than anomaly detection.

Some BSM models have a very large number of model parameters. For example, the Minimal
Supersymmetric Standard Model (MSSM) has more than 100 parameters [7], and even its reduced
model, the phenomenological MSSM, has 19 parameters [8]. Exploring such a high-dimensional
model parameter space with conventional methods is a difficult task. The first reason is that as
the dimension of the parameter space increases, the number of possible combinations increases
exponentially. For example, grid search1 cannot be used when the dimension is larger than ∼3
because of the large number of combinations to be processed. The curse of dimensionality can be
avoided by using random search or Bayesian optimization. However, since random search randomly
samples points in phase space, it is difficult to estimate the best point unless the point close to the
optimal point is accidentally sampled. Bayesian optimization is able to efficiently sample points in
phase space, but long waiting times occur for the signal parameter scan. This is because the signal
parameter scan requires a lot of computational resources and time for evaluation at each point in
space; for the physics analysis case, it is necessary to generate Monte Carlo (MC) samples with
specific model parameters and compare them with experimental data using appropriate evaluation
metrics. In particular, MC sample generation takes several days, and tuning the evaluation strategy
to maximize sensitivity requires time and effort. Bayesian optimization is a sequential algorithm,
so parallel evaluation is not possible, even though the total number of trials is small. Therefore, a
desired algorithm for such a parameter scan should be fast, handle high dimensions, and evaluate
optimal values continuously.

We propose a method of signal parameter scan using Normalizing Flow (NF). NF is a generative
model and models a probability density function (pdf) from the unsupervised data. In the parameter

1The phase space is sliced on a grid and the values for each point on the grid are evaluated.
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scan, the NF model is used as a generator of the BSM model by learning a distribution from the
BSM model ({𝑥obs}) with the BSM model parameters (𝜃BSM) as conditional parameters, 𝑥obs′ =
𝑓 −1
NF (𝑧 |𝜃BSM) where 𝑧 is random variables, and is also used as an evaluator of the likelihood value

based on the pdf of the observed data (pdf ∝ exp(−𝑧2/2), where 𝑧 = 𝑓NF(𝑥obs |𝜃BSM)). Since NF is
a neural network, the gradient of the likelihood value with respect to the BSM model parameters
can be computed quickly by backpropagation. By using the gradient values, the model parameter
scan can be performed quickly even in high-dimensional spaces. A similar idea has been proposed
as simulation-based inference [9]. The novelty of the proposed method is to use gradients for fast
parameter search in high-dimensional phase space.

An overview of the methodology is presented in Section 2, followed by application results
based on toy data and LHC Olympic 2020 benchmark data in Section 3.

2. Workflow

The proposed method is performed in the following steps.

Step 1: Generates training samples (Figure 1(a)) First, the BSM model parameters (𝜃BSM) are
randomly sampled from the entire phase space, like a random search. The sampling algo-
rithm is arbitrary, but in this study the parameters for the training samples were sampled
from a uniform distribution. Next, MC samples are generated using the sampled BSM model
parameters (𝜃BSM). The sample generation steps depend on the task, but typically include
hadronization in Pythia8, detector simulation in Geant4, physics object reconstruction using
the experiment’s software, and computation of high-level features needed for the physics
analysis. This process can be performed independently for each sampled BSM model pa-
rameter, allowing samples to be generated in parallel using distributed computing or other
similar resources.

Step 2: Training of normalizing flow models (Figure 1(b)) Train an NF model ( 𝑓NF(·|𝜃BSM))
using the MC samples generated in Step 1. Here, a single NF model is trained using all
generated samples including the entire phase space, with conditioned BSM signal model
parameters (𝜃BSM). After training, the NF model can generate the BSM model distributions
with unseen model parameters not used in the training step, i.e., the NF model is able to
interpolate in multidimensional space for sample generation. Since the interpolation perfor-
mance depends on the complexity of the BSM model distribution and the capability of the
NF model, the interpolation capability should be checked after training.

