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The efficient manifold ranking (EMR) algorithm has been widely utilized in content-based image 

retrieval (CBIR). In this algorithm, each image is represented by low-level features that describe 

color, texture, and shape. However, low-level features have limitations in capturing semantic 

meaning. To enhance EMR performance in CBIR, this research proposes a fusion method called 

CoEMR. 

CoEMR combines multi-rankings on low-level features with CNN features extracted from a CNN 

model to enhance the discriminative power of a query image compared to dataset images. 

Furthermore, CoEMR generates a similarity score between two input images, constructing a 

similarity learning model. Experiments demonstrate the effectiveness of the proposed methods in 

improving EMR quality. Additionally, the potential integration of CBIR with Large Language 

Models in Medical Image Diagnosis Systems is discussed. 
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1.  Introduction 

In recent times, in the context of economic and social issues, the demand for disease 

diagnosis through image and deep disease recognition in crop plants in the field of agriculture has 

been increasing. Therefore, the classification and search for diseases based on content-based 

image retrieval (CBIR) techniques play an important role in practice [1-2]. 

In a CBIR system, images are often represented by feature vectors such as low-level features 

[6]. In addition, exploiting the excellent image discriminative features of CNN-based 

classification models, in [7-8], the authors used pre-trained networks to extract features (CNN) 

that achieved very high accuracy in image classification problems in the trained domain. 

However, CNN models often require a large amount of training data for the network to adapt to 

changes in image orientation and structure. Therefore, when deploying practical CBIR systems, 

we often need to combine CNN features and low-level features (color, texture, and shape 

descriptors) on image datasets that lack diversity in orientation and structure. 

In image recognition and retrieval, in general, similarity measures such as Euclidean 

distance are not suitable for measuring the similarity between images because many related 

images can be different even in visual appearance. In complex cases, feature vectors of images 

are often considered as data points in some manifold to apply similarity measures or distances 

based on manifold approximation. Yang [9] has pointed out the existence of relationships between 

manifold learning and distance metric learning. 

Regarding manifold data, manifold ranking (MR) [10] is known as a graph-based model that 

has been successfully applied to content-based image retrieval (CBIR) using low-level features 

[11-13] and CNN features. MR is very effective in measuring the similarity between query images 

and image datasets where the relevance is not easily detected by visual appearance but has a 

"latent" nature, only detected when similarity spreads through a graph structure [16]. In this 

article, we propose two new methods to rank image databases based on query images. The first is 

a nonlinear combination method of multiple manifold ranking results, and the second is a 

manifold ranking distance metric learning method to exploit the advantages of manifold ranking 

with the property of propagating similarity on a graph that represents the local geometric structure 

of the feature vector set representing images. 

 

Figure 1. Overview of the research problem. 



P
o
S
(
I
S
G
C
2
0
2
4
)
0
0
2

Nonlinear fusion of multiple efficient manifold rankings in content-based medical image retrieval 

3 

The remaining part of the paper is structured as follows. Section II presents the related 

research and the proposed methods. Section III presents the experiments on the Leaf2k and 

COVID-19 chest X-ray datasets. The discussion is in Section IV and the conclusion is in Section 

V. 

2.  Related work and proposed method 

2.1 Metric learning 

In Content-Based Image Retrieval (CBIR) systems, both similarity and dissimilarity 

measures are crucial for the quality of search results. Machine learning algorithms are known to 

be sensitive to these measures [3]. Traditional metrics like Euclidean distance often fail to fully 

represent the semantic complexity inherent in some problems. In response, various metric learning 

algorithms have been developed to better grasp these complex semantic spaces [4]. Among them, 

Mahalanobis distance metric learning stands out as a popular choice [4], effectively transforming 

the Euclidean distance to better fit the data structure. 

For metric learning to be effective, it should ensure that similar items are measured as closely 

together while dissimilar items are farther apart. A good metric learning method should meet three 

criteria: it should accurately reflect the true similarities between items, be computationally 

efficient, and be versatile enough to handle various data types and learning scenarios. 

