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Self-supervised learning speeds up the representation learning process in lots of computer vision
tasks. It also saves time and labor of labelling the dataset. Momentum Contrast (MoCo) is
one of efficient contrastive learning methods, which has achieved positive results on different
downstream vision tasks with self-supervised learning. However, its performance on extracting
3D local parts representations remains unknown. In our study, we make modifications on the
MoCo model to learn the local features of ShapeNet, and design data augmentation methods
and local clustering method to randomly generate local clusters. To evaluate proposed method,
the evaluation experiments on different scales of local clusters and data augmentation methods
with our method are performed, then we perform the 3D object classification downstream task on
the local parts with pretrained model. From the results, the modified MoCo model shows great
performance on extracting local representations and make the classification downstream task faster

with pretrained model.
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1. Introduction

In light of the development and application with 2D vision tasks, the 3D vision tasks are
also developed for processing 3D data. The main tasks include 3D object detection, 3D object
classification, 3D semantic segmentaion, 3D reconstruction, etc. However, unlike the ordered and
continuous 2D images, the 3D data has a lot of limitations and unique properties, which gives
these tasks unpreventable challenges like huge computation costs, time-consuming annotations and
information missing.

Due to the exclusive properties of 3D data, different types of data structure are used for solving
3D vision tasks [2, 10, 13, 21, 28-32]. The point cloud is the most basic format for presenting the
real world. The samples of point cloud and image are shown in Figure 1. It is simply a set of 3D
data points and each point contains the position coordinates information in the Euclidean space,
and some of them contains other attributes like color, intensity, reflectivity, normal information,
etc. Itis regarded as a set of unstructured 3D points that symbolize the geometry of 3D objects and
real scene [33]. With these unique properties, a lot of challenges for 3D vision tasks are derived,
including the huge computation cost when processing unordered points, the time and labor cost by
large amount of 3D annotation and the information lost [3—-6]. Therefore, traditional supervised
training mechanism is not enough for extracting simple but informative representations of point
cloud to solve 3D vision tasks.

Self-supervised Training achieves great success in natural language processing [7, 8, 14],
which provides a novel approach for 2D vision tasks [15-17]. With self-supervised training, a
lot of obstacles of 3D vision tasks could be prevented, especially with contrastive learning. The
contrastive learning is a popular mode of self-supervised training that encourages augmentation of
the same input to have more comparable representations. The general approach is to expand the
views of input point clouds by various data augmentation techniques [34]. In this way, the point
cloud can be learned by itself with pretext task to gather useful information for downstream 3D
vision tasks, which can reduce the computation cost [35]. Furthermore, the pseudo labels presented
in the pretext task are a multidimensional matrix carrying collection information and are typically
generated using clustering methods such as memory bank [17], which ignores 3D annotations.
The missing information can also be prevented with different designed objective of pretext tasks
[18, 36].

However, contrastive learning for whole shape of 3D objects lacks of local parts information,
the contrastive learning ability for 3D local parts also remains unknown. To this end, a modified
momentum contrast pretraining architecture for 3D local features is proposed following MoCo [1].
MoCo is one of the pioneer works that proposed momentum contrast mechanism for self-supervised
training in multiple 2D detection and segmentation tasks, which is a suitable contrastive learning
structure for 3D point cloud processing due to its simplicity. In the proposed structure, a point cloud
feature learning backbone is leveraged. For extracting effective local features for downstream task,
several 3D data augmentation methods and a random local clustering method are designed. With
these methods, the local parts of 3D objects and their local features can be generated and learned
randomly, which would be aligned with the situation of occluded 3D objects that captured in 3D
real scenes.