Step 3: Estimate optimal BSM parameter points (Figure 1(c)) In the physics analysis step, the
statistical significance for the existence of the BSM phenomena is evaluated by comparing
the experimental data with MC samples, e.g., by performing cut-and-count or fitting the
distribution after applying a reasonable selection that rejects the background events while
allowing the signal events to pass. The proposed method can use a metric based on the output
of the NF model for the parameter scan other than tuning the selection. That is, the pdf of
the observable variables from the BSM and background events is used to define a likelihood
function (L(𝜃 |𝑥obs)) that is maximized/minimized for the parameter scan. The advantage of
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using this metric is that multidimensional distributions of observed data and MC simulated
samples can be easily compared without defining a single discriminant feature and tuning the
selection depending on signal model parameters.2 The gradient of the metric for the BSM
model parameters can be calculated using backpropagation. Gradient-based optimization
methods (e.g., SGD) enables to efficiently find optimal values even in high-dimensional
model parameter spaces.

(a) Generates training samples (b) Training of NF models (c) Estimate optimal parameters

Figure 1: A workflow of the proposed method

3. Experiments

The proposed method has been applied to two benchmark datasets: the toy dataset (Sec 3.1)
and the LHC Olympic 2020 (LHCO2020) benchmark dataset (Sec 3.2).

3.1 Toy dataset

Step 1: Generates training samples

The toy dataset mimics a bump-hunting task, which is a typical problem in collider physics.
The observable (𝑥) is one-dimensional and assumes a reconstructed mass (𝑀reco). It is sampled
from analytic functions for signal and background, respectively. A function for the signal model
is the Breit-Wigner function, which has two model parameters, the resonance mass (𝑀pole) and its
width (Γ). One for the background model is the exponential function, which has a single model
parameter (𝜏). A training sample was generated with 200k events. The model parameters were
uniformly sampled. The pseudo-sample, which mimics the observed data, was generated with 1k
events for the signal and 100k events for the background, with the model parameters (𝜃) fixed as
(𝑀pole, Γ, 𝜏) = (91.2, 2.5, 10−2).

Step 2: Training of normalizing flow models

SplineFlows [10] was used as the NF model. SplineFlows uses a spline function in each
transformation step, resulting in strong representation capability. The loss function for training the

2Due to the use of multidimensional distributions, systematic uncertainties should be carefully evaluated, as the
metric is sensitive to discrepancies between MC and experimental data. This is a future work.
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NF model is defined as a negative log probability (− log 𝑝NF(𝑥 |𝜃)). Figure 2 shows the distributions
of the observables of the training samples and one sampled from the trained NF model, colored by
different model parameters. Here, only one NF model is used for signal and background respectively,
instead of defining several models for each model parameter. The NF model has the ability to model
the distribution for multiple model parameters.

(a) Signal (b) Background

Figure 2: Fitting results for (a) signal distributions and (b) background distributions. The distributions of
the training samples are shown as a solid line, and the distributions sampled from the trained NF model are
shown as a dashed line, colored by the model parameters (𝑀 for signal, and − log(𝜏) for background). As
the model parameters are sampled uniformly, the distributions are colored by each interval for the model
parameters (e.g. 𝑀=[60-72] means 60 < 𝑀 < 72). A single signal/background NF model is used to model
the distributions generated by all signal/background models with different model parameters.

Step 3: Estimate optimal BSM parameter points

The likelihood function used for the parameter scan is defined as

L({𝑀pole, Γ, 𝜏}|𝑀reco) =
𝑛sig

𝑛sig + 𝑛bg
· 𝑝sig

NF(𝑀reco |{𝑀pole, Γ}) +
𝑛bg

𝑛sig + 𝑛bg
· 𝑝bg

NF(𝑀reco |𝜏),

where 𝑛sig and 𝑛bg are the number of signal events and the number of background events, respectively,
and 𝑝

sig/bg
NF (𝑀reco |𝜃) is a probability inferred by the NF model. 𝑛sig and 𝑛bg can be treated as floating

parameters, but they are fixed here for simplicity. The negative log likelihood (NLL) is computed
for all the pseudodata (− logL(𝜃 |𝑀𝑖,reco)), and summed (

∑
𝑀𝑖∈pseudo data − logL(𝜃 |𝑀𝑖,reco)) to

construct an objective function to be optimized. Figure 3 (a) shows the NLL values in the signal
model parameter space ((𝑀pole, Γ)). The 𝑧-axis is the Δ NLL, the difference from the smallest NLL
obtained3. The red star indicates the target model parameter points used to generate the pseudo
data. It is close to the minimum NLL point within the grid size. Figure 3 (b) shows the gradient
of the NLL in the model parameter spaces (∇𝜃 (− logL)). The direction of the arrow indicates the
direction of the gradient, and the color of the arrow indicates the magnitude of the gradient. In this

