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Positron scattering from hadronic targets can provide new information that cannot be accessed
with electron scattering alone. The asymmetry in deeply virtual Compton scattering cross sections
between positrons and electrons can provide a critical handle on the Bethe-Heitler background
process. A similar asymmetry in elastic scattering can reveal the contribution from two-photon
exchange, which has been suggested as a possible explanation for the puzzling discrepancy in
measurements of the proton’s form factors at high momentum transfer. Positron capture and
annihilation offer new ways to measure axial form factors, search for light dark matter, and probe
fundamental symmetries. For these reasons, the Jefferson Lab Positron Working Group is working
to bring positron capabilities to Jefferson Lab. Here, I present the design concept for producing
and injecting polarized positrons into CEBAF, and review the range of experiments that would be
made possible with positrons at Jefferson Lab.
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1. Introduction

Electron scattering is a favored tool for probing the structure of hadrons because the electron
is point-like and interacts (primarily) through electromagnetism. In the first Born approximation,
an electron is assumed to interact with the target hadron through the exchange of a single virtual
photon. In this limit, there is no difference between electron scattering and positron scattering, and
therefore nothing to be gained from the technical challenges of producing and accelerating positrons.
Peering beyond this limit, higher-order contributions to the scattering process are slightly different
for positrons, and the measurement of these differences can provide additional insight into hadron
structure that electrons cannot access alone. Furthermore, the material from which we build targets
is made out of matter———electrons, along with up and down valence quarks—rather than anti-
matter. Positrons can participate in reactions, e.g., annihilation and various weak charged-current
processes, which electrons cannot. Despite these benefits, laboratories around the world that
formerly had positron acceleration capabilities (e.g., SLAC, DESY, Cornell, etc.) have moved away
from fundamental nuclear physics.

The Jefferson Lab Positron Working Group (PWG) is a collaboration of accelerator and nuclear
physicists who are excited by the possibilities that positrons offer and are advocating for the
development of positron capabilities at Jefferson Lab. Recently the PWG published white paper
as special topical issue of the European Physical Journal outlining the physics case and presenting
experimental concepts [1]. In 2023, Jefferson Lab called for submissions to the Program Advisor
Committee (PAC) for experimental proposals using a positron beam, and six proposals [2–7] and
numerous letters of intent were received. Five of these proposals were conditionally approved
(pending the realizating of the positron beam) forming the nucleus of a positron physics program
at Jefferson Lab. While more detailed information can be found in the white paper and in the
experimental proposals, in this contribution, I give an overview of physics case and give the status
of the various efforts from the results of the 2023 PAC.

2. Deeply Virtual Compton Scattering

The Deeply Virtual Compton Scattering (DVCS) reaction, 𝑒𝑝 → 𝑒𝑝𝛾, is one of the cleanest
ways to learn about the proton’s Generalized Parton Distributions (GPDs). The reaction shares the
same final state, however, as the Bethe-Heitler (BH) process, a QED process in which the out-going
photon is radiated from either the incoming or outgoing electron. DVCS and BH interfere with each
other, and so any measured cross section (𝑑𝜎) will be an inevitable mixture of the two:

𝑑𝜎 ∼ |M𝑒𝑝→𝑒𝑝𝛾 |2 = |MBH |2 + |MDVCS |2 + 2Re {MBHMDVCS} , (1)

where M𝑒𝑝→𝑒𝑝𝛾 is the total amplitude, MBH is the Bethe-Heitler amplitude and MDVCS is the
DVCS amplitude. The interference term changes sign between an electron beam and a positron
beam, and so measurements of a beam charge asymmetry can be used to determine MDVCS, since
MBH is well known from QED. Measuring such a charge asymmetry in DVCS is the motivation of
two positron proposals, one in Hall C [2], and the other in Hall B [3].
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Figure 1: Left: kinematic coverage of E12-13-010 (electrons) in 𝑥𝐵, 𝑄
2 space for all kinematic settings and

beam energies (from [8]). The positron experiment, E12+23-006, will scan in 𝑄2 for the 𝑥𝐵 = 0.36 settings.
Right: projected uncertainties for an example bin for both the 𝑒− (magenta) and 𝑒+ (red) experiments and
the breakdown between the pure BH (black) pure DVCS (blue) and interference (green) terms coming from
Ref. [9]. Figure adapted from Ref. [2].