To evaluate the proposed 3D local feature pretraining approach, ShapeNet [9] is chosen as the
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Point Cloud

Figure 1: Samples of Point Cloud and Image

training dataset. Two comparison experiments and a downstream experiment are designed. The
first comparison experiment evaluates the connection between local cluster size and the 3D local
feature learning ability. The second comparison experiment we compare the effect of different
data augmentation methods to present the effective data augmentation methods for 3D local feature
training. The downstream experiment performs 3D local parts object detection with pretrained
model. With these experiments, The 3D local feature learning performance for proposed modified
momentum contrastive learning method can be verified and the best 3D local feature pretraining
settings can be summarized.

2. Related Work

2.1 Self-supervised Training

Self-supervised training has been increasingly used in vision tasks instead of natural language
processing tasks like GPT [7, 14] and BERT [8]. Previous works aims at imposing simple variations
on image and extract features by recovering it to original input, like semantic-lable-based methods
[37, 38] and cross-modal-based methods [39—41]. However, these methods cost extra computations
and memory for generating labels and learning from other modalities. Recently, a lot of works show
great interest on contrastive learning, which only relies on dataset itself by generating positive and
negative samples with data augmentation method. For example, Wu et al. stores previous feature
encodings in a memory bank [17]. Momentum encoders (MoCo) [1] extends the memory bank into
an updating queue for negative samples feature with a momentum update encoder, which surpasses
ImageNet-supervised counterpart in multiple detection and segmentation tasks. Other advances
[15, 16] have also shown that self-supervised training is a successful approach for 2D vision tasks.

For 3D vision tasks, Xie et al. proposed PointContrast [18], which augments 3D scenes
with rotations and color transformations then contrast transformed 3D point cloud with contrastive
loss function. To address the limitation of requiring multiple views, Zhang et al. presented
DepthContrast [19], which learns different formats of representations from depth maps. It uses
only single view point cloud data, and constructs two augmented versions using data augmentation.
The format-specific encoders generate spatial features with selected input formats of point or voxel.
and learns 3D representations that are invariant to point and voxel representations. Then the global
features are obtained for instance discrimination.
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However, these works focus on pretraining point cloud with whole shape, which ignores the
local parts information. In this work, the proposed framework takes local parts of point cloud as
input and explores the local feature learning ability with self-supervised training.

2.2 Point Cloud Encoder

In the evolving landscape of 3D data processing based on the 3D structures, point cloud
encoders have emerged as pivotal components in numerous 3D vision tasks. Point-based models
capture point representations at point-wise level. Qi et al. ’s PointNet [11] is a pioneer work to
generate features directly from raw point cloud. It learns a spatial encoding of each point and
then aggregate all individual point features to a global point cloud signature. However, it suffers
the loss of local information. To tackle this problem, PointNet++ [12] introduced a hierarchical
structure, which extracts point features while taking local and global features into account with
multiple stages of sampling and grouping. Based on PointNet++, Qian et al. introduce a separable
MLP and an inverted residual bottleneck design in PointNet++, named as PointNeXt [22]. Hu et
al. proposed RandLLA-Net, which uses random point sampling method and increase the receptive
field through efficient local feature aggregation module [23]. Ma et al. present a residual model
named PointMLP, which applies a geometric affine module instead of local geometry extractor
[24]. Since the transformer was proposed [25], a lot of encoders apply the transformer structure to
present features. Guo et al. proposed a transformer-based point cloud learning framework, Point
Cloud Transformer (PCT), which provides permutation invariance and brings transformer to the
point cloud feature learning field [26]. Then Pang et al. propose Point-MAE, which presents a
masked autoencoder focusing on the local information leakage [27].

The works above propose the point cloud encoder for supervised training. In this work, the
point cloud encoder is leveraged in a self-supervised training structure for extracting local features.
To simply and effectively represent the 3D local clusters, the PointNet++ [12] is taken as the point
cloud feature learning backbone, which can be directly transferred to the downstream tasks like 3D
object detection.

3. Method

To train 3D local feature with contrastive learning, a modified momentum contrastive pre-
training architecture for 3D local features is proposed. In this section, the proposed momentum
contrastive learning structure for 3D features is explained, including the contrastive learning loss
and momentum update mechanism. Furthermore, the point cloud feature learning backbone is
presented. Finally, the data augmentation methods and random local cluster sampling method are
discussed.