Standard metric learning algorithms, often referred to as single or global metric learning 

algorithms, include Neighbourhood Component Analysis (NCA), Large Margin Nearest 

Neighbor (LMNN), and others. Although effective for simple data structures, they struggle with 

complex, nonlinear datasets. To overcome this, strategies such as kernel methods, deep 

embeddings, and multiple metric learning have been proposed [20]. Kernel methods can separate 

data effectively in a high-dimensional space, but they are computationally demanding and 

choosing the right kernel is challenging. Deep embeddings offer strong feature representation yet 

lack interpretability and require considerable preprocessing. 

For a detailed overview of distance metric learning, references [20] are recommended, with 

examples like LMNN, ITML, and NCA. With the advent of deep learning, new algorithms such 

as FaceNet [5] and energy-based neural networks [20] have emerged. These deep metric learning 

algorithms have taken advantage of traditional methods to improve performance. 

In classification applications, algorithms specifically designed to enhance the K-NN 

classifier have gained attention due to better performance. These can be broadly categorized into 

two groups. The first includes triplet-based methods, which rely on prior information to construct 

triplets. While effective, these methods can be overly restrictive, narrowing the learned metric's 

search space and potentially complicating training. They also face challenges with the large 

number of triplets required, which can be computationally prohibitive [20]. 

The second group does not require prior information about sample neighborhoods. An 

example is NCA, which aims to minimize the expected leave-one-out training error of the K-NN 

classifier. However, these methods might overlook valuable discriminative information because 

they tend to focus on the nearest neighbors at the expense of those further away. 

Considering distance metric learning as an optimization of the empirical risk for the K-NN 

classifier, there's a gap between traditional loss functions and the K-NN's empirical risk. This has 

motivated the development of algorithms that target the empirical risk directly. Nonetheless, 
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optimizing this risk is challenging due to the non-continuous nature of the K-NN decision function 

in relation to the distance metric, making it more complex than optimizing for SVMs, linear 

regression, or softmax regression [20]. 

2.2 Graph-based Ranking 

Graph-based ranking models have been widely applied in content-based image retrieval 

(CBIR) query, including MR (Manifold Ranking), AGR (Anchor Graph Regulrization), EAGR 

(Efficient Anchor Graph Regulrization), EMR (Efficient Manifold Ranking), and more. 

2.2.1 Anchor Graph Regulrization (AGR) 

Anchor Graph Regularization (AGR) is a graph-based ranking model that utilizes anchor 

points to construct a graph representing the relationships between data points and anchor points 

[15]. Specifically, the effectiveness of AGR lies in two steps: 

1. Building the adjacency relationships between points in the same class based on anchor 

points, instead of computing all pairwise relationships between data points. 

2. Labeling data points based on the adjacency relationships between their respective classes 

and anchor points. 

2.2.2 Efficient Manifold Ranking - EMR 

Unlike MR algorithms in CBIR, the original EMR algorithm [10] focuses on selecting the 

number of anchor points and then ranking the data points in the image database without using 

label information. Ranking images based on the neighborhood relationships in the EMR graph is 

represented through these anchor points and maintains an expandable graph structure. Thus, EMR 

has the capability to efficiently rank large databases and thereby enhance the performance of 

CBIR systems [10]. 

A feature vector Ei is considered to be adjacent to Ej if i ≠ j and there exists a common anchor 

pointAc (c = 1, 2, ..., C; is the number of anchor points) such that Ac is a neighboring anchor point 

of both Ei and Ej. For each symbol Ei, we denote Nb(i; s) as a set consisting of s feature vectors 

of the nearest anchor points to Ei (s is a testing parameter, for example, s = 5), and the maximum 

distance between Ei and s is represented by:  

 
( , )

max ( , )
b

s i l
l N i s

d d E A


=
                    (1) 

The multidimensional measure is a ranking vector rQ = (ri) constructed by solving the 

objective function: 
2
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EMR is considered more effective than other methods. To demonstrate its effectiveness in 

classification and determining anchor points when constructing the EMR graph, we compare it 

with the ranking method based on the AGR graph, as shown in the experimental section. 