3A tiny non-zero value is added for logarithmic visualization, i.e. log(NLL − NLLmin + 𝜖) is plotted
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task, the gradient along the Γ axis is small, and the gradient direction aligns with the 𝑀pole direction
in the large Γ region. This non-uniformity can be mitigated by using some optimization methods
with momentum technique. In the small Γ regions, the gradient points to the true minimum, and it
is expected that the gradient-based optimization method can be used for the parameter scan.

(a) NLL (Δ(− logL)) (b) Gradients (∇𝜃 (− logL))

Figure 3: (a) The NLL values and (b) the gradients in the signal model parameter space ((𝑀pole, Γ)). The
red star is the truth model parameter points. The arrows in (b) represent gradients.

3.2 LHC Olympic 2020 dataset

The other application results are shown using a more complex dataset, the LHC Olympic 2020
(LHCO 2020) benchmark dataset [5].

Step 1: Generates training samples

LHCO 2020 is a benchmark dataset prepared for a machine learning anomaly detection com-
petition held in 2020. This dataset contains the signal process where the 𝑍

′ boson decays into two
unknown heavy bosons, 𝑋 and 𝑌 bosons, and each of them decays into a quark pair. Since the 𝑋/𝑌
boson has a large momentum, the quark pair is boosted, resulting in the merging of two remnants
of each quark into a single observed jet, the so-called large-R jet. As a result, two large-R jets are
observed as a signal event. This dataset contains a set of 4-vectors of all stable particles in the
collision events, but high-level features were used for simplicity by reconstructing the jets using the
FastJet library. The definitions of the high-level features used as input variables and preselections
are based on the ANODE [11]. The five high-level features are the leading jet mass (𝑀𝐽1), the
difference between leading and subleading jet mass (𝑀𝐽1 − 𝑀𝐽2), the jet substructure variables for
leading and subleading jets (𝜏𝐽1,21 and 𝜏𝐽2,21), and the dijet mass (𝑀𝐽1𝐽2), where 𝑀𝐽1 , 𝑀𝐽2 , and
𝑀𝐽1𝐽2 are highly correlated with the 𝑋 boson mass (𝑀𝑋), the𝑌 boson mass (𝑀𝑌 ), and the 𝑍

′ boson
mass (𝑀𝑍

′ ), respectively. Since the signal model parameters are the masses of three boson (𝑀𝑋,
𝑀𝑌 , 𝑀𝑍

′ ), the dimension of this task is 3 for the signal phase space and 5 for the observable
variables.

7
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The benchmark dataset was provided with 𝑍
′ , 𝑋 , and 𝑌 masses of 3500, 500, and 100 GeV,

respectively. For this study, the dataset was extended with additional model parameters. The signal
parameters were chosen according to the grid: 𝑚𝑍

′ = [3000, 3500, 4000, 4500] GeV,𝑚𝑋 = [250, 500,
750, 1000] GeV, and 𝑚𝑌 = [50, 100, 150, 200, 250, 300] GeV, where only combinations satisfying
the conditions of 𝑚𝑋 − 𝑚𝑌 > 100 GeV were generated as training samples. The samples at each
grid point were processed using the same event generator configuration as the original benchmark
dataset. The total number of generated signal events was 583k. The background samples were the
original one, and the number of events is 91k.

All 3 model parameters and 5 observables were normalized by linear transformation and scaled
to the range of 0 to 1.

Step 2: Training of normalizing flow models

Masked Autoregressive Flow (MAF) [12] was used as the NF model. As in Section 3.1, a
single NF model was defined and trained for each signal and background distribution with all model
parameters.

Figure 4 shows the observable distribution of the training sample and the distribution sampled
by the trained NF model, colored by the different model parameters. Each distribution is well
modeled by the NF model for all signal model parameters. A strange structure can be seen in
Figure 4 (b). It comes from the swapping of the leading and subleading jets, i.e. the 𝑌 boson mass
peak appears in the 𝑀𝐽1 distribution. For such a complex distribution, the NF model is able to
model the distribution well.