3.1 Momentum Contrastive Learning Structure

The proposed framework is shown in Figure 2. The structure is separated as two modules.
The former part is the data augmentation module, which processes the input 3D Point clouds to the
transformed 3D local clusters with queries and keys. The latter part is the local feature learning
module, which learns the 3D local representations from separated query local cluster and key local
cluster with contrastive learning.
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Figure 2: Momentum Contrastive Learning Structure for 3D Local Features

For the data augmentation module, it takes point cloud as input data. With the transform of
data augmentation methods and local clustering method, a batch of transformed point cloud local
clusters are outputted. The outputted batch of local clusters are considered as query and keys, a
query and a key are a positive pair if they are originated from the same CAD model, others are
negative pairs accordingly.

The data augmentation methods are used to generate 3D local clusters with multiple shapes
from input CAD models with preprocessing, which helps the momentum contrast structure learn
the local features more completely and robustly. The local clustering method is used to randomly
sample from the transformed CAD models to generate 3D local clusters. Processed by these
methods, the 3D local clusters with multiple shapes are presented.

For the local feature learning module, it learns local representations from query clusters and
key clusters and update encoders with momentum contrast. To contrast the query feature and
key features, the encoder and momentum encoder share the same model to keep their feature
consistency. During training, the encoder is updated with back-propagation but the momentum
encoder is momentum updated, which makes them the same structure but different parameters.
With the generated query feature and key features, the contrastive loss tries to classify the query
feature as its positive key feature, during this process, the encoders are updated.

3.1.1 Contrastive Loss

The local clusters are processed into query local features and key local features by encoder
and momentum encoder respectively. Consider that there are N samples in one batch size, one

query feature g and a set of key features {k,, k1, k2, ..., kny—1} are generated from encoders. The
keys are considered as the dictionary. k. and g are positive pairs because they originated from the
same point cloud. g and the other key features {k, k», ..., ky—1} are considered as negative pairs

accordingly. To make the query local feature ¢ similar to its positive key k. and dissimilar to other
negative keys, a form of contrastive loss function, called InfoNCE [20] is used as loss function:

exp(q - ky/7) 0

Ly=-1lo ~ T ,
exp(q - ki/T)+ 21, exp(q - ki/T)
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where 7 is a temperature hyper-parameter that controls the smoothness of the softmax distribution.
This loss refers to the form of classifier, which is the log loss of a (K + 1)-way softmax-based
classifier that tries to classify the query g as its positive key k. It will minimize the distance
between local features that are from the same point cloud and maximize it that are from different
point cloud in the latent space. With this loss, it serves as an unsupervised objective function for
training the encoders to represent the query and key features with better local information based on
the contrastive learning from local parts of 3D object.

3.1.2 Momentum Update

With the above contrastive loss function, the encoders can be trained to present informative
local feature of query cluster and key cluster. The key samples in the dictionary are presented as a
queue, the samples in the dictionary are progressively replaced. The current mini-batch is enqueued
to the dictionary and the oldest mini-batch is removed, which keeps the dictionary relatively new to
train the encoders and supports larger size of the data subset.

However, the gradient cannot propagate to all samples in the dictionary with back-propagation,
like the way updating the query encoder. The reason is that the query encoder updates rapidly, if the
parameters of key encoder synchronize to the query encoder, it will cause inconsistency between
the key representations and query representation. To prevent this situation, a momentum update is
used for the momentum encoder:

O «— mbi + (1 -m)b,, )

where 6, is the parameters of encoder f,, 0 is the parameters of momentum encoder fi, and
m € [0, 1) is a momentum coefficient, which gives fx a slowly update based on the encoder f,
instead of back-propagation. With this momentum update step, the difference between the key
features can be made small, and keeps relatively the same level for represent the features from the
slowly updating queue. Following MoCo, m = 0.999 works much better.

