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Electro-disintegration of the deuteron at large Q2 currently represents on of the most promising
reactions which allows to probe the bound nuclear state at internal momenta comparable to the
rest mass of the nucleon. Large internal momentum in this case makes non-nuncleonic states
energetically more feasible and the question that we address is what are the signatures that will
indicate the existence of such states in the ground state of the nuclear wave function. To probe
such states we developed a light-front formalism for relativistic description of a composite pseudo-
vector system inwhich emerging proton and neutron are observed in electro-disintegration reaction.
In leading high energy approximation our calculations show the possibility of the existence of
a new “incomplete" P-state-like structure in the deuteron at extremely large internal momenta.
The incompleteness of the observed P-state violates the angular condition for the momentum
distribution, which can happen only if the deuteron contains non-nucleonic structures, such as
∆∆, N∗N or hidden color components. Because such states have distinctive angular momentum
(l = 1) they significantly modify the polarization properties of the deuteron wave function. As
a result in addition to angular anisotropy of the LF momentum distribution of the nucleon in the
deuteron one predicts strong modification of the tensor polarization asymmetry of the deuteron
beyond the S- and D- wave predictions at large internal momenta in the deuteron.
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Non-nucleonic degrees of freedom and the spin structure of the deuteron

1. Introduction

Understanding the dynamics of the transition between hadronic to quark-gluon phases of matter
is one of the outstanding issues of strong interaction physics. For cold dense nuclear matter such
transitions are relevant for the dynamics of superdense nuclear matter that can exist at the cores of
neutron stars and can set the limits for thematter density before it collapses to a black hole. There are
few options to investigate such transitions. For example, studying nuclear medium modification of
quark-gluon structure of bound nucleons by probing EMC effects [1–3] especially in semi-inclusive
processes which allow to control inter-nucleon distances[4]. The other, rather different example is
to study implications of the transition of baryonic to quark matter in the cores of neutron stars by
searching large mass (≈ 2.08M�) neutron stars[5] with radii R < 10[6].

In the present work, new approach[7] is suggested in probing baryon-quark transition by
exploring deuteron at extremely large internal momenta.

2. Deuteron on the light front (LF)

Non-relativistic picture of the deuteron suggests that the observations of total isospin, I = 0,
total spin, J = 1 and positive parity, P, together with the relation, P = (−1)l , indicate that the
deuteron consists of bound proton and neutron in S- and D- partial wave states.

However, for deuteron structure with internal momenta comparable to the nucleon rest mass
the nonrelativistic framework is not valid requiring a consistent account for the relativistic effects.
There are several theoretical approaches for accounting relativistic effects in the deuteron wave
function (see e.g. Refs.[8–12] and the reviews[13–17]). In our approach the relativistic effects are
accounted for similar to the one used in QCD (see e.g. [18, 19]) for calculation of quark distribution
in hadrons, in which light-front (LF) description of the scattering process allows to suppress vacuum
fluctuations that overshadow the composite structure of the hadron. In this approach one needs to
identify the process in which the deuteron structure is probed. For this we consider high-momentum
transfer electrodisintegration process:

e + d → e′ + p + n (1)

in which one of the nucleons are struck by the incoming probe and the spectator nucleon is probed
with momenta comparable to the nucleon mass. If one can neglect (or remove) the effects related to
final state interactions of two outgoing nucleons, then the above reaction at high Q2, measures the
probability of observing a proton and neutron in the deuteron with large relative momenta. In such
a formulation the deuteron is not a composite system consisting of a proton and neutron, but it is a
composite pseudo - vector (J = 1, P = +) “particle" from which one extracts a proton and neutron.
Thus we formulate the question not as how to describe relativistic motion of proton and neutron in
the deuteron, but how such a proton and neutron are produced at such extreme conditions relating
it to the dynamical structure of the LF deuteron wave function. In such formulation the latter
may include internal elastic pn → pn as well as inelastic ∆∆ → pn, N∗N → pn or Nc Nc → pn
transitions. Here, ∆ and N∗ denote ∆-isobar and N∗ resonances, while Nc is a color octet baryonic
state contributing to the hidden-color component in the deuteron.
The framework for calculation of reaction (1) in the relativistic domain is the LF approach (e.g.
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Non-nucleonic degrees of freedom and the spin structure of the deuteron

Ref.[13, 14, 19]) in which one introduces the LF deuteron wave function:

