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Beam normal single-spin asymmetry Peter Blunden

1. Introduction

Over the last two decades the role of two-photon exchange (TPE) in electron–proton elastic
scattering has received considerable attention, in both the theoretical and experimental nuclear
physics communities, in an effort to understand its impact on hadron structure dependent observ-
ables [1–4]. Among these is the analysis of the proton’s electric (𝐺𝐸) to magnetic (𝐺𝑀 ) form factor
ratio, 𝜇𝑝𝐺𝐸/𝐺𝑀 , where 𝜇𝑝 is the proton’s magnetic moment, and the well-known discrepancy
between determinations of this ratio by the longitudinal-transverse (LT) separation and the polar-
ization transfer (PT) methods. It has been realized for some time now that TPE effects can make
large contributions to the former, while having a minimal effect on the latter [5–7].

The use of hadronic degrees of freedom to calculate the TPE amplitudeM𝛾𝛾 can be considered
as a reasonable approximation for low to moderate values of four-momentum transfer,𝑄2 ≲ 5 GeV2,
where hadrons are expected to retain their identity. In our recent work [8], we follow the dispersive
approach for resonant intermediate state contributions to M𝛾𝛾 developed in Ref. [9]. On-shell
form factors are used explicitly to calculate the imaginary part of M𝛾𝛾 from unitarity, with the
real (dispersive) part then obtained from a dispersion integral. We account for nine spin-1/2±

and spin-3/2± resonances with mass below 1.8 GeV, and allow for a finite Breit-Wigner width for
each individual resonance. In our numerical calculations, for the resonance electrocouplings at the
hadronic vertices we use helicity amplitudes extracted from the analysis of CLAS electroproduction
data [10–12]. The model calculation is successful in quantitatively reconciling the discrepancy
in the form factor ratio 𝜇𝑝𝐺𝐸/𝐺𝑀 without introducing any significant nonlinearities in 𝜀 in the
reduced cross section [8].

While the real (dispersive) part of M𝛾𝛾 can be accessed directly from the measurement of the
ratio of the unpolarized 𝑒+𝑝 to 𝑒−𝑝 scattering cross sections, the imaginary (absorptive) part of
M𝛾𝛾 can be determined from beam and target normal single-spin asymmetries, denoted 𝐵𝑛 and 𝐴𝑛,
respectively. TPE generates a single-spin asymmetry (SSA) at leading order in the electromagnetic
coupling 𝛼, with either the beam or target polarized normal (or transverse) to the scattering plane.
Explicitly, the experimentally measured asymmetry is defined by

SSA =
𝜎↑ − 𝜎↓

𝜎↑ + 𝜎↓ , (1)

where 𝜎↑ (𝜎↓) is the cross section for 𝑒𝑝 elastic scattering with either beam or target spin polar-
ized parallel (antiparallel) to the scattering plane defined by the incoming and outgoing electron
momenta.

It was first shown by de Rújula et al. [13] that time-reversal invariance implies no contribution
to SSA from the one-photon exchange (OPE) transition amplitude M𝛾 . The leading term of the
beam or target normal SSA arises from the absorptive part of the TPE transition amplitude M𝛾𝛾 ,
denoted Abs [M𝛾𝛾], according to the relation

SSA =

Im
( ∑

spins
M∗

𝛾 Abs [M𝛾𝛾]
)

∑
spins

|M𝛾 |2
. (2)

As defined in Eq. (2), the SSA is of order 𝛼. The beam normal asymmetry 𝐵𝑛 is further suppressed
by the small factor 𝑚𝑒/𝐸lab, where 𝑚𝑒 is the electron mass and 𝐸lab is the beam energy in the
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laboratory frame, so that 𝐵𝑛 is expected to be of order 10−6 – 10−5 for beam energies in the GeV
range. For the target normal SSA 𝐴𝑛 there is no additional suppression, and hence it is anticipated
to be of order 10−3 – 10−2 for the same beam energy. In contrast to 𝐵𝑛, for 𝐴𝑛 there are currently
no available data for a proton target.

The beam normal SSA 𝐵𝑛 plays a particularly important role in parity-violating electron
scattering experiments that use longitudinally polarized lepton beams to measure the asymmetry
due to the spin flip. As a nonzero 𝐵𝑛 could contribute to a false asymmetry, parity-violating
experiments typically determine the beam normal SSA as a by-product of the longitudinal parity-
violating asymmetry. Several parity-violating experiments [14–21] have determined the beam
normal SSA over a range of scattering angles and energies. To better understand the beam SSAs
originating from the spin-parity 1/2± and 3/2± resonance intermediate states, we revisit our earlier
TPE calculation [8] to see how well the resonance model fares for SSA observables. More complete
results are given in Ref. [22], including those for target normal SSAs.