3.2 Point Cloud Feature Learning Backbone

To learn the informative local features from the point cloud, a proper effective point cloud
feature extracting backbone stands an important role. This work takes the PointNet++ [12] as the
feature learning backbone. It takes the XY Z coordinates of the 3D data as input, and employs
a U-Net [42] structure which has four layers of feature extraction and down-sampling, with two
layers of feature aggregation and up-sampling. In this work, it takes 1024 points as the input from
local cluster which presents as 1024 x 3 matrix of XYZ coordinates. Its final layer produces C
dimensional per-point features for 128 points after the aggregation.

3.3 Data Processing
3.3.1 Data Random Augmentation Methods

For the data random augmentation methods, some standard 3D augmentation methods are
adopted, which are the random input dropout, random rotation and random translation. The random
input dropout involves randomly dropping out some of the points in the point cloud, the random
rotation gives the different orientations to the point cloud and the random translation gives different
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positions to the point cloud. These methods are used to improve the robustness of the model to noise
and partial occlusions, which is enough for the framework to completely learn 3D local features
from randomly transformed point cloud. We also set experiments to evaluate the effects of these
three augmentation methods.

3.3.2 Local Clustering Method

For the local clusters sampling method, the K-dimensional Tree (KD-Tree) algorithm is lever-
aged, which is a space-partitioning data structure that stores a set of k-dimensional points in a
tree structure that enables efficient range searches and nearest neighbor searches. It is suitable for
sampling local clusters from original point cloud due to its small time complexity, which can greatly
speed up the pretraining process.

4. Experiments

Two steps of experiments are presented. The first part is the momentum contrast pretraining,
different size of local point cloud and different data augmentation methods are compared to evaluate
how these two factors influence the momentum contrastive pretraining. The second part is the
downstream task, the best pretrained model is used to perform 3D local parts object classification
task. The result is compared with the model without pretraining.

4.1 Dataset

ShapeNet [9] is used as the training dataset. As shown in Figure 3, it is a collection of single-
object CAD models that contains 57448 objects from 55 categories developed by researchers from
Stanford University, Princeton University, and the Toyota Technological Institute at Chicago, USA.
The dataset is widely used for 3D vision tasks and is a rich source of information for computer
graphics and vision research.

In both experiments, we choose 30% of ShapeNet dataset as the training set randomly. In
the downstream task, only 5 typical classes of the ShapeNet is selected to perform the 3D object
classification with pretrained model to evaluate the method, including table, chair, lamp, bench and
bookshelf. Each local cluster is downsampled to 1024 points for training from input point cloud.
The batch size is equal to 64, and learning rate is 0.007. 200 epochs are trained for each training.

4.2 Momentum Contrast Pretraining

Two comparison experiments are set to evaluate the proposed momentum contrast pretraining
method. The first one is pretrined with different partial scales of sampled local clusters. The
purpose is to conclude the smallest size of the local clusters that can be trained with momentum
contrast. The second one is pretrained with different data augmentation methods. It is to find the
efficient data augmentation method that help extracting the local features.

4.2.1 Training with Different Partial Scales

This experiment learns the local features for different size of local clusters with momentum
contrast and compares the loss value and accuracy for each local cluster size. From the results,
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it can be concluded if the momentum contrast is effective for learning 3D local features and the
smallest size of local clusters for learning 3D local features.

The model is trained with the size of local clusters from 20% to 90%. The random data
augmentation methods are the same. The final training result is shown in Table 1. The Acc@1
means the top-1 classification accuracy, which means the highest probability for classification is
the positive key. The Acc@5 means the top-5 classification accuracy, which means the highest
5 probabilities for classification include the positive key. As the table 1 shows, The Acc@1 and
Acc@5 increase when the local cluster size gets larger, which proves that the local features can be
trained with the proposed contrastive learning framework. However, when the size of local cluster
is smaller than 30%, the performance decrease drastically. It proves that over 30% of the local parts
is effective for the proposed method learning from 3D local features.