2.1 Hall C Proposal

E12+23-006 [2] proposes a 137-day measurement of DVCS cross sections with positrons in
kinematics matching the 𝑥𝐵 = 0.36 settings of the approved electron experiment E12-13-010 [8]
(whose kinematics are shown in Fig. 1 left). The combined data can be used to form beam charge
asymmetries to separate the BH and DVCS contributions. The experiments plan to measure both
helicity-dependent and helicity-averaged cross sections. Both detect the scattered electron in the
Hall C High Momentum Spectrometer (HMS), and the out-going photon in the Neutral Particle
Spectrometer (NPS), an array of 1080 PbWO4 crystals covering 25 msr. The is NPS installed on
and makes use of the Super High Momentum Spectrometer (SHMS) carriage. Exclusive DVCS
events are selected via the missing mass of the undetected proton. Fig. 1 right shows the projected
uncertainties as a function of 𝜙, the angle between the scattering and reaction planes, for one
𝑥𝐵, 𝑄

2, 𝑡 bin.
E12+23-006 developed from a white paper in the positron topical issue [10], and was proposed

to the Jefferson Lab PAC in 2020 (as PR12-20-012) before finally receiving C1 conditional approval
in 2023. One concern raised the PAC in 2020 was the degree to which positron data improved
constraints of the proton’s GPDs. A recent global re-analyis of DVCS data showed that the addition
of positron data from the Hall C experiment strengthened constraints on the real part of the Compton
Form Factor H by a factor of 3 [11].

2.2 Hall B Proposal

E12+23-002 [3] proposes a 100-day measurement of DVCS with both positrons and electrons
using the CLAS12 Spectrometer [14] in Hall B with the goal of measuring beam charge asymmetries
directly in the same experiment. The proposal developed from a white paper in the positron topical
issue [15], was proposed to the Jefferson Lab PAC in 2020 (as PR2-20-009), before receiving C1
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Figure 2: Left: projected kinmeatic coverage of E12+23-002 in 𝑥𝐵 and 𝑄2. Middle: projected kinmeatic
coverage in 𝑡 and 𝜙. Right: projected uncertainties for 𝐴𝐶

𝑈𝑈
for three different kinematic bins along with

theoretical predictions from Refs. [9, 12, 13]. Figures taken from [3].

conditional approval in 2023. In contrast to the Hall C measurement, all three final state particles
can be detected to ensure exclusivity, with the lepton and photon detected in the CLAS12 forward
detector, and the proton detected in the central detector. The large acceptance of CLAS12 for
DVCS can be see in Fig. 2, left and middle. The experiment plans to run with the torus magnet in
lepton-outbending polarity. The CLAS12 solenoid polarity will be periodically reversed in order to
control systematic effects associated with the proton acceptance. Three different asymmetries can
be determined from the experiment: the unpolarized charge asymmetry 𝐴𝐶

𝑈𝑈
, the beam helicity-

dependent charge asymmetry, 𝐴𝐶
𝐿𝑈

, and the charge-averaged beam helicity asymmetry, 𝐴0
𝐿𝑈

, defined
by:

𝐴𝐶
𝑈𝑈 ≡

(𝜎𝑒+↑ + 𝜎𝑒+↓) − (𝜎𝑒−↑ + 𝜎𝑒−↓)
𝜎𝑒+↑ + 𝜎𝑒+↓ + 𝜎𝑒−↑ + 𝜎𝑒−↓

(2)

𝐴𝐶
𝐿𝑈 ≡

(𝜎𝑒+↑ − 𝜎𝑒+↓) − (𝜎𝑒−↑ − 𝜎𝑒−↓)
𝜎𝑒+↑ + 𝜎𝑒+↓ + 𝜎𝑒−↑ + 𝜎𝑒−↓

(3)

