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Federated learning is a recent approach to machine learning where clients locally train a global
model based on their private data and then upload their model parameters to a cloud server
for merging into a global model. While it offers great opportunities for privacy-preserving AI
solutions e.g. for medical applications, several challenges remain, limiting its efficiency and
effectiveness, namely communication cost and the model parameter divergence in the presence
of non-IID training data. In this paper, we analyze the state of the art with respect to the
aforementioned challenges. Considering the characteristics of modern wireless networks, we
notice that there is a huge opportunity for leveraging wireless broadcasting in a hybrid system
architecture comprising peer-to-peer subgroups and a hierarchical server infrastructure. We design
a new protocol for federated learning where peers share gradient updates with other nearby peers via
wireless broadcasting and globally exchange gradient updates via a hierarchical server network.
This way, we benefit from the efficiency of wireless broadcasting to increase communication
efficiency and decrease server involvement. Furthermore, the frequent exchange of gradient
updates between peers allows us to better cope with non-IID training data. Our protocol serves as
a pattern that can be fine-tuned using many recently published contributions in federated learning.
The impact of our work is expected to become even stronger in future 5G+ networks because it
benefits from high device density and mobility.
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1. Introduction

Machine learning is today’s fastest-developing and most powerful technology, finding applications
in nearly every domain of science and industry, such as natural language processing, visual object
detection, autonomous driving, stock market prediction, medical applications, and many more [1,
1]. For machine learning to be effective, a large amount of high-quality training data is essential [2,
220]. At the same time, the number of Internet of Things (IoT) devices such as smart watches, voice
control systems, air quality monitors, surveillance cameras, and much more is increasing rapidly
[3, 1]. These devices, as well as smartphones, are equipped with high-quality sensors generating
an enormous amount of real-world data which has the potential to feed machine learning models
to make them more powerful than ever [4, 1]. Traditionally, to make use of the data for training
machine learning models, the data is uploaded to a cloud computing center, where it can be used for
offline learning. However, this approach has two main downsides. Firstly, the velocity and volume
of the data streams generated by the devices pose a challenge to the bandwidth and storage capacity
of even large data centers [5, 56]. Secondly, since the data is usually highly privacy-sensitive, for
example, medical data recorded by users’ smart watches or private text messages, even anonymous
uploading of the data to a cloud center is not acceptable and in some cases illegal [6, 2][4, 2].

To tackle these challenges, Google proposed a new approach to distributed machine learning called
federated learning in 2016 [4]. The basic idea of federated learning is to use a large number of
devices to cooperatively train a common machine learning model while keeping the training data
private to the generating devices. The system architecture for federated learning is illustrated in
Figure 1. It comprises a server (or multiple for fault tolerance) and many clients, where the end
devices that produce the training data take the role of the clients. The server stores a machine
learning model, which is downloaded by the clients. The clients train the machine learning model
based on their local data in synchronous rounds. After each round, the clients upload their model
parameter deltas to the server where they get merged into a new model based on weighted averaging.
The new model then gets distributed to the clients for training in the subsequent round. Since no
raw training data leaves the end devices, this approach guarantees some degree of privacy, which
can be enhanced by using techniques such as mix networks [4, 3]. Moreover, as opposed to the
training data, model updates are ephemeral and can be deleted directly after they get applied to the
model of the respective round [4, 1], lowering the concern about privacy-sensitive data being stored
in data centers for a long time. At the same time, this approach has the potential to cope with the
network bandwidth and storage limitations of data centers [7, 2]. While for batch processing all
training data must be transmitted and stored in the data center for the duration of the training, for
federated learning only the comparatively small model updates must be transmitted [4, 3] and can
be deleted right after the completion of the respective round.

While federated learning is a very promising approach and finds application for instance in Google’s
Gboard next word prediction [8] and medical applications [9], vanilla federated learning suffers
from various issues such as parameter divergence, communication overhead, privacy concerns due
to reconstruction of input data, single point of failure, malicious model updates, and the lack of
computational power at end devices. For this reason, federated learning has become a hot topic in
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Device 1 Device 2 . . .