4.2.2 Training with Different Data Augmentation Methods

This experiment learns the 3D local features with different data augmentation methods and
compares the loss value and accuracy. Each training removes one of the data augmentation methods

Table 1: Comparison Result with Different Size of Local Cluster

Acc@1 Acc@5
Percentage of local cluster size Loss cc e

[ %] [ %]
90% 8.05 44.71 50.57
80% 7.90 50.83 51.06
66% 8.03 51.68 51.68
50% 813  50.65 51.03
33% 8.00 50.59 50.62
30% 8.03 25.62 25.98
25% 852 031 1.24
20% 8.21 0.28 1.08
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Table 2: Comparison Result with Different Data Augmentation Methods

Acc@]1 Acc@5
Data augmentation methods Loss c¢ e

[ %] [ %]
All 8.13  50.65 51.03

w/o random input dropout  8.34 0.59 1.45
w/o random rotation 8.19  49.85 50.98

w/o random translation 8.36 11.29 12.37

to evaluate which data augmentation method combination is the best for learning 3D local features.

Each training tasks 50% local parts of the cluster as input. The comparison result is shown
in Table 2. From the result, removing random input dropout and random translation makes the
classification accuracy decrease, which means these two methods are effective for the proposed
method to learn more local details from transformed point cloud. However, without random
rotation, the accuracy stays the same level, which proves that the random rotation cannot contribute
much for the proposed method learning 3D local features.

4.3 Downstream Tasks

To further prove that the proposed momentum contrastive pretraining method is effective for
extracting great 3D local features. The downstream 3D object classification task is performed with
and without the pretrained model to make a comparison. Before the downstream experiment, the
momentum contrast pretrained model should be outputted first. In the 3D object classification
experiment, the pretrained model is verified with a common protocol following [12]. The setting of
the dataset and the data processing is the same as momentum contrast pretraining experiment. The
training epoch is 200 with the 0.001 learning rate. The batch size is 24 and the optimizer is Adam.

4.3.1 3D Object Classification on Local Parts

We first use the best setting of data augmentation methods and local clustering method to train
the classification model with proposed momentum contrast method from 5 categories of dataset.
The best top-1 pretraining accuracy is 51.42% in 132 epoch. The whole training takes about 6 and
a half hours.

Two comparison experiments of 3D local parts classification are conducted. The first one trains
the original initialized PointNet++ classification model to classify the local clusters of point cloud
from 5 categories of ShapeNet. The second one trains the pretrained PointNet++ model from the
best momentum contrast pretraining result above. The classification result is shown in Table 3.

From the result, after 200 epochs of training, the best instance accuracy and best class accuracy
stays the same level in both experiment. However, the pretrained model can be trained much faster
than the original classification model. It can be concluded that the 3D object classification on local
parts can be trained with less time when using proposed momentum contrast pretraining method,
which proves that the proposed momentum contrast pretraining method possesses the ability of
learning local features from 3D point cloud.
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Table 3: Comparison Result of 3D Object Classification on Local Parts

Best Instance Accuracy Best Class Accuracy Epoch Number

[ %] [%o] for Best Result
w/ Pretrained Model 81.35 75.70 EP168
w/o Pretrained Model 81.57 76.08 EP199

5. Conclusion

This work proposed a momentum contrastive learning framework for 3D local parts of point
cloud and designed experiments to evaluate the method. From the result, it can be proved that the
3D local parts of point cloud can be trained with proposed method. The best setting for pretraining
the 3D local parts is concluded, and also it shows great performance on speeding up the downstream
task.

In future work, we intend to adjust our training set. Currently, ShapeNet has a lot of data that
come from the same category, which cause great limitations to our training experiments. We believe
that the dataset with more categories and less data that come from the same label will raise our
proposed method to a new level, then we also intend to leverage our method to a small supervised
dataset with low annotation cost to make a comparison. Finally, we can summarize the pretrained
local features as a dictionary for off-line 3D object classification system.
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