ψλd

d
(αi, p⊥, λ1λ2) = −

ū(p2, λ2)ū(p1, λ1)Γµ
d
χλd
µ

1
2 (m2

d
− 4 m2

N+p
2
⊥

αi (2−αi ) )
√
2(2π)3

== −
∑
λ′1

ū(p1, λ1)Γµ
d
γ5
ελ1,λ′1
√
2

u(p1, λ ′1), (2)

where αi = 2 pi+

pd+
, (i = 1, 2) are LF momentum fraction of proton and neutron, outgoing from the

deuteron with α1+α2 = 2 and in the second part we absorbed the propagator into the vertex function
and used crossing symmetry. Here u(p, λ)’s are the LF bi-spinors of the proton and neutron[20] and
ε i, j is the two dimensional Levi-Civita tensor, with i, j = ±1 nucleon helicity. Since the deuteron is
a pseudo-vector “particle", due to γ5 in Eq.(2), the vertex Γµd is a four-vector which we can construct
in a general form that explicitly satisfies time reversal, parity and charge conjugate symmetries.
Noticing that at the d → pn vertex on the light-front the "-" (p− = E − pz ) components of the
four-momenta of the particles are not conserved, in addition to the four-momenta of two nucleons,
pµ1 and pν2 , one has the additional four-momentum:

∆
µ ≡ pµ1 + pµ2 − pµ

d
≡ (∆−,∆+,∆⊥) = (∆−, 0, 0), (3)

where

∆
− = p−1 + p−2 − p−d =

4
p+
d


m2

N −
M2

d

4
+ k2


; k =

√
m2

N + k2⊥
α1(2 − α1)

− m2
N ; α1 =

Ek + kz
Ek

, (4)

with Ek = m2 + k2. With pµ1 , pµ2 and ∆µ 4-vectors the Γµ
d
is constructed in the form:

Γ
µ
d
= Γ1γ

µ + Γ2
(p1 − p2)µ

2mN
+ Γ3

∆µ

2mN
+ Γ4

(p1 − p2)µ∆/
4m2

N

+iΓ5
1

4m3
N

γ5ε
µνργ (pd )ν (p1 − p2)ρ (∆)γ + Γ6

∆µ∆/

4m2
N

, (5)

where Γi ,(i = 1, 6) are scalar functions (see also Refs.[12, 17]).

3. High energy approximation

For the large Q2 limit, the LF momenta for reaction (1) are chosen as follows:

pµ
d
≡ (p−d, p+d, pd⊥) = *

,

Q2

x
√

s


1 +

x
τ
−

√
1 +

x2

τ


,

Q2

x
√

s


1 +

x
τ
+

√
1 +

x2

τ


, 0⊥+

-

qµ ≡ (q−, q+, q⊥) = *
,

Q2

x
√

s


1 − x +

√
1 +

x2

τ


,

Q2

x
√

s


1 − x −

√
1 +

x2

τ


, 0⊥+

-
, (6)

where s = (q+pd )2, τ = Q2

M2
d

and x = Q2

Mdq0
, with q0 being the virtual photon energy in the deuteron

rest frame. The high energy nature of this process results in, p+
d
∼

√
Q2 � mN , which makes ∆−

term to be suppressed by the large p+
d
factor in Eq.(4). As such we treat ∆−

2mN
factor as a small

parameter in the problem.
Analyzing now the vertex function (5) one observes that Γ1 and Γ2 terms are explicitly leading

order in O0( ∆
−

2mN
). The Γ3 and Γ4 terms enter with order O1( ∆

−

2mN
), while the Γ6 term enters as

O2( ∆
−

2mN
). The situation with the Γ5 term is, however, different; since the covariant components:
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Non-nucleonic degrees of freedom and the spin structure of the deuteron

∆+ =
1
2∆
− and pd,− = 1

2 p+
d
, the term with ε µ+⊥− is leading order (O0( ∆

−

2mN
)) due to the fact that the

large p+
d
factor is canceled in the pd,−∆+ = 1

4 p+
d
∆− combination.