Central Server

up-/download
models

merge models

train on
local data

Figure 1: Illustration of federated learning showing (1) a server distributing a global model, (2) clients
downloading the model and training it on local data, (3) the clients uploading the parameter deltas to be
merged into a global model on the server.

recent years and many researchers proposed new ideas to optimize the federated learning approach.
The remainder of this paper is organized as follows. In Section 2, we give an overview of the
current challenges in federated learning and recent related contributions. After that, in Section 3,
we propose a new protocol for federated learning that makes use of wireless broadcasting in local
sub-networks to improve training convergence and reduce communication costs. Finally, we discuss
future research topics and give a conclusion in Sections 4 and 5.

2. Recent Challenges and Contributions in Federated Learning

Since federated learning was initially introduced by Google in 2016, it received great attention from
researchers. While it yields great opportunities to empower machine learning with the immense
privacy-sensitive data available, there are still challenges to using federated learning effectively in
practice. In this section, we explain current challenges related to federated learning, namely the
high communication cost, the dependence on a central server, and the handling of non-independent
and identically distributed (non-IID) data. For all of the challenges, we give an overview of recent
publications addressing the respective issue.

2.1 Minimizing Communication Cost

Communication cost is one of the main limiting factors of federated learning [5, 62-64][10, 1].
Since the clients have to send gradient updates to the server in each communication round, the
cost of communication is linearly dependent on the training time and the number of participating
devices, which both can be massive and are expected to grow in the future with the trend towards
larger models, more training data [11, 859], and more IoT devices [3, 1]. Since the bandwidths of
cloud computing centers are limited, communication hinders the scalability of federated learning.
Furthermore, transmitting data consumes power, which is especially scarce at end devices.

To overcome the bandwidth limitations at the cloud server for federated learning, hierarchical
federated learning has been proposed [12]. In this approach, a third layer of edge servers is inserted
between the clients and the server. The clients synchronize frequently with their respective edge
servers, which then occasionally synchronize with the other edge servers via the central cloud
server. Thus, the load on the server can be reduced as in classical multi-tier architectures while
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still allowing the clients to get frequent input from other clients to prevent strong model parameter
divergence.

Another approach to minimizing the communication overhead is by optimizing the ratio between
local optimization rounds and global synchronization rounds. Given a resource constraint and
considering the resources needed for local training and global aggregation, a recent publication [13]
introduces an algorithm that optimizes resource consumption.

A further approach to reduce communication has been proposed by Yurochkin et al. [14], which
uses a new algorithm for merging neural networks into a single higher-quality network. Other than
in classical federated learning, the distributed models are not assumed to have the same initialization
weights before local training and the merged model does not necessarily have the same hidden layer
layout as the local models. With this approach, models that have been trained independently for a
large number of rounds can be merged more effectively, thereby decreasing the required frequency
of communication rounds.

Compression is a way to reduce the communication cost without interfering with the federated
learning algorithm. It has been shown, for instance, how neural networks can be used for compres-
sion and decompression of gradient updates to reduce the data that has to be transmitted in each
communication round [15]. Furthermore, many compression algorithms for generic use cases exist
and are applicable to federated learning as well [16].

2.2 Eliminating the Central Server

In the original version of federated learning proposed by Google, a central server is needed for
merging the gradient updates of the participating clients into a global model. The community is
concerned about the dependency on a central server for several reasons. Firstly, the server is a single
point of failure, meaning the whole system cannot operate in the case of unavailability of the server
[17, 2,10][18, 2]. Secondly, handing control to a central server raises privacy concerns if the server
is run by an untrusted third party [19, 150][18, 2][20, 2].

Salmeron et al. [17] conducted research on aggregation functions for federated learning in a peer-to-
peer network. They chose a fully connected peer-to-peer network architecture, requiring every peer
to send updates to every other peer in each algorithm step. This leads to linear state complexity and
quadratic communication complexity with regard to the number of peers, which is much worse than
the classical server-client setup. Nevertheless, this architecture is a way to improve fault tolerance
by eliminating the server as the single point of failure.

