
P
o
S
(
I
S
G
C
2
0
2
4
)
0
1
5

Ensuring High-Availability and Security for Secret
Management in EGI Cloud

Viet Trana,*

a Instiute of Informatics, Slovak Academy of Sciences

Dubravska cesta 9, Bratislava, Slovakia

E-mail: viet.tran@savba.sk

Secret management is an important security service within the EGI Cloud Federation,
encompassing the management of various types of secrets, including tokens and certificates,
along with their secure delivery to target cloud environments. Given its critical role, high
availability and security are paramount. The service must remain operational continuously, even
in the event of individual component failures. This is achieved through the configuration of three
geographically distributed Vault servers connected in a cluster, complemented by Dynamic DNS
to facilitate seamless switching of generic service endpoints during failures. Additionally, the
service incorporates several security enhancements, including client-side encryption and a locker
mechanism to ensure the secure delivery of secrets to virtual machines (VMs) in the cloud.

International Symposium on Grids and Clouds (ISGC2024)
24 -29 March, 2024
Academia Sinica Computing Centre (ASGC), Institute of Physics, Academia Sinica
Taipei, Taiwan

*Speaker

 Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

http://pos.sissa.it/

P
o
S
(
I
S
G
C
2
0
2
4
)
0
1
5

Secret management Viet Tran

1. Introduction

Applications in EGI Infrastructure [1] [2] require various secrets (credentials, tokens,
passwords) for deployments and operations. These secrets are often stored in plain text within
configuration files or code repositories, creating security vulnerabilities. Additionally, statically
storing secrets makes them difficult to rotate. The secret management service for EGI
Infrastructure, developed by IISAS in collaboration with INFN and CSIC, addresses these
issues.

The Secret Management Service offers:
• Usability: A dedicated FedCloud client module seamlessly integrates the service with

simple syntax. Authentication leverages OIDC tokens from EGI Check-in [4],
eliminating the need for additional registration or credentials.

• Advanced Features: The service supports secret values from files, allowing
import/export in YAML/JSON formats. Additionally, on-the-fly encryption/decryption
of secret values on the client-side enhances security and trust.

• Compatibility: The service is built on Hashicorp's Vault [6], a well-established industry
solution with numerous client tools and libraries. Both service and client software are
open-sourced with strong community support.

• High Availability: Service instances are distributed across different sites, eliminating
single points of failure. A generic endpoint (https://vault.services.fedcloud.eu:8200)
dynamically points to a healthy instance through a Dynamic DNS service [5].

This paper proposes a novel approach for delivering secrets to VMs in the cloud via a
locker mechanism. Users can effortlessly create lockers, deposit secrets within them, and then
provide the locker's token to their VMs. This eliminates the need to store user credentials on
VMs for accessing the secret management service, significantly improving overall security.

2. Ensuring High Availability for the EGI Secret Management Service

High availability is essential for critical services like secret management, which must
remain operational even when individual components fail. A common strategy for achieving
high availability is through redundancy, which eliminates single points of failure by deploying
multiple service instances. If the primary instance fails, a backup seamlessly takes over,
ensuring uninterrupted service for users.

However, this failover process can be complex, often requiring a proxy server to act as a
dispatcher or load balancer. While effective, this approach introduces its own challenge: the
proxy itself must be highly available, often requiring costly hardware redundancy.

An alternative, more cost-effective solution for some services is Dynamic DNS, which
simplifies high availability by managing service failover without the need for additional
expensive hardware. In this section, we will detail how to leverage Dynamic DNS to achieve
high availability for the EGI Secret management service.

2

P
o
S
(
I
S
G
C
2
0
2
4
)
0
1
5

Secret management Viet Tran

2.1 Geographically distributed Vault servers

The EGI Secret Management service comprises a cluster of three interconnected Vault
servers -one active and two on standby (Figure 1). If the active server fails, one of the standby
servers automatically takes over. Data replication between the servers is managed by the Raft
Consensus algorithm, using Vault's integrated storage system. Users can connect to any of the
servers directly, and if they connect to a standby server, it will seamlessly forward their requests
to the active server.

To minimize disaster risks, the servers are distributed across data centers in three different
countries: IISAS in Slovakia, INFN in Italy, and IFCA in Spain.

Figure 1: Service architecture

2.2 Dynamic DNS service

Nowadays, more and more services are dynamically deployed in Cloud environments.
Usually, the services hosted on virtual machines in Cloud are accessible only via IP addresses or
pre-configured hostnames given by the target Cloud providers, making it difficult to provide
them with meaningful domain names [3]. The Dynamic DNS service was developed by Institute
of Informatics, Slovak Academy of Sciences (IISAS) to alleviate this problem.