Keeping the leading, O0( ∆
−

2mN
), terms in Eq.(5) and using the boost invariance of the wave

function we calculate it in the CM of the deuteron[7] to obtain:

ψλd

d
(αi, k⊥)= −

∑
λ2,λ1,λ

′
1

ū(−k, λ2)
{
Γ1γ

µ+Γ2
k̃µ

mN
+

2∑
i=1

iΓ5
1

8m3
N

ε µ+i−p′+d ki∆′−


γ5
ελ1,λ′i
√
2

u(k, λ ′1)sλd
µ ,(7)

where k̃µ = (0, kz, k⊥) with k⊥ = p1⊥, k2 = k2z + k2⊥ and Ek =
√
SNN

2 and sλd
µ = (0, sλd ), with s1

d
=

− 1√
2

(1, i, 0), s1
d
= 1√

2
(1,−i, 0), s0

d
= (0, 0, 1) and p′+

d
=
√

sNN , ∆
′− = 1√

sNN

[
4(m2

N+k
2
⊥)

α1 (2−α1) − M2
d

]
.

Since the term related to Γ5 is proportional to
4(m2

N+k
2
⊥)

α1 (2−α1) −M2
d
, which diminishes at small momenta,

only the Γ1 and Γ2 termswill contribute in the nonrelativistic limit defining the S- and D- components
of the deuteron. Thus, the LF wave function in Eq.(7) provides a smooth transition to the non-
relativistic deuteron wave function. This can be seen by expressing Eq.(7) through two-component
spinors:

ψλd

d
(α1, kt, λ1, λ2) =

∑
λ′1

φ†λ2

√
Ek

[
U (k)
√
4π

σsλdd − −
W (k)
√
4π
√
2

(
3(σk)(ksλd )

k2
− σsλd

)
+

(−1)
1+λd

2 P(k)Y λd

1 (θ, φ)δ1, |λd |
] ελ1,λ′1
√
2

φλ′1 . (8)

Here the first two terms have explicit S- and D- structures where the radial functions are defined as:

U (k) =
2
√
4π
√

Ek

3

[
Γ1(2 +

mN

Ek
) + Γ2

k2

mN Ek

]

W (k) =
2
√
4π
√
2Ek

3

[
Γ1(1 −

mN

Ek
) − Γ2

k2

mN Ek

]
. (9)

This relation is known for pn-component deuteron wave function[12, 13], which allows us to model
the LF wave function through known radial S- and D- wave functions evaluated at LF relative
momentum k defined in Eq.(4).

The new result is thhat due to the Γ5 term there is an additional leading contribution, which

because of the relation Y±1 (θ, φ) = ∓i
√

3
4π

2∑
i=1

(k×s±1
d

)z
k , has a P-wave like structure, where the P-

radial function is defined as:

P(k) =
√
4π
Γ5(k)

√
Ek

√
3

k3

m3
N

. (10)

Note that this term is purely relativistic in origin: as it follows from Eq.(10) it has an extra k2

m2
N

factor in addition to the k l=1

mN
term that characterizes the radial P-wave. Thus our result does not

affect the known non-relativistic wave function.
The unusual feature of our result is that the P-wave is “incomplete", that is it contributes only

for λd = ±1 polarizations of the deuteron.
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Non-nucleonic degrees of freedom and the spin structure of the deuteron

4. Light front density matrix of the deuteron

One defines the unpolarized deuteron LF momentum distribution nd (k, k⊥) and density matrix
[2, 13] as follows:

nd (k, k⊥) =
1
3

1∑
λd=−1

| ψλd

d
(α, k⊥) |2 and ρd (α, k⊥) =

nd (k, k⊥)
2 − α

. (11)

Using Eq.(8) the LF momentum distribution is expressed through the radial wave functions as
follows:

nd (k, k⊥) =
1
3

1∑
λd=−1

| ψλd

d
(α, k⊥) |2==

1
4π

(
U (k)2 +W (k)2 +

k2⊥
k2

P2(k)
)

(12)

with
∫
ρd (α, k⊥) dαα = 1,

∫
αρd (α, k⊥) dαα = 1 and

∫ (
U (k)2 +W (k)2 + 2

3P2(k)
)

k2dk = 1. Due
to the incompleteness of the P-wave structure our result predicts that LF momentum distribution
for unpolarized deuteron depends explicitly on the transverse component of the relative momentum
on the light front. This is highly unusual result, implication of which will be discussed in the next
section.

For polarized deuteron the quantity that can be probed in the reaction1 is tensor asymmetry
which we defined as:

AT =
nλd=1
d

(k, k⊥) + nλd=−1
d

(k, k⊥) − 2nλd=0
d

(k, k⊥)

nd (k, k⊥)
. (13)

Here because of the same incompleteness of the "P − wave" structure one may expect more
sensitivity that for unpolarized momentum distribution.