Another peer-to-peer federated learning approach has been proposed in 2021 [19]. In their work,
the authors put a focus on trust by proposing an algorithm for merging the peers’ model parameters
without sharing the raw parameters, utilizing an n-out-of-n secret sharing schema. Similar to the
work published by Salmeron et al., they rely on a fully connected peer-to-peer network, which is
not scalable in terms of communication cost and state complexity.

BrainTorrent, another peer-to-peer federated learning system with the goal of eliminating the de-
pendency on a trusted single server, was proposed in 2019 [18]. Like the two aforementioned
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peer-to-peer approaches, it might be suitable for achieving more autonomy of the peers, but similar
to the aforementioned approaches, it is unsuitable for large-scale wide-area networks because of its
high communication cost.

An asynchronous decentralized communication scheme for federated learning was proposed by
Bellet et al. [20]. In their system, every process works on behalf of a local clock and receives and
processes updates from other peers asynchronously, allowing to eliminate the cost of synchroniza-
tion, especially in the presence of stragglers. To provide stronger privacy guarantees, they add a
Laplace noise to the exchanged parameters. The proposed system is not yet production-ready since
it e.g. does not handle peers entering and exiting the network. Furthermore, it also suffers from
immense communication costs due to communication in a fully-connected network. While the
authors argue that broadcasting is efficient in wireless networks [20, 4], realistically the participants
are unlikely to be in close enough proximity, and even if that would be required, the network’s
scalability would be limited to the devices within signal coverage.

2.3 Handling Non-IID Data

In federated learning, the clients use the locally available data for training. Since the data originates
from the respective participant in the system, it is inherently biased. Considering, for example, next
word prediction on digital keyboards, the frequency of the words used is different for every user
because they talk about different topics and have different linguistic habits and backgrounds. Non-
IID training data can negatively impact the training convergence due to model parameter divergence
[21]. To cope with this issue, recently several contributions have been published.

Huang et al. tackled this challenge by clustering the training data with the K-means method and
then training K models with federated learning [22], one for each cluster. For inference, data points
first have to be mapped to a cluster to then use the respective model for prediction. While this
results in multiple less general models, it effectively reduces the non-IID property of the training
data per model, thereby increasing the convergence rate and prediction accuracy.

Zhao et al. have shown that there is not necessarily a clear boundary between federated learning and
centralized learning. They show that by replicating a subset of the training data, a trade-off between
privacy and accuracy can be achieved [21]. In certain scenarios where some users consent to
sharing part of their data with the other system users, the prediction accuracy could be significantly
improved by this technique.

In the work by Luping et al. from 2019, they dynamically measure a parameter trend in the training
process and thereby are able to identify outliers that occur due to skewed data distribution [10].
Using this approach, they can handle non-IID data better and also reduce communication costs
since updates based on outliers do not have to be transmitted to the server.
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3. Wireless Peer-to-Peer Broadcasting for Federated Learning

In this section, we introduce our main contribution, a novel peer-to-peer protocol for enhancing
federated learning in modern wireless networks.

3.1 Motivation

Wireless 5G and beyond networks are characterized by increasing device density and mobility due
to ubiquitous IoT devices, autonomous driving, and passengers in vehicles. Having analyzed the
current challenges and contributions in federated learning in Section 2, we ask the question of how
we could use modern wireless networks to improve federated learning in terms of the two main
challenges, communication cost and non-IID training data. We notice that there is a way to combine
some of the aforementioned state-of-the-art techniques and add new ideas to build a protocol that
can benefit from the characteristics of modern wireless networks. Our protocol uses wireless peer-
to-peer broadcasting where it is efficient, namely in local environments, and a hierarchical server
architecture in the wide-area context.

3.2 Protocol Description

Our protocol, illustrated in Figure 2, contains two classes of participants, peers and servers, where
servers form an 𝑛-tier hierarchical structure. The peers communicate in peer-to-peer wireless
broadcasting networks, determined by their location and transmission power. The number of
servers in the bottom-most tier is significantly smaller than the number of peer sub-networks, such
that multiple peer sub-networks are directly connected to the same server. Similarly, the number
of servers in tier 𝑖 is significantly smaller than the number of servers in tier 𝑖 − 1, such that many
servers are connected to one of the higher-level servers until the hierarchy ends at a single server in
tier 𝑛.