The Dynamic DNS service provides a unified Dynamic DNS support for virtual machines
across the EGI Cloud infrastructure. Users can register their chosen hostnames in predefined
domains (e.g., my-server.vo.fedcloud.eu) and assign them to the public IPs of their servers.

The Dynamic DNS service significantly simplify the deployment of services that are
dynamically deployed in Cloud infrastructures. It removes the obstacles of changing IP
addresses of services in Cloud at every deployment and enables obtaining SSL certificates for
the hostnames. Service providers can migrate services from local servers to Cloud or from a
Cloud site to another without noticing users from the change.

The architecture of the Dynamic DNS service is illustrated in Fig. 2. The core component
of the service is an NS-update server, which consists of a GUI front-end, a REST API, and a
back-end engine. Users log into the GUI front-end using their EGI Check-in account [6], where
they can register hostnames within supported domains (e.g., by default, vm.fedcloud.eu). Once
registered, users can assign or update the IP addresses of VMs or servers to these hostnames,
allowing easy access to services through the registered names.

3

P
o
S
(
I
S
G
C
2
0
2
4
)
0
1
5

Secret management Viet Tran

Figure 2: Architecture of Dynamic DNS service

The communication between the service's components relies on standardized protocols,
ensuring long-term sustainability and allowing for seamless replacement of components with
compatible software and services. The primary and secondary DNS servers are powered by
BIND9 [9], the industry-standard DNS software developed at the University of California,
Berkeley, and maintained by the Internet Systems Consortium. For high availability, the primary
DNS server is hosted at IISAS in Slovakia, while the secondary servers are distributed across
IFCA in Spain and INCD in Portugal. Synchronization between these servers is performed using
the zone transfer protocol (RFC 5936), following IETF DNS standards.

The NS-update server manages the addition, update, and deletion of hostnames in DNS
servers via the nsupdate protocol (RFC 2136), which is part of the IETF standards for DNS.
Authentication and authorization between components are handled via pre-shared secrets,
following the TSIG standard (RFC 2845). Every DNS modification is carried out in two steps:
first, the NS-update server applies changes (add/update/delete) to the primary DNS server, and
then verifies the results on a secondary server to ensure the updates are properly applied and
active.

User authentication and authorization on the NS-update server are handled using the
OpenID Connect protocol (IETF RFC 6749 and 6750) integrated with EGI Check-in. This
removes the need for the NS-update server to manage user registration, enabling easy
integration with the broader EGI Cloud infrastructure. Since OpenID Connect is supported by a
wide range of identity providers—academic communities like ORCID [10] and eduTEAMS
[11], as well as commercial platforms like Google and Microsoft—it is straightforward to add
support for additional identity providers if needed.

The client can update the IP address of a registered hostname using the DynDNS2 protocol
[12], which is compatible with popular Dynamic DNS services like dyn.com and noip.com. The
key distinction between EGI Dynamic DNS and commercial services is that EGI generates a
unique password for each registered hostname. When a user updates the IP address via
DynDNS2 (e.g., using the ddclient tool), the hostname serves as the username, while the
corresponding password. This allows users to update IP addresses without needing their
personal credentials, simplifying update scripts and enhancing security.

4

P
o
S
(
I
S
G
C
2
0
2
4
)
0
1
5

Secret management Viet Tran

2.3 Ensuring High Availability for the EGI Secret Management via Dynamic DNS

As mentioned above, the EGI Secret Management service comprises a cluster of three
interconnected Vault servers. Users can use any of the endpoints directly:

• https://vault-iisas.services.fedcloud.eu:8200,
• https://vault-infn.services.fedcloud.eu:8200,
• https://vault-ifca.services.fedcloud.eu:8200,

However, direct access to these endpoints is not recommended, as they may become
unavailable if a server goes down. For convenience and high availability, two generic endpoints
https://vault.services.fedcloud.eu:8200 and https://secrets.egi.eu is created for accessing the
service. These endpoints dynamically attach to one of the active servers, either at INFN or
IFCA, via the Dynamic DNS service hosted at IISAS.

A simple cron script runs on the INFN and IFCA servers to periodically check their health
status. It automatically assigns the generic hostname (vault.services.fedcloud.eu) to the active
and healthy server. In the case of unscheduled downtime, the recovery time for the generic
endpoint is T+1 minutes, where T is the cron check interval (set to 1 minute).

For scheduled maintenance, administrators can easily reassign the generic endpoint to
another server before shutting down the service, ensuring uninterrupted availability.

This configuration guarantees that the EGI Secret Management service remains accessible
through the generic endpoint, even in the event of a complete data center failure caused by
disasters or power outages.