2. Beam normal single-spin asymmetries in elastic scattering

For the elastic scattering process 𝑒(𝑘) +𝑁 (𝑝) → 𝑒(𝑘 ′) +𝑁 (𝑝′) (see Fig. 1), the four-momenta
of the initial and final electrons (with mass 𝑚𝑒) are labelled by 𝑘 and 𝑘 ′, with corresponding
lab frame energies 𝐸lab and 𝐸 ′

lab. The initial and final nucleons (mass 𝑀) have four-momenta 𝑝

and 𝑝′, respectively. The four-momentum transfer from the electron to the nucleon is given by
𝑞 = 𝑝′ − 𝑝 = 𝑘 − 𝑘 ′, with the photon virtuality 𝑄2 ≡ −𝑞2 > 0. For the TPE process, the two virtual
photons transfer four-momenta 𝑞1 and 𝑞2 to the proton, so that 𝑞 = 𝑞1 + 𝑞2.

k′

p′

k

p

k′

p′

q1 q2

k

p

q

k1

(a) (b)

Figure 1: Contributions to elastic electron–nucleon scattering from (a) one-photon exchange (OPE), and
(b) two-photon exchange amplitudes, with particle momenta as indicated. The intermediate hadronic state is
taken to be a resonance of invariant mass 𝑊 . The two virtual photons carry momenta 𝑞1 and 𝑞2, giving the
total momentum transfer 𝑞 = 𝑞1 + 𝑞2.

For the OPE amplitude the electron mass can be neglected at the kinematics of interest.
However, for the 𝐵𝑛 SSA the electron mass must be retained for two reasons. First, 𝐵𝑛 has an
overall factor of 𝑚𝑒, and second, 𝐵𝑛 has a mass-dependent quasi-singularity when the intermediate
electron three-momentum |𝒌1 | → 0. It is convenient to use the Mandelstam variable 𝑠, which is
given in the lab frame as 𝑠 = 𝑀2 + 𝑚2

𝑒 + 2𝑀𝐸lab.
For inelastic excitations the minimum value of 𝑊 is taken to be the pion production threshold,

𝑊th = 𝑀 + 𝑚𝜋 . For a given 𝑠, the maximum value of 𝑊 corresponds to an intermediate electron at
rest, |𝒌1 | = 0, so that

𝑊max =
√
𝑠 − 𝑚𝑒, 𝐸𝑘1 = 𝑚𝑒 . (3)
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At 𝑊 = 𝑊max the four-momentum transfers of the two virtual photons become

𝑄2
1 = 𝑄2

2 = 𝑚𝑒

(
𝑊2

max − 𝑀2)
√
𝑠

, (4)

so that the two photons are almost on-shell (i.e. real). This has been dubbed the quasi-real Compton
scattering (QRCS) region [23–26], and requires special attention to reliably compute the SSA
numerically.

In the definition of the beam normal SSA in Eq. (2), the denominator is identical to the Born
cross section for unpolarized elastic 𝑒𝑝 scattering, since the spin components have no impact at the
Born level. Summing over final state spins and averaging over initial state spins, one can write the
squared Born amplitude in terms of the invariant Mandelstam variables 𝑠 and 𝑄2 = −𝑡,∑︁

spins

��M𝛾

��2 =
∑︁
spins

M†
𝛾M𝛾 =

𝑒4

𝑄4 𝐷 (𝑠, 𝑄2). (5)

The absorptive part of the TPE amplitude in Eq. (2) can be written as

AbsM𝛾𝛾 = 𝑒4
∫

d3𝒌1

(2𝜋)32𝐸𝑘1

𝑢̄𝑒 (𝑘 ′)𝛾𝜇 (/𝑘1 + 𝑚𝑒)𝛾𝜈𝑢𝑒 (𝑘)
𝑄2

1 𝑄
2
2

W𝜇𝜈 . (6)

The hadronic tensor W𝜇𝜈 in Eq. (6) contains all the information about the transition from the
proton initial state to all possible intermediate hadronic states, including the elastic nucleon state
and the inelastic transitions to the nucleon excited state resonances. In our model, the SSAs are
calculated including contributions from each of the spin 1/2 and 3/2 resonance intermediate states
below mass 𝑀𝑅 = 1.8 GeV, which are then added together with the elastic nucleon contribution to
obtain the complete result.