5. The new term and the non-nucleonic components in the deuteron:

One of ourmain prediction that LFmomentumdistribution Eq.(12)will explicitly depend on the
transverse component of the deuteron internal momentum on the light front. Such a dependence is
impossible for non-relativistic quantum mechanics of the deuteron since in this case the potential of
the interaction is real (no inelasticities) and the solution of Lippmann-Schwinger equation for partial
S- and D-waves satisfies the “angular condition", according to which the momentum distribution
in the unpolarized deuteron depends on the magnitude of the relative momentum only. As we
mentioned earlier, our result does not contradict the properties of non-relativistic deuteron wave
function since, according to Eq.(10) the P-wave is purely relativistic in nature.

In the relativistic domain the definition of the interaction potential is not straightforward to
allow the use of quantum-mechanical arguments in claiming that the momentum distribution in
Eq.(12) should satisfy the angular condition also in the relativistic case. (i.e. to be dependent only
on the magnitude of k).

To check the situation in relativistic case one considers Weinberg type equation[21] on the
light-front for NN scattering amplitudes, in which only nucleonic degrees are considered, in the
CM of the NN system. One obtains[22]:

TNN (αi, ki⊥, α f , k f ,⊥) ≡ TNN (ki,z, ki⊥, k f ,z, k f ,⊥) = V (ki,z, ki⊥, k f ,z, k f ,⊥)

+

∫
V (ki,z, ki⊥, km,z, km,⊥)

d3km

(2π)3
√

m2 + k2m

TNN (km,z, km⊥, k f ,z, k f ,⊥)

4(k2m − k2
f
)

, (14)
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Non-nucleonic degrees of freedom and the spin structure of the deuteron

where “i", “m" and “f" subscripts correspond to initial, intermediate and final N N states, respec-
tively, and momenta ki,m, f are defined similar to Eq.(4).

The realization of the angular condition for the relativistic case will require that the light-front
potential in general to satisfy the condition:

V (ki,z, ki⊥, km,z, km,⊥) = V (~k2i , (~km − ~ki )
2). (15)

Such a conditions for the on-shell limit follows from the Lorentz invariance of the TNN amplitude:

Ton shell
NN (ki,z, ki⊥, km,z, km,⊥) = Ton shell

NN (~k2i , (~km − ~ki )
2) (16)

and the existence of the Born term in Eq.(14) indicates that the potential V satisfies the same
condition in the on-shell limit.

For the off-shell potential, it was shown[2, 22, 23] that requirements for the potential V to
satisfy angular condition in the on-shell limit and that it can be constructed through the series of
elastic pn scatterings result in a potential which is an analytic function of angular momentum. With
the assumption that the potential, analytically continued to the complex angular momentum space,
does not diverge exponentially, it was shown that the V and TNN functions satisfy the angular
condition (Eqs.(15,16)) in general. Using the same potential to calculate the LF deuteron wave
function will result in a momentum distribution dependent only on the magnitude of the relative pn
momentum. This observation requires a consideration of the pn component only in the deuteron.

Inclusion of the inelastic transitions will completely change the LF equation for the pn scatter-
ing. For example, the contribution of N∗N transition to the elastic N N scattering:

TNN (ki,z, ki⊥, k f ,z, k f ,⊥) =
∫

VNN ∗ (ki,z, ki⊥, km,z, km,⊥)

×
d3km

(2π)3
√

m2 + k2m

TN ∗N (km,z, km⊥, k f ,z, k f ,⊥)

4(k2m − k2
f
+ m2

N∗ − m2
N )

, (17)

will not require the condition of Eq.(15) with the transition potential having also an imaginary
component. Eq.(17) can not be described with any combination of elastic N N interaction potentials
that satisfies the angular condition. The same will be true also for ∆∆ → N N and Nc, Nc → N N
transitions.

Thus one concludes that if the Γ5 term is not zero and results in a k⊥ dependence of LF
momentum distribution then it should originate from a non-nucleonic component in the deuteron.

6. Predictions and estimate of the possible effects

Our calculations predict three new effects that in probing deuteron structure at very large in-
ternal momenta (≥ mN ) in reaction (1):
- the LF momentum distribution should be enhanced compared to S- and D- wave contributions
only;
- there should be angular anisotropy in the LF momentum distribution;
- the tensor asymmetry should be significantly different as expected from S- and D- wave contribu-
tions only.

6
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Observation of all above effects will indicate presence of non-nucleonic components in the
deuteron wave function at large internal momenta.