2.3 Proposed Methods for Efficient Manifold Ranking 

Image features can be divided into low-level and high-level features, where low-level 

features contain the image's characteristics such as color, texture, shape, etc. They are represented 

in a high-dimensional vector with less semantics but do not lose detailed image information. In 
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contrast, high-level image features can represent more semantics but are constrained by reduced 

color and texture details. 

The following diagram illustrates the steps of the image retrieval algorithm that we propose: 

 

Figure 2. Fusing EMR Rankings in a CBIR System 

Using high-level features represented by CNN feature vectors extracted from the 

EfficientNet deep learning network, querying images can yield relatively high accuracy results 

[16]. Assuming a dataset of original images, where each image has a corresponding unique feature 

vector, and for a query image IQ, the system selects rankings based on the low-level feature image 

ranking 𝑟𝑙𝑓.𝑣.𝑄,𝑖
∗  combined with the high-level feature image ranking 𝑟𝐶𝑁𝑁.𝑄,𝑖

∗ , where the ranking 

vectors are calculated using EMR. The following is the detailed algorithm that we propose. 

Algorithm. CoEMR (The algorithm combines two separate EMR rankings on low-level 

features and CNN). 

Input: {𝐼𝑖}1≤𝑖≤𝑛 is the original image dataset, and IQ is the query image. 

MxN the image size standardized for training using the EfficientNet. 

d: the dimension of an embedded vector. 

C: the number of anchors in the EMR algorithm, parameter  (0,1) (a ≈ 1), 

α, β: To linearly combine the ranking weights of two EMR algorithms, α, β >0, α + β = 1. 

Output: 
  , [0,1] 1,

1
nr i r iii n

r  =
 

= 
  is the similarity ranking of image IQ with image 

Ii in the image database E. 

Step 1 (offline): Build the EMR graph 

Step 1a. Train the image dataset E using the EfficientNet models with the standardized input 

image size of M*N, resulting in: 

1.1. Use the model parameter W_CNN. 

1.2. Passing each image {𝐼𝑖}1≤𝑖≤𝑛 through the model yields a set of embedded vectors 

{𝑣. 𝐸𝑖}1≤𝑖≤𝑛 with dimension dCNN=1280. 

1.3. Determine C anchor points {𝐴𝑐}1≤𝑐≤𝐶 for the image dataset {𝐼𝑖}1≤𝑖≤𝑛 based on an 

improved version of the FCM algorithm using the CNN vectors {𝑣. 𝐸𝑖}1≤𝑖≤𝑛 

1.4. Determine the adjacency matrixW=(wij) for the EMR algorithm using the CNN vectors 

{𝑣. 𝐸𝑖}1≤𝑖≤𝑛. 
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1.5. Determine the weight matrix Z with dimensions C*n for EMR. 

Step 1b. Low-level feature extraction: Color Moments, LBP, Gabor Wavelets Texture, Edge, 

and GIST are extracted, resulting in a feature vector set with dLF=809 dimensions. Repeat steps 

1.3 - 1.5 as in step 1a with the low-level features. 

Step 2 (online): Combine the ranking vectors 

2.1. Normalize the image IQ về kích thước M*N, then pass it through the EfficientNet model 

defined in step  1.1, and obtain the CNN vector v.EQ with dimension d. 

2.2. Expand the Z matrix according to EMR [7] (refer to formula (4) above): Using the C 

distance values between EQ and the anchor points in Ac, we obtain a new weight matrix ZQ with 

dimensions C*(n+1). 

2.3.  Set  𝑟𝑄 = {𝑟𝑖}1≤𝑖≤𝑛+1, 𝑟𝑖 = 0∀𝑖 = 1, 𝑛, 𝑟𝑛+1 = 1.0. From the weight matrix ZQ, we 

determine the ranking vector 𝑟𝐶𝑁𝑁.𝑄,𝑖
∗  using the EMR algorithm[7]. 

