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In this proceeding, we review the current theoretical landscape of rare Kaon decays, focusing
specifically on flavor-changing neutral current processes. These decays provide valuable indirect
avenues for exploring new physics. We will present the Standard Model predictions for the relevant
observables, and evaluate their potential for studying new physics effects by comparing them with
experimental measurements.
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1. Introduction
The field of kaon physics plays a crucial role in advancing our understanding of beyond the

Standard Model (SM) physics. Ongoing experiments like NA62 and KOTO are actively investigating
rare kaon decays, while future measurements are anticipated to enhance our capabilities further and
open new avenues of exploration. In this proceeding we aim to review the theoretical predictions
of rare Kaon decays within the SM, and outline the potential new physics (NP) sensitivity of these
decay modes considering the current experimental measurements and upper bounds.

Within the realm of rare kaon decays, the semi-leptonic decays with neutrinos in final states,
𝐾+ → 𝜋+𝜈𝜈̄ and 𝐾𝐿 → 𝜋0𝜈𝜈̄, hold particular significance as they offer theoretically clean observ-
ables, enabling us to detect new physics contributions. Additionally, other rare kaon decays, such
as 𝐾+ → 𝜋+ℓℓ̄, 𝐾𝐿,𝑆 → ℓℓ̄, and 𝐾𝐿 → 𝜋0ℓℓ̄, provide valuable insights into short-distance physics.

For the description of the 𝑏 → 𝑠 transitions we employ the week effective Hamiltonian

Heff = −4𝐺𝐹√
2
𝑉𝑡𝑑𝑉

∗
𝑡𝑠

𝛼𝑒

4𝜋

∑︁
𝑘

𝐶ℓ𝑘𝑂
ℓ
𝑘 , (1)

where the relevant local operators are given by

𝑂ℓ9 = (𝑠𝛾𝜇𝑃𝐿𝑑) (ℓ̄𝛾𝜇ℓ) , 𝑂ℓ10 = (𝑠𝛾𝜇𝑃𝐿𝑑) (ℓ̄𝛾𝜇𝛾5ℓ) , 𝑂ℓ𝐿 = (𝑠𝛾𝜇𝑃𝐿𝑑) (𝜈̄ℓ 𝛾𝜇 (1 − 𝛾5) 𝜈ℓ) , (2)

with NP contributions considered via modifications to the SM Wilson coefficients of the above
operators. The SM predictions of the observables given in this review are all according to the
SuperIso program [1] (see also [2] for more details).

2. 𝐾 → 𝜋𝜈𝜈̄

The first category we examine is the semi-leptonic 𝐾 → 𝜋𝜈𝜈̄ decays. Their remarkable
sensitivity to NP contributions, in addition to small theoretical uncertainties, justifies them as the
golden channels of rare Kaon decays. The branching ratios of these decays are given by (see e.g. [3])

BR(𝐾𝐿 → 𝜋0𝜈𝜈̄) = 𝜅𝐿

𝜆10
1
3
𝑠4
𝑊

∑︁
ℓ

Im2 [
𝜆𝑡𝐶

ℓ
𝐿

]
, (3)

BR(𝐾+ → 𝜋+𝜈𝜈̄) = 𝜅+ (1 + ΔEM)
𝜆10

1
3
𝑠4
𝑊

∑︁
ℓ

[
Im2

(
𝜆𝑡𝐶

ℓ
𝐿

)
+ Re2

(
− 𝜆𝑐𝑋𝑐

𝑠2
𝑊

+ 𝜆𝑡𝐶ℓ𝐿
)]
, (4)

where 𝜆𝑡 = 𝑉𝑡𝑑𝑉∗
𝑡𝑠, 𝜆𝑐 = 𝑉𝑐𝑑𝑉

∗
𝑐𝑠 and 𝑠𝑊 = sin 𝜃𝑤 , with the sum over the neutrino flavours. The

factors 𝜅+, 𝜅𝐿 and the electromagnetic radiative correction ΔEM are given in Ref. [4]. The SM
prediction of these observables are [2]:

BR(𝐾+ → 𝜋+𝜈𝜈̄)SM = (7.86 ± 0.61) × 10−11 , BR(𝐾𝐿 → 𝜋0𝜈𝜈̄)SM = (2.68 ± 0.30) × 10−11 , (5)

where for both, the main source of uncertainty is parameteric, i.e. from top and charm quark masses
and CKM parameters (see e.g. [5, 6]). On the experimental side the most precise measurement for
the 𝐾+ decay is given by NA62 [7] while for the 𝐾𝐿 decay there is an upper bound by KOTO [8]

BR(𝐾+ → 𝜋+𝜈𝜈̄)exp = (10.6+4.0
−3.5 ± 0.9) × 10−11, BR(𝐾𝐿 → 𝜋0𝜈𝜈̄)exp < 3.0 × 10−9@90% CL. (6)