𝐴0
𝐿𝑈 ≡

(𝜎𝑒+↑ − 𝜎𝑒+↓) + (𝜎𝑒−↑ − 𝜎𝑒−↓)
𝜎𝑒+↑ + 𝜎𝑒+↓ + 𝜎𝑒−↑ + 𝜎𝑒−↓

, (4)

where ↑ and ↓ refer to the beam helicity and 𝑒+ and 𝑒− refer to the beam charge. Fig. 2 right shows
the projected uncertainties on 𝐴𝐶

𝑈𝑈
for three different kinematic bins.

3. Multi-Photon Exchange

Positrons are valuable for understanding multi-photon exchange contributions because the
interference term between one- and two-photon exchange, also changes sign with the change in
beam charge. Two-photon exchange (TPE) in elastic scattering has attracted significant attention
due to the discrepancy between measurements of the proton’s form factor ratio 𝜇𝑝𝐺𝐸/𝐺𝑀 , shown
in Fig. 3. Whereas Rosenbluth separations of unpolarized cross section measurements indicate
a roughly constant ratio, polarization transfer measurements show a clearly decreasing ratio as a
function of 𝑄2. A non-negligible contribution from hard two-photon exchange, i.e., beyond the
soft two-photon exchange correction of standard radiative corrections procedures, could bias the
two techniques differently. Three experiments were conducted to measure the positron-proton
elastic cross section ratio, 𝜎𝑒+𝑝/𝜎𝑒− 𝑝, but the results were inconclusive [22–24], largely because
they lacked the reach to probe the 𝑄2 region where the form factor discrepancy is large. For this
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Figure 3: Polarization transfer measurements of the proton form factor ratio 𝜇𝑝𝐺𝐸/𝐺𝑀 as a function of
𝑄2 [16–20], compared with a global fit to unpolarized cross section data [21]. Recent experiments [22–24]
lacked the reach to probe where the discrepancy is large.

FIG. 11. The " values that can be measured as a function of Q2 for the available positron energies.

The dashed red lines indicate the Q2 values where we will make precise measurements of GE/GM .

The red circles and squares indicate the points where measurements will be taken, with the red

squares highlighting kinematics at which coincidence data can be taken. The minimum " value is

determined by the assumed minimum scattering angle of 11 degrees.

F. Beam time request

Data taking for the points shown in Fig. 11 is summarized in Table II. We request a

total of 13 PAC days, including the main data taking, calibration and checkout runs, and

overhead for beam energy and changes.

While the main data taking uses the hydrogen target, data taken on an aluminum

‘dummy’ target will be used to subtract the contributions from the target endcaps. We

will also take runs at at di↵erent beam currents to verify our measurement of the target

heating e↵ects, dead time, and other rate-dependent e↵ects in the spectrometers. Data will

be taken with a thin carbon target at all kinematics as a check on the target position and

beam o↵sets. Finally, coincidence data will be taken at some settings as a check of the

scattering kinematics and as a measure of proton detection e�ciency and absorption, even

though these corrections cancel in the " dependence. We can also use the coincidence data

to examine the elastic proton spectrum without the backgrounds, allowing us to check the

agreement between the data and the simulated elastic (and background) spectra. These

19

IV. PROJECTED RESULTS FOR THE PROPOSED MEASUREMENTS

Figure 11 shows the kinematics of the proposed measurements, with circles indicating

the proton-only kinematics, and squares indicating kinematics where we will also take coin-

cidence events. Table I summarizes the systematic uncertainties for the cross section mea-

surements. Separate entries are given for the total uncertainty in the absolute cross sections,

the uncertainties that enter into the extraction of GE/GM (neglecting "-independent uncer-

tainties), and the uncertainties that enter into the linearity tests (neglecting the portions of

the systematic uncertainties that vary linearly with ").