To give quantitative estimates of the possible effectswe evaluate the Γ5 vertex function assuming
two color-octet baryon transition to the pn system (Nc Nc → pn) through the one-gluon exchange,
parameterizing it in the dipole form A

(1+ k2
0.71 )2

. The parameter A is estimated by assuming 1%

contribution to the total normalization from the Pwave. The latter is consistentwith the experimental
estimation in Ref.[24] of 0.7%. In Fig.1 we consider the dependence of the momentum distribution
of Eq.(12) as a function of cos θ = (α−1)Ek

k for different values of k. Notice that if the momentum
distribution is generated by pn component only, the angular condition is satisfied, and no dependence
should be observed.

-1.0 -0.5 0.0 0.5 1.0

10-5

10-4

0.001

0.010

0.100

cos(θ)

n
d
,
G
eV

-
3

500

800

1000

1200

Figure 1: LF momentum distribution of the deuteron as a function of cos θ, for different values of k. Dashed
lines - deuteron with pn component only, solid lines - with P-wave like component included.

As the figure shows one may expect measurable angular dependence at k & 1 GeV/c, which
is consistent with the expectation that the inelastic transition in the deuteron corresponding to the
non-nucleonic components takes place at k & 800 MeV/c.

For tensor polarized deuteron we estimated the effect using Eq.13. The results are presented
in Fig.2. As the figure shows the presence of a non-nucleonic component will be visible already at
k ≈ 800 MeV/c, resulting in a qualitative difference in asymmetry at larger momenta as compared
with the asymmetry predicted by the deuteron wave function with a pn-component only.

The reason why small, 1% effect in overall normalization gives large measurable effect in
LF momentum distribution and asymmetry at k ≥ 1GeV/c is due to the fact that the observed
“incomplete P-wave" structure enters with the p2

m2
N

prefactor (see Eq.(10)), which significantly
amplifies the effect at very large internal momenta.

7. Outlook on experimental verification of the predicted effects

The predictions discussed in the previous section that are related to the existence of non-
nucleonic component in the deuteron wave function can be be verified at CMmomenta k & 1GeV/c.
These seem an incredibly large momenta to be measured in experiment. However, the first such
measurement at high Q2 disintegration of the deuteron has already been performed at Jefferson
Lab[25] reaching k ∼ 1 GeV/c. It is intriguing that the results of this measurement qualitatively
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A
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800

1000

1000

1200

1200

Figure 2: Tensor asymmetry as a function of cos θ for different k. Dashed lines - deuteronwith pn component
only, solid lines - with P component included.

disagree with predictions based on conventional deuteron wave functions once k & 800 MeV/c.
Moreover the data seems to indicate the enhancement of momentum distribution as predicted in our
calculations.

The planned new measurements [26] will significantly improve the quality of the data allowing
possible verification of the second prediction, that is the existence of angular asymmetry for LF
momentum distribution.

What concerns to the tensor asymmetry, currently there is a significant efforts in performing
a high Q2 deuteron electro-disintegration processes at Jefferson Lab employing polarized deuteron
target[27]. The possibility of caring out such measurements will significantly improve the validity
of any observation that will suggest the existence of non-nucleonic component in the deuteron wave
function at very large internal momenta.

It is worth mentioning that the analysis of exclusive deuteron disintegration experiments will
require a careful account for competing nuclear effects such as final state interactions, (FSI) for
which there has been significant theoretical and experimental progress during the last decade[28–
31]. The advantage of high energy scattering is that the eikonal regime is established which makes
FSI to be strongly isolated in transverse kinematics and be suppressed in near colinear directions.
Additionally the comparison with the first highQ2 experimental data[31] indicates that the accuracy
of FSI calculations increases with Q2 which will allow a meaningful analysis of new high Q2 data.

If the experiments will not find the discussed signatures of non-nucleonic components then they
will set a new limit on the dominance of the pn component at instantaneous high nuclear densities
that corresponds to ∼ 1 GeV/c internal momentum in the deuteron. However if predictions are
confirmed, they will motivate theoretical modeling of non-nucleonic components in the deuteron,
such as ∆∆, N∗N or hidden-color Nc Nc that can reproduce the observed results. In both cases
the results of such studies will advance the understanding of the dynamics of high density nuclear
matter and the relevance of the quark-hadron transition.

Acknowledgments: This work is supported by the U.S. DOE Office of Nuclear Physics grant
DE-FG02-01ER41172.
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