The 𝐾+ → 𝜋+𝜈𝜈̄ measurement with less than 40% uncertainty is consistent with the SM, putting
strong constraints on lepton flavour universality conserving (LFUC) new physics effects (see left plot
of Fig. 1). However, it is possible to have quite large lepton flavour universality violating (LFUV)
new physics contributions. This can be seen in the right plot of Fig. 1, where NP contributions to
electrons are considered to be different compared to muons and taus, 𝛿𝐶𝑒

𝐿
≠ 𝛿𝐶

𝜇

𝐿
(= 𝛿𝐶𝜏

𝐿
).
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Figure 1: BR(𝐾+ → 𝜋+𝜈𝜈̄) with LFUC/LFUV new physics contributions on the left/right. On the left, the
gray band indicates the NA62 measurement within 1𝜎. On the right plot, the coloured contour corresponds
to 68% CL fitted region.

3. 𝐾+ → 𝜋+ℓℓ̄

An intriguing decay mode, which may serve as an observable to detect LFUV new physics
contributions, is 𝐾+ → 𝜋+ℓℓ̄. The branching ratio of this decay is dominated by long-distance
contributions via single virtual photon exchange, proportional to the vectorial form factor given
by 𝑊 (𝑧) = 𝐺𝐹𝑀

2
𝐾
(𝑎+ + 𝑏+ 𝑧) +𝑊 𝜋𝜋 (𝑧) where 𝑊 𝜋𝜋 (𝑧) corresponds to the unitarity corrections

from the pion loop [9]. The precise theoretical determination of the coefficients 𝑎+ and 𝑏+ remains
elusive (see [10] for an outlook on the anticipated advancements in theoretical calculations of
these parameters). Nonetheless, any discrepancy in the experimental determinations of the form
factor parameters 𝑎𝜇𝜇+ and 𝑎𝑒𝑒+ , corresponding to the muon and electron channels, respectively,
hints at short-distance LFUV effects [2, 11] as given by 𝑎𝜇𝜇+ − 𝑎𝑒𝑒+ = −

√
2 Re

[
𝑉𝑡𝑑𝑉

∗
𝑡𝑠 (𝐶

𝜇

9 − 𝐶𝑒9 )
]
.

Considering the experimental determination of 𝑎𝑒𝑒+ and 𝑎𝜇𝜇+ , the bound on LFUV new physics

Figure 2: LFUV new physics contributions to 𝐾+ → 𝜋+ℓℓ̄ in the (𝐶𝑒9 − 𝐶𝜇9 ) plane at 68% CL.

contributions is shown in Fig. 2, where for 𝑎𝑒𝑒+ the combination of the E865 [12] and NA48/2 [13]
measurements as given in Ref. [14] is considered, while 𝑎𝜇𝜇+ is taken from the recently determined
value by NA62 [15].
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4. 𝐾 → ℓℓ̄

The 𝐾𝐿 → 𝜇𝜇̄ and 𝐾𝑆 → 𝜇𝜇̄ decays offer unique insights; despite significant theoretical
uncertainties stemming from dominant long-distance contributions, constraints on new physics
parameters can be derived due to potential sizeable effects from short-distance contributions. The
branching fractions for these decays, in the absence of scalar and pseudoscalar contributions, are
described by [16, 17]

BR(𝐾𝑆 → 𝜇𝜇̄) = 𝜏𝑆
𝑓 2
𝐾
𝑚3
𝐾
𝛽𝜇

16𝜋

{
𝛽2
𝜇

��𝑁LD
𝑆

��2 + (
2𝑚𝜇
𝑚𝐾

𝐺𝐹𝛼𝑒√
2𝜋

)2
Im2

[
−𝜆𝑐

𝑌𝑐

𝑠2
𝑊

+ 𝜆𝑡𝐶ℓ10

]}
, (7)

BR(𝐾𝐿 → 𝜇𝜇̄) = 𝜏𝐿
𝑓 2
𝐾
𝑚3
𝐾
𝛽𝜇

16𝜋

�����𝑁LD
𝐿 −

(
2𝑚𝜇
𝑚𝐾

𝐺𝐹𝛼𝑒√
2𝜋

)
Re

[
−𝜆𝑐

𝑌𝑐

𝑠2
𝑊

+ 𝜆𝑡𝐶ℓ10

] �����2 , (8)

where 𝛽𝜇 =

√︃
1 − 4𝑚2

𝜇/𝑀2
𝐾

and 𝑌𝑐 stands for the short-distance charm contribution. The long-
distance (LD) contributions as extracted in [17] (see also [16, 18–20]) are: 𝑁LD