Taking the spin sum, one can express the SSA in a concise form in terms of the leptonic and
hadronic tensors, 𝐿𝜌𝜇𝜈 and 𝐻𝜌𝜇𝜈 , respectively, as

SSA =
𝛼𝑄2

𝜋𝐷 (𝑠, 𝑄2)

∫
d3𝒌1
2𝐸𝑘1

Im 𝐿𝜌𝜇𝜈𝐻
𝜌𝜇𝜈

𝑄2
1 𝑄

2
2

. (7)

For the beam polarized parallel or antiparallel to the normal 𝒔𝑛 to the scattering plane the leptonic
tensor 𝐿𝜌𝜇𝜈 contains the lepton polarization vector 𝑠𝜇𝑛 ≡ (0; 𝒔𝑛), and takes the form

𝐿B
𝜌𝜇𝜈 =

1
2

Tr
[
(1 + 𝛾5/𝑠𝑛) (/𝑘 + 𝑚𝑒)𝛾𝜌 (/𝑘 ′ + 𝑚𝑒)𝛾𝜇 (/𝑘1 + 𝑚𝑒)𝛾𝜈

]
, (8)

where the superscript “B” denotes the fact that the lepton tensor corresponds to the beam normal
case. Note that the imaginary part in Eq. (2) for 𝐵𝑛 comes solely from this spin polarization-
dependent term. However, the corresponding hadronic tensor for the beam normal case, 𝐻𝜌𝜇𝜈

B ,
remains independent of the polarization of the target hadron, and is equivalent to the hadronic
tensor for the case of unpolarized 𝑒𝑝 scattering. We refer the reader to Ref. [22] for details on the
hadronic tensor 𝐻𝜌𝜇𝜈

B .
For the numerical calculation, it will be convenient to transform the phase space integral over

the intermediate electron momentum 𝒌1 of Eq. (7) in terms of the Lorentz-invariant Mandelstam
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variable 𝑠. Defining the kinematics in the CM frame, the integration over d3𝒌1 → 𝒌2
1 d|𝒌1 | dΩ𝑘1

can be written as ∫
d3𝒌1
2𝐸𝑘1

→ −
∫ 𝑊2

max

𝑀2
d𝑊2 |𝒌1 |

4
√
𝑠

∫
dΩ𝑘1 , (9)

with 𝑊max =
√
𝑠 − 𝑚𝑒. Thus

SSA = − 𝛼𝑄2

𝜋𝐷 (𝑠, 𝑄2)

∫ 𝑊2
max

𝑀2
d𝑊2 |𝒌1 |

4
√
𝑠

∫
dΩ𝑘1

Im 𝐿𝜌𝜇𝜈𝐻
𝜌𝜇𝜈

𝑄2
1 𝑄

2
2

. (10)

The beam normal SSA 𝐵𝑛 is sensitive to the quasi-singular behavior of the integrand in Eq. (10)
when the intermediate state electron three-momentum |𝒌1 | → 0. This is the QRCS region, where
𝑊 → 𝑊max and the two virtual photons have four-momenta 𝑄2

1 and 𝑄2
2 of order 𝑚𝑒 (see Eq. (4)).

In this region of 𝑊 , the integrand of Eq. (10) is characterized by a slowly varying numerator and a
rapidly varying denominator.

To address this behavior in the numerical calculations in a practical way, we evaluate the slowly
varying numerator of the integrand in Eq. (10) at𝑄2

1 = 𝑄2
2 = 0, which is then a constant independent

of 𝜃𝑘1 and 𝜙𝑘1 . We keep the mild 𝑊 dependence, but make no further approximation and leave the
denominator intact. Thus we are left with an integral over 𝑊 in this region that is proportional to
the angular integral

|𝒌1 |
4
√
𝑠

∫
dΩ𝑘1

1
𝑄2

1 𝑄
2
2
. (11)

This integral can be done analytically, as discussed in Refs. [9, 23, 26]. We only apply the
analytic expression using Eq. (11) to the tail region, 𝑊max − 5𝑚𝑒 ≤ 𝑊 ≤ 𝑊max, and use the full
three-dimensional numerical quadrature of Eq. (10) elsewhere.