(a) 𝑀𝐽1𝐽2 (b) 𝑀𝐽1

Figure 4: Fitting results for (a) dijet mass (𝑀𝐽1𝐽2 ) and (b) the leading jet mass (𝑀𝐽1 ) distributions. The
distributions of the training samples are shown as a solid line, and the distributions sampled from the trained
NF model are shown as a dashed line, colored by the model parameters. A single signal NF model is used
to model the distributions generated by all signal models with different model parameters.

Figure 5 shows the 𝑀𝐽1𝐽2 distribution sampled by the NF model, colored by the signal model
parameters, some of which are not used in the training sample. The training sample was generated
as 𝑚𝑍

′ = [3000, 3500, 4000, 4500] GeV, and the distributions of the other model parameters were

8
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generated by the NF model by interpolation. In Figure 5 (a), the orange and red lines are the
interpolated results, indicating that the NF model can interpolate correctly. In Figure 5 (b), all lines
except the red and purple lines are the extrapolated results, also indicating that the NF model can
sample a reasonable distribution.

(a) Interpolation (b) Extrapolation

Figure 5: Dijet mass (𝑀𝐽1𝐽2 ) distribution sampled by the trained NF models. Model parameters used in the
training samples were 𝑚𝑍

′ = [3000, 3500, 4000, 4500] GeV. All lines in (a) and (b), including the model
parameter above, are sampled by the NF model.

Step 3: Estimate optimal BSM parameter points

The likelihood function is defined as in the case of toy data.

L(𝜃sig |𝑥) =
𝑛sig

𝑛sig + 𝑛bg
· 𝑝sig

NF(𝑥 |𝜃sig) +
𝑛bg

𝑛sig + 𝑛bg
· 𝑝bg

NF(𝑥)

𝑥 = {𝑀𝐽1 , 𝑀𝐽1 − 𝑀𝐽2 , 𝜏𝐽1,21, 𝜏𝐽2,21, 𝑀𝐽1𝐽2}
𝜃sig = {𝑀𝑍

′ , 𝑀𝑋, 𝑀𝑌 },

where the no conditional parameters (𝜃bg) are defined for the NF model for background samples. The
model parameters for background samples, such as hadronization parameters, generator difference,
etc., can be treated as the background model parameters. This is a future work.

The pseudo dataset mimicking the observed data was bootstrapped from the samples with
(𝑀𝑍

′ , 𝑀𝑋, 𝑀𝑌 ) = (3500, 500, 100) GeV, with the number of events was set to 10k for the signal and
100k for the background. The observable distributions of the pseudo dataset are shown in Figure 6.

Figure 7 shows the Δ NLL distribution and the distribution of the gradient, using the same plot
style as Figure 3. Even with high-dimensional observables and complex feature distributions, the
gradient for the target function is correctly evaluated.

4. Conclusion

This paper proposes an efficient signal model parameter scan technique based on normalizing
flow. This technique is demonstrated on toy dataset and LHC Olympic 2020 benchmark dataset, and

9
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(a) 𝑀𝐽1𝐽2 (b) 𝑀𝐽1 (c) 𝑀𝐽1 − 𝑀𝐽2

Figure 6: The observable distribution in the pseudo dataset. The signal events are located at (𝑀𝐽1𝐽2 , 𝑀𝐽1 ,
𝑀𝐽1 − 𝑀𝐽2 ) = (3500, 500, 400) GeV.

(a) NLL (Δ(− logL)) (b) Gradients (∇𝜃 (− logL))

Figure 7: (a) The NLL values and (b) the gradients in the signal model parameter space ((𝑀𝑍
′ , 𝑀𝑋)). The

red star is the truth model parameter points. The arrows in (b) represent gradients.

confirmed that the normalizing flow model has good capabilities for modeling complex distributions
and interpolating signal model parameter spaces, and the gradient of NLL can be evaluated quickly
by backpropagation. It is expected that this technique can be extended to higher-dimensional data;
higher-dimensional observables (𝑥), e.g. the set of particle four-vectors, and higher-dimensional
model parameters (𝜃), e.g. phenomenological MSSM.
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lai Sarda, Urŏ Seljak, Aleks Smolkovic, George Stein, Cristina Mantilla Suarez, Manuel
Szewc, Jesse Thaler, Steven Tsan, Silviu-Marian Udrescu, Louis Vaslin, Jean-Roch Vli-
mant, Daniel Williams, and Mikaeel Yunus. The lhc olympics 2020 a community chal-
lenge for anomaly detection in high energy physics. Reports on Progress in Physics,
84(12):124201, dec 2021. URL: https://dx.doi.org/10.1088/1361-6633/ac36b9,
doi:10.1088/1361-6633/ac36b9.