Fig. 5 illustrates the expectation for the " dependence of both electron and positron

measurements at two Q2 values. The uncertainties on the electron data come from E01-

001 [20], and we expect comparable uncertainties for both the positron and electron Super-

Rosenbluth measurements proposed here. Note that for larger Q2 values, the contribution

from GE, as determined from the polarization data, is very small, and even for Q2 ⇡ 2 GeV2

and above, the uncertainty on GE yields a very small uncertainty on the expected Rosenbluth

Slope (RS) in the OPE approximation, as illustrated in Fig. ??.
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FIG. 12. [Left] Form factor ratio as a function of Q2 for electron scattering [5] (magenta line), the

polarization data [22] (black line), and the projected results for positron scattering assuming that

the TPE contribution explains the full di↵erence between the electron Rosenbluth extractions and

recoil polarization. Note that for Q2 > 2.7 GeV2, (GE/GM )2 < 0 and the curve represents the

square rood of the absolute value of (GE/GM )2 [Right] Same, but showing the form factor ratio

squared, which directly corresponds to the observed slope in the Rosenbluth separation.

This can be converted to a prediction for the form factor ratio µpGE/GM as a function

of Q2 for positron and electron Rosenbluth separations and for polarization measurements.

The right hand of Figure 12 plot shows (µpGE/GM)2, which corresponds directly to the

observed slope in the Rosenbluth separations. Note that based on the parameterizations

used here, this slope becomes negative above Q2 ⇡ 2.7 GeV2. Since this corresponds to an

imaginary value for µpGE/GM , the left plot takes the absolute value of the slope. As such,

we show projected uncertainties only for the right hand plot.

21

Figure 4: Left: kinematics proposed in E12-23-012. Right: projected results and uncertainties compared
to an electron global fit [25], a polarization transfer fit [26], and the prediction for positions assuming TPE
explains the full discrepancy between the two. Also shown are data from E01-001 [27]. Figures taken from
[4].

reason, two new experiments were proposed to measure 𝜎𝑒+𝑝/𝜎𝑒− 𝑝 with the positron beam at
Jefferson Lab [4, 5]. In addition, a third proposal was approved to measure deep inelastic scattering
with positrons on nuclei to better constrain Coulomb corrections, another form of multi-photon
exchange [6].

3.1 Positron Super-Rosenbluth

E12-23-012 [4] proposes a 56-day measurement of the elastic cross section with both electrons
and positrons, at kinematics (see Fig. 4 left) allowing Rosenbluth separations to independently
determine 𝐺2

𝐸
and 𝐺2

𝑀
at 10 values of 𝑄2. If there is a large contribution from hard TPE, the

experiment will see a discrepancy between the electron and positron measurements. Projections are
shown in Fig. 4 right. The proposal was developed from an earlier white paper [28], and received

5
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Figure 5: Left: the kinematics of 𝜎𝑒+ 𝑝/𝜎𝑒− 𝑝 measurements, including data from the 1960s [29–33], VEPP-
3 [22], CLAS [34], and OLYMPUS [24], as well as the projected kinematics of E12-23-008 [5]. The size of
the circles denotes the size of the uncertainties. Right: projected uncertainties for E12-23-008 in relation to
theoretical predictions [21, 35–39].

C1 conditional approval in 2023.
The experiment plans to use the Super-Rosenbluth technique, by which the recoiling proton

will be detected (in the Hall C HMS) rather than the scattered lepton. This technique has several
advantages, chiefly that the momentum of the proton is constant in 𝑄2. For every point with the
same 𝑄2 setting, the magnetic field setting of the spectrometer can be left unchanged, reducing
systematic sensitivities.

3.2 Two-Photon Exchange with CLAS12

E12-23-008 [5] proposes a 55-day measurement the ratio 𝜎𝑒+𝑝/𝜎𝑒− 𝑝 with CLAS12. The
proposal was developed from an earlier white paper [40] and received conditional C1 approval in
2023. The combination of large acceptance, high luminosity, and high available beam energy allow
the experiment to probe untouched regions of kinematic space where the form factor discrepancy is
large (see Fig. 5). The lepton and proton will be detected in coincidence. For backward angles (high-
𝑄2, low-𝜖), the lepton will pass through the CLAS12 central detector, while the proton will pass
through the forward detector. A new trigger scheme will need to be developed to record these events.
Projected uncertainties for the 6.6 GeV setting, in relation to theoretical predictions [21, 35–39] are
shown in Fig. 5 right.