Step 3: Repeat steps 2.1 - 2.3 with low-level features lf.Ei we obtain the ranking values là 

𝑟𝑙𝑓.𝑣.𝑄,𝑖
∗   

Step 4:  To combine the ranking vectors of the two EMR methods 

- Linear fusion  𝐶𝐵(𝑟1,𝑟2) = {𝛼𝑟𝑙𝑓.𝑣.𝑄,𝑖
∗ + 𝛽𝑟𝐶𝑁𝑁.𝑄,𝑖

∗ }
1≤𝑖≤𝑛

. 

- Selected ranking Combination: 𝐶𝐵(𝑟1,𝑟2) = {
𝑟2

𝑟1
         𝑖𝑓 𝑟2 ≥ 𝑡ℎ 

- Power ranking Combination: 𝐶𝐵(𝑟1,𝑟2) = {
√{𝑟1

3+𝑟2
3}

2

3

𝑚𝑖𝑛 (𝑟1, 𝑟2)

         𝑖𝑓 𝑟1 + 𝑟2 ≥ 0  

Output: 𝑟 is represents the similarity ranking of image IQ with image Ii in the image 

database E. 

CoEMR consists of 2 phases, offline and online, performed by linearly combining 2 EMR 

rankings. Offline phase: O(C*n*d) + O(C3); Online phase: O(C*n*d), where C is the number of 

clusters, n is the number of samples, and d is the feature vector dimensionality.CoEMR is  

combines selected rankings of 2 EMRs, CoEMR complexity is: O(C*n*d) + O(C3  has the same 

computational complexity as the original EMR [10]. 

2.4 Building image similarity measure based on manifold ranking 

EMR has been used to determine the similarity between any two vectors [11]. However, 

there is a significant limitation when applying EMR to images outside the dataset [10]. To address 

this issue, we propose integrating machine learning by training a Support Vector Machine 

Regression (SVR) model to learn the ranking results of EMR for each image pair in the training 

dataset.  

Step 1. Defining the sample set of feature vector pairs: 

The training image feature vector pairs (Iv1,Iv2) are selected as follows: Iv1 is chosen from 

a random ʋ% of images in the image feature vector database.  

For each Iv1, we perform the following two steps: 

+ Select Iv2 from the 𝑁2 nearest images to Iv1 based on Euclidean distance.  

+ Rank all feature vectors in the database with the query vector Iv1 using EMR. 

We obtain the input-output pairs as: { (Iv1-Iv2, rankIv1(Iv2))} 

Step 2. Splitting the sample set into training and testing sets. 
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Step 3. Training SVR regression on the training set, where the input is the difference vector 

of the two image feature vectors, and the output is the real-valued similarity score (according to 

EMR). 

Step 4.  Evaluating image similarity. 

For an image pair (𝐼1, 𝐼2) with corresponding feature vector pair (𝐼𝑉1, 𝐼𝑉2), the learned 

machine model determines the similarity score 𝛺(𝐼𝑣1 − 𝐼𝑣2). 

- The computational complexity of the similarity calculation phase is the sum of the 

complexity of building EMR on n images and the complexity of training SVR. O(SVR) = 

O(n2*d). So: O(𝛺) = O(C*n*d) + O(C3) + O(n2*d). 

- The computational complexity of the similarity prediction phase is: O(nsv * d) wherensv 

is the number of support vectors obtained after training the SVR model. 

We observe that O(nsv * d)<< O(C*n*d). 

The main contributions of our proposal are as follows: 

(1) Providing an effective combination of low-level features and CNN features, thereby 

increasing the accuracy of image query results in CBIR. 

(2) Experimentally demonstrating on the Leaf2k and COVID-19 chest X-ray datasets that 

measuring similarity on CNN feature vectors using EMR is more effective than using AGR. 

(3) Proposing the integration of machine learning through the SVR regression model to 

improve accuracy in the problem of evaluating image similarity using EMR. 