3. Numerical results

In our numerical calculations, for the proton elastic electric (𝐺𝐸) and magnetic (𝐺𝑀 ) form
factors we use the parametrization from Ref. [27], which accounts for TPE effects in their extraction.
For the hadronic transition currents used in the hadronic tensors 𝐻𝜌𝜇𝜈 in Eq. (10), we use the CLAS
parametrization [12] of the input resonance electrocouplings 𝐴ℎ (𝑄2) at the resonance points, where
𝐴ℎ represents the longitudinal electrocoupling, 𝑆1/2, and the two transverse electrocouplings, 𝐴1/2
and 𝐴3/2. The dependence of the electrocouplings 𝐴ℎ on the invariant mass 𝑊 is given in Ref. [8].

For the inelastic intermediate states in Fig. 1(b) we include the contributions of four spin-
parity 3/2± resonances {Δ(1232) 3/2+, 𝑁 (1520) 3/2−, Δ(1700) 3/2−, and 𝑁 (1720) 3/2+}, and
five spin-parity 1/2± resonances {𝑁 (1440) 1/2+, 𝑁 (1535) 1/2−, Δ(1620) 1/2−, 𝑁 (1650) 1/2−,
and 𝑁 (1710) 1/2+}. The Breit-Wigner mass 𝑀𝑅 and the constant decay width Γ𝑅 of the nine
excited state resonances are set to those used in the CLAS parametrization [12] of the resonance
electrocouplings 𝐴ℎ. We propagate the uncertainty on the input resonance electrocouplings Δ𝐴ℎ

into the estimation of the uncertainties on 𝐵𝑛.
To analyze the role of the resonances on the total SSA, Fig. 2 illustrates the contributions to 𝐵𝑛

from the individual resonances at two representative beam energies 𝐸lab equal to 0.855 GeV and
3.031 GeV as a function of the laboratory scattering angle 𝜃lab.
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Figure 2: Resonance contributions to the beam normal SSA 𝐵𝑛 (in parts per million) as a function of
scattering angle 𝜃lab at two representative beam energies 𝐸lab equal to (a) 0.855 GeV and (b) 3.031 GeV. Only
the four largest resonance contributors are shown, with the bands reflecting the uncertainties arising from the
input electrocouplings.

Among the resonances considered, the four spin-3/2 states Δ(1232), 𝑁 (1520), Δ(1700), and
𝑁 (1720) have sizeable effects, with some partial cancellation observed between them. Contri-
butions from resonances with spin 1/2 are smaller by at least an order of magnitude. However,
both the lower-mass spin-3/2 resonances Δ(1232) and 𝑁 (1520) give negative contributions to 𝐵𝑛,
even though these states have different isospin and parity. On the other hand, the two higher-mass
spin-3/2 states Δ(1700) and 𝑁 (1720), with opposite parity and different isospin, make positive
contributions to the total 𝐵𝑛. No definite correlation between the isospin and parity is therefore
observed in the imaginary part of the TPE amplitude for the case of normally polarized electrons
elastically scattering from unpolarized protons.

At low beam energies theΔ(1232) state gives the dominant contribution to 𝐵𝑛, but as the energy
increases, the higher-mass resonances start playing a more significant role. At 𝐸lab = 0.855 GeV, for
example [Fig. 2(a)], the effect from the 𝑁 (1520), which has a nominal (i.e. zero-width) threshold
energy 𝐸 th

lab = 0.75 GeV, becomes comparable to that of the Δ(1232). It is interesting to note
that the higher-mass resonance states Δ(1700) and 𝑁 (1720) show non-negligible effects even at
beam energies below their nominal excitation thresholds. However, at energies above threshold, the
Δ(1700) and 𝑁 (1720) become important, as Figs. 2(b) demonstrates.

It is also important to note that at forward laboratory scattering angles 𝜃lab, where most of the
experimental data exist, the Δ(1232) contribution alone is a good approximation to the total, with
the small effects from other resonances largely canceling in this region. Furthermore, the elastic
nucleon intermediate state gives a negligibly small effect in 𝐵𝑛, unlike the real part of the TPE
amplitude in unpolarized 𝑒𝑝 elastic scattering [8].

The combined effect of all nine resonances, along with the nucleon elastic contribution, on
the total 𝐵𝑛 is illustrated in Fig. 3. At the lower beam energy 𝐸lab = 0.855 GeV, the overall 𝐵𝑛,
including the effects of all elastic and resonance intermediate states, can be approximated by the
Δ(1232) state alone. The total 𝐵𝑛 remains negative over the entire range of scattering angles 𝜃lab.
Compared with the experimental values, the calculated 𝐵𝑛 overshoots the asymmetries measured by
the A4 Collaboration at MAMI at 𝜃lab ≈ 35◦ [15, 20] [Fig. 3(a)]. On the other hand, the calculated
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Figure 3: The total contribution from the nucleon elastic and all nine resonance states to the beam normal
SSA 𝐵𝑛 as a function of 𝜃lab for fixed beam energies corresponding to the A4 [15, 20], Qweak [21], G0 [16],
and HAPPEX [18] experiments (black symbols).