Tier-𝑛 Server

. . . . . .

Tier-1 Server 𝑖 . . .

. . .

Dev 1 Dev 2

Dev 3 Dev 4

synchronize

Wireless broadcasting
of training updates

Figure 2: Illustration of our hybrid protocol for federated learning comprising multiple peer-to-peer networks
connected through a hierarchical server infrastructure.
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The protocol is described as follows:

1. Peers train their copy of the model on their local data in synchronous rounds. The length
of a round is defined by a duration hyperparamter 𝑡. Whenever 𝑡 time has elapsed, each
peer broadcasts its model parameter weight deltas to nearby peers via a wireless broadcast
channel.

2. At the end of each round, the peers wait to receive all parameter updates from nearby peers
via the broadcast channel. After a predefined grace period, they assume that all nearby peers
have finished sending (since the number of nearby peers is unknown and subject to change)
and average those into a single model that they use for training in subsequent rounds. To
account for different training speeds on different devices, they may use a weighted average
concerning the number of training iterations done by the respective devices in this round.

3. Each peer 𝑖 in each synchronization round 𝑗 has a local timer that starts at a value 𝑡𝑠𝑖 𝑗 = 𝑡𝑠+𝑡𝑟𝑖 𝑗
and counts down, where 𝑡𝑠 is a hyperparamter that defines the approximate duration between
each synchronization of peer subgroups with the server and 𝑡𝑟𝑖 𝑗 is a pseudo-random number
generated on peer 𝑖 in for communication round 𝑗 . When the timer of peer 𝑖 expires, it resets
its timer to a new value and broadcasts a message 𝑚𝑟 , instructing all nearby peers to do so as
well. This ensures a peer out of the group is randomly chosen to take action. Then all peers,
except for peer 𝑖, send their most recent training updates to peer 𝑖 analogous to step 1. This
ensures that the model on peer 𝑖 contains all recent updates of all other peers. Then peer 𝑖
sends the gradient updates, representing the updates of all peers in the subgroup, to a tier-1
server.

4. Once a synchronization as described in step 3 has been initiated, all peers of this subgroup
wait for the response of the server before continuing training.

5. Since the 𝑡𝑠 value is the same across all peers, all peer networks will send an update to the
tier-1 server at a similar time, only varying by the random component 𝑡 𝑗𝑖 . The server waits
for a predefined grace period to receive all the updates from peers since it does not know how
many peer networks are connected to it because the peer networks can change due to user
movement. After the grace period, the server averages the models and send the aggregated
weights back to the peers that have sent the models.

6. Once peer 𝑖 receives the aggregated model weights from the server, it broadcasts it to nearby
piers, acting as a relay. All peers then continue training using this model as described in
step 1.

7. After a predefined number of synchronizations with the server on a given tier, the servers of
this tier (tier 𝑘) act as clients towards the tier 𝑘 + 1 servers before replying to the tier 𝑘 − 1.
In this regard, the peers can be seen as a special tier 0.

8. If a peer does not have a local model (e.g. freshly entered the network), it behaves as if its
𝑡𝑠𝑖 𝑗 timer expired.
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Note that the protocol already handles device mobility, as devices are loosely connected to other
devices via a broadcasting channel. Furthermore, the edge case of a peer that does not have a local
environment is considered. Such peer will never receive an 𝑚𝑟 message and, for this reason, its
timer will eventually run out. This causes the peer to synchronize with the server and behave like a
1-peer subgroup, similar to vanilla federated learning.

The number of tiers, the number of servers per tier, the timer values and the bounds of random num-
bers are variables that can be chosen based on the application circumstances. When implementing
this simple protocol, many of the aforementioned state-of-the-art methods can be integrated: For
the details on the multi-tier hierarchical server layout, the findings of Liu et. al can be used [12].
An approach similar to that of Wang et. al [13] can be used to determine the optimal bounds for the
initialization of the peers’ random timer. Of course, also advanced model merging schemes [14]
and compression [15] can be used. Furthermore, any of the peer-to-peer architectures mentioned
in Section 2.2 could be used to fine-tune the broadcasting within the local clusters. The techniques
for handling non-IID data mentioned in section 2.3, namely sample clustering [22], sharing parts of
the data [21] and global trend recognition [10] are also appropriate to be used in conjunction with
this protocol.