3.  Experiments 

3.1 Image Datasets 

To conduct the experimental part, we first select suitable datasets to demonstrate the 

rationality of the proposed parameters and algorithms in this article. The datasets should be large, 

complex, and unlabeled. Therefore, we have chosen the following two datasets: 

3.1.1 Leaf2k Dataset 

The Leaf2k dataset contains 2,600 leaf images of 10 plant species compiled from the 

PlantVillage, Leaf Disease, Leaf Images datasets. It is divided into 20 classes in order of healthy 

leaf images, diseased leaf images, with each class containing 130 images and a total size of 

185MB. This dataset is temporarily named Leaf2k. The image names are assigned by the folder 

name with the sequential number of the image within the folder. 

3.1.2 COVID-19 chest X-ray Dataset 

The X-Ray Lung COVID-19 Image Dataset [17] consists of a database of lung X-ray images 

for COVID-19 positive cases, as well as normal images and viral pneumonia images. The dataset 

contains a total of 21,165 images, categorized into the following classes: Normal: 10,192 images, 

Lung_Opacity: 6,012 images, COVID-19: 3,616 images, Viral_Pneumonia: 1,345 images. 
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Figure 3: Some images from the Leaf2K (a) and the X-Ray Lung COVID-19 (b) image 

dataset. 

3.2 Feature Extraction 

The low-level features (LF) comprise five sets: Color Moments, LBP, Gabor Wavelets 

Texture, Edge, and GIST, to describe an image. All these features of the Leaf2k and COVID-19 

chest X-ray datasets are normalized so that each vector component of each image falls within the 

range [-1, 1]. They are then concatenated into a vector with a size of dLF=809 [10]. 

In parallel, each image in these datasets is resized to 256x256 and passed through the 

EfficientNet [14] model (with the last layer removed), resulting in a corresponding CNN feature 

vector set with a size of dCNN=1280. 

3.3 Evaluation Formula 

3.3.1 The evaluation index for label recognition accuracy 

The ERR (Error Rate Reduction) index was used to evaluate the results of image label 

recognition [21] as follows: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑞; 𝑆, 𝑁, 𝐷𝑆) = {
1: 𝑙𝑞 = 𝐷𝑆(𝑎𝑟𝑔𝑚𝑖𝑛𝑁 − 𝑡𝑜𝑝(𝑆(𝑞, 𝐸𝑖)))

0                                                                       
 

𝐴𝑐𝑐(𝑆, 𝑁, 𝐷𝑆) =
1

|𝑄|
∑ 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑞; 𝑆, 𝑁, 𝐷𝑆)

|𝑄|
𝑞=1 . 

                       𝐸𝑅𝑅(𝑆, 𝑁, 𝐷𝑆) = 100 − 100 ∗ 𝐴𝑐𝑐(𝐴, 𝑁, 𝐷𝑆)                         (3) 

3.3.2 The evaluation index for query accuracy 

For each query image q∈Q, using the similarity scores provided by EMR, we chose N = 100 

is the number of images in a class. The accuracy value is the average ratio between the number of 

relevant images 𝑁𝑞
+ within the retrieved images N and the similarity of each image q. Let the set 

of related elements to the query 𝑞 ∈ 𝑄 be {𝑑1, 𝑑2, . . . , 𝑑𝑚𝑗}, then mAP(q) represents the mean 

Average Precision for a query q and the accuracy for all queries is calculated as follows: 

𝑚𝐴𝑃(𝑞) =
𝑁𝑞

+

𝑁
∗ 100  (4), and 𝑚𝐴𝑃 =

1

|𝑄|
∑ 𝑚𝐴𝑃(𝑞)

|𝑄|
𝑞=1   (5) 

The ranking results of EMR for each query image q can be considered as a similarity 

measure of the image, indicating the degree of similarity between the query image q and the image 

Ei in the database, which is assigned as rankq(Ei). 
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3.4 Experimental Results 

We conducted several experiments including: 

• Experiment 1: Comparing the classification results using the AGR and EMR 

algorithms. 