𝐵𝑛 is in good agreement with the high-precision Qweak measurement [21] at 𝐸lab = 1.149 GeV and
𝜃lab = 7.9◦, within uncertainties [Fig. 3(b)]. Above 𝜃lab = 30◦ 𝐵𝑛 becomes large and positive (not
shown), similar to the behaviour in Fig. 3(c).

The recent measurement of the asymmetry by the A4 Collaboration [20] at the larger beam
energy 𝐸lab = 1.508 GeV and angle 𝜃lab = 34.1◦ shows excellent agreement with the calculation.
As seen in Fig. 3(c), the asymmetry changes sign to become positive at intermediate and backward
scattering angles, 𝜃lab ≳ 40◦ in the 𝐸lab ≈ 1−1.5 GeV range (see also Fig. 4 below). At beam energy
𝐸lab ≈ 3 GeV, three data points are available from the G0 [16] and HAPPEX [18] Collaborations
in the forward angle region, 6◦ ≤ 𝜃lab ≲ 10◦. The calculated value of 𝐵𝑛 agrees with the sign of
the measured asymmetry within the uncertainty range, but has slightly smaller magnitude for the
HAPPEX data point in particular.

To further illustrate the energy dependence of the total 𝐵𝑛, Fig. 4 shows the asymmetry as a
function of 𝐸lab up to 1.5 GeV at the two representative scattering angles 𝜃lab = 35◦ and 145◦ that are
close to the experimental values. Note again that at low energies the total asymmetry is dominated
by the Δ(1232) state. Compared with the experimental data from the SAMPLE experiment [14]
and the series of measurements by the A4 Collaboration [15, 19, 20], the calculations give the same
sign as the data in Fig. 4 in the measured region. At the smaller scattering angle the calculation
generally gives a larger magnitude for 𝐵𝑛 than that observed, while at the larger scattering angles
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Figure 4: Beam normal SSA 𝐵𝑛 as a function of beam energy 𝐸lab in the lab frame at representative scattering
angles 𝜃lab = 35◦ and 145◦. The total 𝐵𝑛 is from the nucleon plus all nine resonances. The experimental
data points in the forward angle region are from A4 experiments [15, 20], and in the backward angle region
from the SAMPLE [14] and A4 [19] experiments.

the agreement between experiment and theory is reasonable, within uncertainties.

4. Conclusions

In this overview we have reported on beam normal single-spin asymmetries in elastic electron-
proton scattering using the imaginary part of two-photon exchange amplitudes, including contri-
butions from 𝐽𝑃 = 1/2± and 3/2± excited state resonances with mass below 1.8 GeV. Among
the various intermediate state contributions to 𝐵𝑛, the elastic nucleon and spin 1/2 resonances are
suppressed by an order of magnitude or more compared to the spin 3/2 resonances. The Δ(1232)
resonance alone is a good approximation at forward angles for all beam energies. The 𝑁 (1520)
contribution is noticeably smaller than the Δ(1232), but both are negative across the range of en-
ergies and angles considered. The Δ(1700) and 𝑁 (1720) are major contributors in the far forward
and backward angle regions above their threshold excitation energies, both having positive contri-
butions across energy and angle. As a result, the total 𝐵𝑛 is somewhat sensitive to cancellations
between the resonance contributions, changing from negative to positive with increasing energy
and angle. Uncertainties in the input electrocouplings are also significant for the 𝑁 (1520), Δ(1700)
and 𝑁 (1720) states, leading to a rather large overall uncertainty band in the total 𝐵𝑛.

The results reported in this work tend to overshoot the experimental 𝐵𝑛 data at lower beam
energies 𝐸lab < 1 GeV at both forward and backward angles. This is the region in which the
Δ(1232) dominates, with relatively small uncertainties in its input parameters. There is good
agreement between theory and the high-precision Qweak measurement at 𝐸lab = 1.149 GeV, and
modest agreement at the highest available energy 𝐸lab ∼ 3 GeV and very forward angles, where the
experimental uncertainties from the G0 and HAPPEX data are rather large.
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