3. Security enhancements for EGI Secret management service

3.1. FedCloud client for EGI Secret management service

The EGI Secret Management service is built on HashiCorp’s Vault, which offers a web-
based GUI and is compatible with various client tools and libraries. To further enhance usability
and security, a dedicated command-line client has been developed as a module of the FedCloud
client [7], the generic client for the EGI Cloud Federation.

The key features of the FedCloud client for the Secret Management service include:
• Out-of-the-box functionality: When using the native Vault CLI, users need to manually

configure several parameters, including the service URL, personal folder path, and
authentication details. The FedCloud client has these parameters pre-configured,
allowing it to work immediately without additional setup.

• Single-step secret access: The native Vault client requires two steps to access a secret:
first, the user must log in to the service using an access token, and then they can retrieve
the secret using the Vault token. The FedCloud client automates these steps, enabling
users to access secrets directly with a single command.

• Integration with the EGI Cloud ecosystem: The FedCloud client integrates seamlessly
with various tools and services in the EGI Cloud Federation, including oidc-agent and
mytoken for managing access tokens, EGI Check-in for authentication, and VO-based
authorization.

5

P
o
S
(
I
S
G
C
2
0
2
4
)
0
1
5

Secret management Viet Tran

• Enhanced security: The FedCloud client offers additional security features such as
client-side encryption for secrets and "lockers," which are described in detail in the
following sections.

3.2 Protecting Secrets with Client-Side Encryption

For highly sensitive secrets, FedCloud client provide users the option to encrypt them prior
to storing them in the service. This ensures that no individual, including service administrators,
can access the secrets in plain text. Encryption is performed automatically on-the-fly if users
provide an encryption key (passphrase) using the --encrypt-key option when putting secrets to
the service, for example:

fedcloud secret put certificate cert=@hostcert.pem --encrypt-key passphrase

Decryption is carried out automatically in a similar manner. Users provide the decryption
key using the --decrypt-key option when retrieving the secret. The value will be automatically
decrypted if the key is valid:

fedcloud secret get certificate cert --decrypt-key passphrase

Passphrases are assigned individually to each secret, allowing for different passphrases for
different secrets. This practice minimizes potential damage in the event that a passphrase is
disclosed.

The FedCloud client employs Fernet symmetric encryption from the standard Python
Cryptography library [8] for secure client-side encryption. Specifically, it utilizes:

• Advanced Encryption Standard (AES) in Cipher Block Chaining (CBC) mode with a
128-bit key for encryption, incorporating PKCS7 padding.

• Hashed Message Authentication Code (HMAC) with SHA-256 for message integrity
verification.

• Initialization vectors generated using os.urandom().

3.3 Secure secret delivery via locker mechanism

By default, accessing secrets stored in the EGI Secret management service from virtual
machines (VMs) has relied on OIDC access tokens, a method that harbors potential security
vulnerabilities. In the event of VM compromise, these access tokens can be pilfered, enabling
attackers to gain access to all user secrets.

The locker mechanism in the EGI Secret management service introduces an innovative and
robust approach to securely deliver secrets to VMs. Instead of permanently storing secrets in the
Vault’s key-value secret engine, users can create a locker – a temporary, isolated space within
the Vault’s secret engine cubbyhole. They can store the necessary secrets in the locker and
provide the locker token to the VMs. Scripts running on the VMs will use the locker token to
access the secrets without requiring users’ personal credentials.

For enabling the locker mechanism, a special workflow has been developed in FedCloud
client automates all security settings for users. That includes:

6

P
o
S
(
I
S
G
C
2
0
2
4
)
0
1
5

Secret management Viet Tran

• Generate the locker tokens in EGI Secret management service
• Set limits for lifetimes and number of uses for the locker tokens
• Revoking all privileges associated with the locker tokens, except for accessing the

lockers.
This automation ensures that all lockers are securely configured without user intervention,

minimizing the potential for errors in security settings and simplifying access.
The key security attributes of the locker system include:

• Temporary and autoclean: Lockers have a limited lifespan and quantity. Upon
expiration, lockers are automatically purged, along with all the secrets contained within
them.

• Isolation: Access to the secrets within a locker is exclusively through its associated
token, which can solely be used for accessing the locker's secrets—nothing more. This
isolation allows users to store tokens in Continuous Integration/Continuous Deployment
(CI/CD) pipelines and similar tools, mitigating the risk of exposing personal secrets.

• Malfeasance detection: The locker mechanism possesses the capability to detect if a
token has been compromised and is being misused. More details are provided in the
next section.

3.4 Single-use locker

In some scenarios, users may need to transmit secrets through untrusted communication
channels. This poses a significant security risk, as stolen secrets (passwords, tokens, etc.) can be
exploited by attackers. However, the most concerning threat is the potential for attackers to
silently misuse these secrets for extended periods, causing significant damage before detection.