• Experiment 2: Evaluating the accuracy in terms of mAP when retrieving images of 

leaf diseases and lung diseases using the CoEMR algorithm, which includes the 

following components: 

- Using EMR for low-level feature ranking. 

- Using EMR for CNN feature ranking. 

- Using the proposed method of combining EMR rankings. 

• Experiment 3: Comparing the results of EMR with DMLMJ and CMML algorithms 

for the given image datasets. 

• Experiment 4: Learning similarity measures. 

3.4.1 Comparing EMR and AGR when utilizing label information from the image 

database for classification 

We compare based on the ERR index, which is the average error rate of AGR and EMR on 

the Leaf2k and COVID-19 chest X-ray datasets. The experimental results in the table below 

demonstrate that EMR often achieves higher accuracy in many cases, highlighting the effectiveness 

of improving the modeling of relationships in the image retrieval process. 

Table 1: Comparing the average error rate ERR (Error Rate Rate) 

Index Method 

Error Rate (%) 

Leaf2k (C=300, 

nb=100) 

COVID-19 Chest X-ray (C= 300, 

nb=100) 

1. Anchor Graph Regulrization (AGR) 26.92±0.85 15.72±0.85 

2. Efficient Manifold Ranking (EMR) 13.5±0.71 9.28±0.50 

3.4.2 Evaluation of accuracy based on mAP when querying images with the CoEMR 

algorithm 

We set the common parameters for all experiments as follows: parameter a = 0.99, anchor 

points C = 200, r = 5, nbest for each query nb = 100, and randomly sampling 20% of the query 

samples. The parameters for combining the two rankings in CoEMR are α = 0.2 and β = 0.8. 

Experiment 1: Using EMR for low-level features. 

Using EMR for low-level feature ranking: The results on the Leaf2k dataset achieved an 

accuracy of 65.05%, while on the COVID-19 chest X-ray dataset, the accuracy was 68.51%. 

Experiment 2: Using EMR for CNN features. 

Using EMR for CNN feature ranking: The results on the Leaf2k dataset achieved an accuracy 

of 70.72%, while on the COVID-19 chest X-ray dataset, the accuracy was 73.27%. 

Evaluation: The results obtained from the experiments indicate that using CNN features is 

more effective than using low-level features. However, there are specific cases where the retrieval 

results are poor, even though the query image has a highly accurate CNN feature vector. The main 

reason for this is the difference between the pretraining data and the Leaf2k and COVID-19 chest 

X-ray datasets. This is a common challenge when applying Deep Learning in CBIR, as pretraining 

models are typically used. 
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Experiment 3: Using the proposed method of combining EMR rankings. 

In this part, we used two EMRs to rank the low-level feature vectors and the CNN feature 

vectors extracted from EfficientNet, and combined these rankings using the proposed CoEMR 

algorithm. This achieved the highest accuracy results with a power ranking combination of 81.70% 

on the Leaf2k dataset and 82.81% on the COVID-19 chest X-ray dataset. The image query results 

for (a) Cherry_healthy_0076.jpg and (b) COVID_0302.png using the combined EMR ranking are 

depicted in the following image. 

  

(a) (b) 

Figure 4. The query results for (a) Cherry_healthy_0076.jpg; (b) COVID_0302.png using 

the EMR ranking fusion. 

3.4.3 Comparing the results of EMR with DMLMJ and CMML algorithms for the given 

image datasets 

We utilized DMLMJ and CMML on the Leaf2k and COVID-19 chest X-ray datasets, 

resulting in fairly good performance. Specifically, for the Leaf2k dataset, the DMLMJ accuracy 

was 57.91% and the CMML accuracy was 71.74%. For the COVID-19 chest X-ray dataset, the 

DMLMJ accuracy was 57.79% and the CMML accuracy was 70.26%. 