𝑆
= (−2.65 +

1.14𝑖) × 10−11 (GeV)−2 and 𝑁LD
𝐿

= ± [0.54(77) − 3.95𝑖] × 10−11 (GeV)−2. The SM predictions for
𝐾𝑆 → 𝜇𝜇̄ and 𝐾𝐿 → 𝜇𝜇̄ are given by [2] (see also [21])

BR(𝐾𝑆 → 𝜇𝜇̄)SM = (5.15 ± 1.50) × 10−12 , (9)

BR(𝐾𝐿 → 𝜇𝜇̄)SM =


LD(+) :

(
6.82+0.77

−0.24 ± 0.04
)
× 10−9 ,

LD(−) :
(
8.04+1.46

−0.97 ± 0.09
)
× 10−9 ,

(10)

where for 𝐾𝐿 → 𝜇𝜇̄, both signs of 𝑁LD
𝐿

have been considered. It is worth noting that the uncertainty
of 𝐾𝐿 → 𝜇𝜇̄ (especially for LD+) is highly asymmetric. On the experimental side, 𝐾𝐿 → 𝜇𝜇̄

has been measured with less than 2% uncertainty [22]. In contrast, while the theory prediction for
𝐾𝑆 → 𝜇𝜇̄ is independent of sign ambiguity, the current upper bound by LHCb [23] is approximately
two orders of magnitude larger than the SM prediction, posing challenges in constraining short-
distance physics. In Fig. 3, the impact of NP contributions to 𝐾𝐿 → 𝜇𝜇̄ and 𝐾𝑆 → 𝜇𝜇̄ decay is
shown, where for the former both signs of LD contributions are considered.

Figure 3: The 𝐾𝐿 → 𝜇𝜇̄ and 𝐾𝑆 → 𝜇𝜇̄ decays as a function of NP contributions to 𝐶𝜇10. The coloured
bands indicate the 1𝜎 theoretical uncertainty.
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Figure 4: The branching ratio of 𝐾𝐿 → 𝜋0ℓℓ̄ as a function of NP contributions to 𝐶ℓ9 = −𝐶ℓ10 for both the
electron and the muon modes. The coloured bands indicate the 1𝜎 theoretical uncertainty.

5. 𝐾𝐿 → 𝜋0ℓℓ̄

Finally, the last rare Kaon decay mode we consider in this review is 𝐾𝐿 → 𝜋0ℓℓ̄. The branching
ratio of this decay in the electron and muon channels are given by

BR(𝐾𝐿 → 𝜋0ℓℓ̄) =
(
𝐶ℓdir ± 𝐶

ℓ
int |𝑎𝑆 | + 𝐶

ℓ
mix |𝑎𝑆 |

2 + 𝐶ℓ𝛾𝛾
)
· 10−12 , (11)

with |𝑎𝑆 | = 1.20 ± 0.20. The different components [20] describing the branching ratio are:

𝐶ℓdir 𝐶ℓint 𝐶ℓmix 𝐶ℓ𝛾𝛾

ℓ = 𝑒 (4.62 ± 0.24) (𝑤2
7𝑉 + 𝑤2

7𝐴) (11.3 ± 0.3)𝑤7𝑉 14.5 ± 0.5 ≈ 0

ℓ = 𝜇 (1.09 ± 0.05) (𝑤2
7𝑉 + 2.32𝑤2

7𝐴) (2.63 ± 0.06)𝑤7𝑉 3.36 ± 0.20 5.2 ± 1.6

where 𝐶ℓ𝛾𝛾 stands for the CP-conserving two-photon contribution, 𝐶ℓdir refers to the direct CP-
violating term sensitive to short-distance physics, 𝐶ℓmix indicates the indirect CP-violating contribu-
tions from Kaon mixing, and 𝐶ℓint corresponds to the interference between the latter two contribu-
tions. The interference can be both destructive and constructive with the latter being theoretically
favoured. The 𝐶ℓdir and 𝐶ℓint terms are sensitive to short-distance physics via (see e.g. [24])

𝑤7𝑉 =
1

2𝜋
Im

[
𝜆𝑡

1.407 × 10−4𝐶9

]
, 𝑤7𝐴 =

1
2𝜋

Im
[

𝜆𝑡

1.407 × 10−4𝐶10

]
, (12)

where 1.407 × 10−4 corresponds to the value of 𝜆𝑡 as used by [20]. On the experimental side, the
present upper bounds [25, 26] exceed the SM predictions by an order of magnitude. However, even
with this upper limit, they provide valuable insights into short-distance physics. Figure 4 illustrates
the impact of new physics contributions to 𝐾𝐿 → 𝜋0ℓℓ̄, assuming 𝐶ℓ9 = −𝐶ℓ10.

We conclude this review by noting that a global study [2, 27] of these rare Kaon decays is
possible, resulting in stronger bounds and constraints on new physics than what is achievable with
each individual observable.
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