3.3 Coulomb Corrections

E12+23-003 [6] was conditionally approved (C1) for a 9.3-day measurement of inclusive deep
inelastic positron scattering on Au and 𝑑 targets to study the impact of Coulomb corrections. Four
kinematic points were chosen to compare with an appoved electron scattering experiment E12-14-
002 [41]. The primary observable is to compare 𝜎Au/𝜎𝑑 accross identical kinematics. Coulomb
corrections would cause the change in this ratio, as a function of outgoing lepton energy, to be
opposite for positrons and electrons. If the data with the two beam chrages are collected in the
same run period with the same target, it would allow a degree of cancellation of normalization
systematics. Projections for this scenario are shown in Fig. 6 left.
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Figure 6: Double-ratio, (�Au/�D)e+
/(�Au/�D)e� , as measured using positron and electron beams. In the

absence of Coulomb acceleration the double-ratio should be 1.0. Error bars are statistical and point-to-
point systematic uncertainties added in quadrature. The width of the yellow band at 1.0 indicates the 2.3%
normalization uncertainty in the measurement of the double-ratio. Any measured deviation of the double
ratio from 1.0 is a clear indication of the presence of Coulomb effects.
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Figure 7: Double-ratio, (�Au/�D)e+
/(�Au/�D)e� , as measured using positron and electron beams. In this

case, we assume that the positron and electron data are taken during the same run period (using the same
targets) resulting in a reduction of the normalization uncertainty to about 0.5%.

Figure 6: Left: projections for the double ratio (𝜎𝑒+

A /𝜎𝑒+

𝑑
)/(𝜎𝑒−

A /𝜎𝑒−

𝑑
) and statistical uncertainty for

E12+23-003, under the improved Effective Momentum Approximation. The normalization uncertainty in
yellow assumes the optimistic scenario that electron data (E12-14-002) can be collected with the same target
as part of the same run period. Figure taken from Ref. [6]. Right: The projected exclusion limits for the dark
photon search proposed in PR12+23-005 (taken from [7]).

4. Searches for Dark Matter and Rare Phenomena

Due to the world around us being made of matter rather than anti-matter, positrons offer the
possibility of doing physics through annihilation, or charged-current reactions that are not available
to electrons. One possible clue in the origin of dark matter would be the presence of a so-called
dark photon, or 𝐴′, which may couple weakly to 𝑒+𝑒−. This has received attention recently due
to the observations of the ATOMKI Collaboration of an excess in the 𝑒+𝑒− distribution produced
from the decay of excited states of 8Be that is consistent with a 17 MeV particle [42].

PR12+23-005 [7] proposed a 60-day search for an 𝐴′ in the 15–90 MeV mass range through
the reaction 𝑒+𝑒− → 𝛾(𝐴′). The final state would have a single photon, which would be detected
in the PRad calorimter [43], from which the angles and energy could be used to calculate the
missing mass of any undetected particle(s). The signature of an 𝐴′ would be a bump in the missing
mass spectrum. Two multi-wire proportional counters could be used to veto charged particle
backgrounds. The proposal was deferred in 2023, but is being considered for resubmission. The
projected exclusion limits are shown in Fig. 6 right.

5. Conclusion

The five approved positron experiments are now the nucleus of the Jefferson Lab positron
program. The positron beam is envisioned as part of a long-term upgrade scenario for Jefferson
Lab that lead to an increase in the terminal energy of CEBAF to 22 GeV, an upgrade which wide
support from the community [44]. The PWG is working to develop new experimental concepts
using positrons, and to find solutions to the technical challenges that must be overcome to bring the
positron beam to fruition.
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