We summarized the results from the experiments in Table 2 based on our arguments and the 

cases presented in this article. The results demonstrated that EMR performed well when applied 

individually and even better when combined on both the Leaf2k and COVID-19 chest X-ray 

datasets. The accuracy was measured using mAP and is as follows: 

Table 2: The experimental results 

Index Method 
Leaf2k COVID-19 chest X-ray 

C=200, nb=100 C=200, nb =100 

1 

EMR for low-level features (Color 

Moments, LBP, Gabor Wavelets 

Texture, Edge, and GIST) 

65.05% 68.51% 

2 EMR for CNN features  70.72% 73.27% 

3 DMLMJ 57.91% 57.79% 

4 CMML 71.74% 70.26% 

5 Combine EMR 

5.1 Linear fusion  79.87% 80.01% 

5.2 Selected ranking Combination 80.28% 80.93% 

5.3 Power ranking Combination 81.70% 82.81% 
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3.4.4 EMR learning 

 
The experimental parameters were set as follows: ʋ = 50, 𝑁2 = 20. The set (Iv1, Iv2) divided 

into 80% randomly selected pairs for model training and 20% pairs of image feature vectors were 

used for training validation. The SVR model utilized the RBF kernel. 

The test results on the training dataset showed a high correlation of 0.94, while on the testing 

dataset, the correlation was 0.92. These high correlation coefficients demonstrate the effectiveness 

of the unsupervised machine learning model for learning image similarity measures. 

The SVR model can effectively learn to accurately predict the similarity between two images 

based on the deviation of their input feature vector pairs. Here, we assume that the images belong 

to the same domain as the images in the database, with the feature vectors equipped with a multi-

dimensional manifold ranking. 

4.  Discussion 

In the field of content-based image retrieval (CBIR), a major challenge is determining the 

semantic similarity between images. To improve search efficiency, we need to evaluate both visual 

content similarity and textual description similarity. 

Methods for determining low-level and high-level visual feature similarity (CNN and 

Manifold Ranking) have shown good results thanks to the propagation mechanism of the Manifold 

Ranking algorithm. Using EMR or CoERM, we can determine the most similar image set for each 

query image, thereby obtaining the corresponding textual description set from the annotated image 

dataset. We can then utilize techniques like EMR learning and natural language processing to assess 

the semantic similarity between images to be compared. 

With large language models (LLMs), we can estimate the semantic similarity between textual 

descriptions [24]. In the field of medical image diagnosis, LLMs can analyze information from 

medical records to assist doctors in diagnosis. 

 

Figure 5. An application for disease diagnosis using CBIR combined with LLMs. 

Therefore, to comprehensively evaluate the semantic relationship between images, we can 

combine tools for measuring visual similarity from EMR and textual similarity from LLMs. This 
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integrated approach allows a more complete and accurate assessment of semantic relationships (see 

Fig.6).  

 

Figure 6. Estimate the semantic similarity of images based on EMR learning and LLMs 

5.  Conclusion 

The paper proposes two important suggestions to improve the efficiency and accuracy of the 

EMR algorithm in content-based image retrieval. 

Firstly, combining EMR rankings in different ways. Experimental results show that this 

combined approach is superior to other graph-based ranking methods (AGR, EMR, etc.) and 

distance metric learning methods between feature vectors. 

Secondly, using the Support Vector Machine Regression (SVR) model to learn the rankings 

of EMR. This method allows estimating the similarity between two images that may not be in the 

image dataset. The effectiveness of the proposed EMR ranking learning method has been verified 

through experiments on image datasets in agriculture and healthcare. 

The above results demonstrate the great potential of applying the proposed methods to 

enhance the quality of CBIR systems. In future work, we will continue to research combining 

natural language processing and AI methods based on large language models to improve the 

ability to predict and retrieve images by semantics. We hope this work will contribute to the 

development of the CBIR field and bring many useful applications in practice. 

In summary, the key contributions of this paper are: 

- Proposing effective combinations of EMR rankings to improve search accuracy 

- Introducing EMR ranking learning using SVR regression for generalized similarity 

assessment  

- Achieving state-of-the-art results on agricultural and medical image datasets 

- Demonstrating the potential to integrate semantic analysis of images via natural language 

processing and large language models 

- Providing novel techniques to advance content-based image retrieval systems for real-

world. 
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