Single-use lockers offer a simple solution to this problem. These lockers have a
mechanism for self-destruction after successful delivery. This means that even if the secrets are
intercepted during transmission, their misuse can be immediately detected because the locker
becomes invalidated upon opening. This significantly reduces the risk of undetected
compromise and its potential consequences.

The process of delivering secrets with single-use lockers involves the following steps:
• Create a locker: The sender creates a locker with the number of uses set to 2.
• Store secrets: The sender deposits the secrets (passwords, tokens, etc.) into the locker.

That will reduces the number of uses to 1. The locker now is truly single-use.
• Send locker token: The sender transmits the unique locker token to the recipient,

potentially through an untrusted communication channel.
• Access and verification:

◦ Successful access: If the recipient can access the secrets using the token, it signifies
successful delivery. This also guarantees that no one else has accessed the secrets
before (as the locker becomes unusable after the first access).

◦ Failed access: If the recipient cannot access the secrets, it suggests a potential
compromise. This triggers actions like notifying administrators, changing
passwords, revoking tokens, initiating investigations, and taking other necessary
security measures.

7

P
o
S
(
I
S
G
C
2
0
2
4
)
0
1
5

Secret management Viet Tran

4. Conclusion

In this paper, we have presented a highly available and security-enhanced secret
management service for the EGI Cloud Federation. The service's high availability is achieved
through the deployment of geographically distributed servers connected in a cluster, which
ensures continuous operation even in the event of individual component failures. The integration
of Dynamic DNS facilitates seamless switching of service endpoints, further enhancing
resilience during outages.

In addition to its robust availability features, we have implemented several significant
security enhancements. Client-side encryption is employed to ensure that secrets remain
confidential and inaccessible to unauthorized users, including service administrators. This
approach not only protects sensitive information but also instills trust in users relying on the
service.

Furthermore, the locker mechanism provides a secure method for delivering secrets to
VMs without exposing user credentials. This mechanism allows for the temporary storage of
secrets in an isolated environment, thereby reducing the risk of credential leakage while
facilitating efficient access.

Acknowledgment

This work is supported by APVV grant No. APVV-20-0571 and VEGA grant No.
2/0131/23.

References

[1] Enol Fernandez-del-Castillo et al, “The EGI Federated Cloud e-Infrastructure”, Procedia Computer
Science, vol. 68, pp. 196-205, 2015. https://doi.org/10.1016/j.procs.2015.09.235.

[2] Spiga, Daniele, et al. "The DODAS Experience on the EGI Federated Cloud." EPJ Web of
Conferences. Vol. 245. EDP Sciences, 2020. https://doi.org/10.1051/epjconf/202024507033

[3] Marcus Hardt and Viet Tran, “EOSC SYNERGY HANDBOOK: A Handbook targeted at Computer
Centre Management, Administrators, and Users of the Infrastructure”, 2022,
http://hdl.handle.net/10261/280037.

[4] EGI Check-in home. https://aai.egi.eu/. Accessed: 16 September 2024.

[5] Dynamic DNS. https://docs.egi.eu/users/compute/cloud-compute/dynamic-dns/. Accessed: 16
September 2024.

[6] Vault by HashiCorp. https://www.vaultproject.io/. Accessed: 16 September 2024.

[7] FedCloud client. https://fedcloudclient.fedcloud.eu/. Accessed: 16 September 2024.

[8] Fernet (symmetric encryption) cryptography.
https://cryptography.io/en/latest/fernet/#implementation. Accessed: 16 September 2024.

[9] Nathan, Shelena Soosay, et al. "BERKELEY INTERNET NAME DOMAIN (BIND)." International
Journal on Cybernetics & Informatics (IJCI) Vol.1, No.1, Feburay 2012

8

P
o
S
(
I
S
G
C
2
0
2
4
)
0
1
5

Secret management Viet Tran

[10] ORCID, OpenID Connect, and Implicit Authentication, https://info.orcid.org/orcid-openid-connect-
and-implicit-authentication/. Accessed: 16 September 2024.

[11] eduTEAMS, https://eduteams.org/. Accessed: 16 September 2024.

[12] ddclient protocols DynDNS2. https://sourceforge.net/p/ddclient/wiki/protocols/#dyndns2/.
Accessed: 16 September 2024.

9

	1. Introduction
	2. Ensuring High Availability for the EGI Secret Management Service
	2.1 Geographically distributed Vault servers
	2.2 Dynamic DNS service
	2.3 Ensuring High Availability for the EGI Secret Management via Dynamic DNS

	3. Security enhancements for EGI Secret management service
	3.1. FedCloud client for EGI Secret management service
	3.2 Protecting Secrets with Client-Side Encryption
	3.3 Secure secret delivery via locker mechanism
	3.4 Single-use locker

	4. Conclusion
	Acknowledgment