[6] Thea Aarrestad, Melissa van Beekveld, Marcella Bona, Antonio Boveia, Sascha Caron, Joe
Davies, Andrea de Simone, Caterina Doglioni, Javier Duarte, Amir Farbin, Honey Gupta,
Luc Hendriks, Lukas A. Heinrich, James Howarth, Pratik Jawahar, Adil Jueid, Jessica Las-
tow, Adam Leinweber, Judita Mamuzic, Erzsébet Merényi, Alessandro Morandini, Polina
Moskvitina, Clara Nellist, Jennifer Ngadiuba, Bryan Ostdiek, Maurizio Pierini, Baptiste Rav-
ina, Roberto Ruiz de Austri, Sezen Sekmen, Mary Touranakou, Marija Vaškeviciute, Ricardo
Vilalta, Jean-Roch Vlimant, Rob Verheyen, Martin White, Eric Wulff, Erik Wallin, Kinga A.
Wozniak, and Zhongyi Zhang. The dark machines anomaly score challenge: Benchmark data
and model independent event classification for the large hadron collider. SciPost Physics,
12(1), January 2022. URL: http://dx.doi.org/10.21468/SciPostPhys.12.1.043,
doi:10.21468/scipostphys.12.1.043.

11



P
o
S
(
I
S
G
C
2
0
2
4
)
0
1
7

Signal model parameter scan using Normalizing Flow Masahiko Saito

[7] Savas Dimopoulos and Howard Georgi. Softly broken supersymme-
try and su(5). Nuclear Physics B, 193(1):150–162, 1981. URL:
https://www.sciencedirect.com/science/article/pii/0550321381905228,
doi:10.1016/0550-3213(81)90522-8.

[8] A. Djouadi, S. Rosier-Lees, M. Bezouh, M. A. Bizouard, C. Boehm, F. Borzumati, C. Briot,
J. Carr, M. B. Causse, F. Charles, X. Chereau, P. Colas, L. Duflot, A. Dupperin, A. Ealet,
H. El-Mamouni, N. Ghodbane, F. Gieres, B. Gonzalez-Pineiro, S. Gourmelen, G. Grenier, Ph.
Gris, J. F. Grivaz, C. Hebrard, B. Ille, J. L. Kneur, N. Kostantinidis, J. Layssac, P. Lebrun,
R. Ledu, M. C. Lemaire, Ch. LeMouel, L. Lugnier, Y. Mambrini, J. P. Martin, G. Montarou,
G. Moultaka, S. Muanza, E. Nuss, E. Perez, F. M. Renard, D. Reynaud, L. Serin, C. Thevenet,
A. Trabelsi, F. Zach, and D. Zerwas. The minimal supersymmetric standard model: Group
summary report, 1999. arXiv:hep-ph/9901246.

[9] Kyle Cranmer, Johann Brehmer, and Gilles Louppe. The frontier of simulation-based inference.
Proceedings of the National Academy of Sciences, 117(48):30055–30062, May 2020. URL:
http://dx.doi.org/10.1073/pnas.1912789117, doi:10.1073/pnas.1912789117.

[10] Conor Durkan, Artur Bekasov, Iain Murray, and George Papamakarios. Neural spline flows,
2019. arXiv:1906.04032.

[11] Benjamin Nachman and David Shih. Anomaly detection with
density estimation. Phys. Rev. D, 101:075042, Apr 2020.
URL: https://link.aps.org/doi/10.1103/PhysRevD.101.075042,
doi:10.1103/PhysRevD.101.075042.

[12] George Papamakarios, Theo Pavlakou, and Iain Murray. Masked autoregressive flow for
density estimation, 2018. arXiv:1705.07057.

12