3.3 Protocol Analysis

Our protocol design offers three major benefits for federated learning in wireless environments.

Firstly, compared to hierarchical federated learning, the average load on the server(s) is reduced by
the factor of the average cluster size because only one peer per group communicates with a server
in each step. Specifically, this means that given a certain surface area and transmission power, the
communication cost of the system is constant with regard to the number of devices, allowing it to
scale extremely well. This way, the architecture is perfectly suitable for super-dense 5G+ networks
in big cities where numerous IoT devices and smartphones are located next to each other. The
random selection of peers through the random timers ensures natural load distribution. This could
be adjusted if a certain group of peers is desired to used as the relay. Furthermore, through the
intelligent placement of the servers (e.g. placing bottom-most tier servers at the edge and letting
peers communicate with nearby edge servers) low-latency and low-cost communication can be
ensured.

Secondly, the frequent integration of nearby peers’ model updates can improve the training con-
vergence by reducing model parameter divergence. This is under the assumption that the data
distribution is not strongly dependent on the location of the device. For instance, in next word
prediction on keyboards, every user has specific topics and a specific way to express their thoughts
and, hence, the training data is non-IID. However, if a couple of nearby users (e.g. on public
transport or in a restaurant) share their model updates, the result of training is similar to when the
data of all nearby devices would have been combined in one training data set. This effect gets
stronger with high user mobility in 5G+ networks, since it makes the broadcasting groups more
dynamic, i.e. one peer will be in the transmission range of a large variety of peers over time. This
effectively increases the variety of data samples influencing each peer’s model.
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Thirdly, since the server(s), which are potentially hosted by an untrusted party, only see the combined
gradient update of multiple peers transmitted by a random peer, better privacy protection is achieved
at the server level. Even if the server was able to reconstruct information about the raw training
data from the gradient deltas, it would be hard to associate this information with particular peers.

4. Future Work

Despite the relatively simple rules of the protocol, it leads to complex system characteristics that
are worth being analyzed in more detail in the future:

It is not fully understood how the early migration through the broadcasting of training updates in-
fluences the convergence of the training process. While we anticipate that the increased interchange
of model updates through moving clients randomizes the order of updates and thereby improves the
convergence of federated learning, the practical effects of early migration are difficult to predict.
There are three ways an update can be integrated into another model instance: by direct migration
through broadcasting within the same subgroup, by early migration through moving peers and by
downloading merged models from the server. The impact of those communication types is influ-
enced by hyperparamters such as synchronization frequency and broadcasting transmission power,
as well as by the movement patterns of the peers and the training data distribution. A simulation
based on real-world mobile movement patterns and real-world distributed datasets could help to get
more insight.

Another issue is the transmission power control for the broadcasting groups. In general, higher
transmission power allows reaching more nearby peers, decreases the number of subgroups con-
nected to the same server and increases the diversity of the shared training updates. The latter might
also allow for less frequent synchronization with the server. Higher transmission power, however,
comes at the cost of higher energy consumption, which is especially critical for mobile devices.
Moreover, for a given objective, the optimal transmission power may vary among peers due to the
non-uniform spatial distribution of peers.

How frequently to synchronize with the server and how frequently the servers should synchronize
with upper-tier servers is also a relevant optimization problem. More frequent synchronization
might aid in training convergence by mitigating model parameter divergence, but it also introduces
communication overhead.

5. Conclusion

We have shown that the characteristics of 5G+ networks, such as high mobility and high device
density, are a chance to develop loosely-coupled low-cost device-to-device architectures with inter-
esting characteristics. In the context of federated learning, this can be useful to improve training
convergence and reduce communication costs. Our hybrid protocol for federated learning is ex-
pected to become more powerful with the trend towards bigger cities, denser networks and more
mobile IoT devices.
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