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1. Introduction

This talk summarizes recent work done in Ref. [1], which showed how to resolve long-standing
problems in applications of TMD phenomenology when the intention is to interpret measurements
in terms of hadronic or nonperturbative structure. That paper focused on the SIDIS process as its
test subject and it showed an explicit implementation of the new approach (called “hadron structure
oriented” (HSO)) that is based on providing a consistent parametrization for TMD distributions.
The general framework and discussion about the HSO approach are found in a previous work [2].
The talk also featured some results obtained in a Yukawa field theory [3], which became a valuable
source for explicit checks and insights. The talk addressed issues that are often unacknowledged
in traditional TMD phenomenological implementations that focus solely on very high or solely on
moderate energies. Specifically, we point out certain theoretical inconsistencies in conventional
ways of identifying nonperturbative structure in TMD parametrizations. We advocate for the
following theoretical constraints, derivable from the operator definitions of the TMD pdfs, to be
imposed directly on the parametrization of the TMD:

1. An integral relation exists that connects TMD and standard collinear pdfs and takes the form∫
d2kT 𝑓 (𝑥, 𝑘𝑇 ; 𝜇, 𝜇2) = 𝑓 (𝑥; 𝜇) + Δ , (1)

where 𝑓 (𝑥; 𝜇) is a collinear pdf in a standard renormalization scheme like MS and Δ is
a correction term. In the naive picture that treats (TMD) pdfs as literal number densities,
Δ = 0 and the transverse momentum integral convergences. In QCD, the integral requires
a UV regulator of order 𝜇, in which case Δ is nonzero but can be calculated perturbatively
at leading power in O(𝑚/𝑄) in collinear factorization. In practice, this relation is typically
taken either in the naive form (in phenomenology that focuses on nonperturbative structures)
or it is ignored with regard to the nonperturbative transverse momentum dependence (in
many high energy applications). However, it is an important constraint that permits the
quasi-probabilistic interpretation.

2. The large transverse momentum behavior (𝑘T ≈ 𝑄) of any TMD distribution is dictated by
fixed order collinear factorization, i.e.

𝑓 (𝑥, 𝑘T ≈ 𝑄) = 𝐶 (𝑥, 𝑘T ≈ 𝑄;𝑄,𝑄2) ⊗ 𝑓 (𝑥;𝑄). (2)

3. Smooth interpolation between small and large transverse sizes and elimination of a sharp
“𝑏max” separating perturbative and nonperturbative transverse momentum dependence.

2. Conventional approaches and their limitations

In the conventional TMD/CSS methodology, a well known trick is used to sequester the small
𝑏T approximation from the rest, often called the nonperturbative part carried by the 𝑔-functions,
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namely

𝑓 (𝑥, 𝑏T; 𝜇, 𝜇2) = 𝑓 (𝑥, 𝑏∗; 𝜇, 𝜇2) 𝑓 (𝑥, 𝑏T; 𝜇, 𝜇2)
𝑓 (𝑥, 𝑏∗; 𝜇, 𝜇2)

= 𝐶 (𝑥, 𝑏∗; 𝜇𝑏∗ , 𝜇2
𝑏∗
) ⊗ 𝑓 (𝑥; 𝜇𝑏∗) exp

{∫ 𝜇

𝜇𝑏∗

d𝜇′

𝜇′

(
𝛾 (𝑎𝑆 (𝜇′)) − 𝛾𝐾 (𝑎𝑆 (𝜇′)) ln

𝜇

𝜇′

)
+ ln

𝜇

𝜇𝑏∗
𝐾

(
𝑏∗; 𝜇𝑏∗

)}
× exp

{
−𝑔(𝑥, 𝑏T, 𝑏∗) − 𝑔𝐾 (𝑏T, 𝑏∗) ln

𝜇

𝜇𝑄0

}
+ O(Λ2

QCD𝑏
2
max),

(3)

where from the first to the second line the TMD pdf at the scale 𝜇𝑏∗ has been approximated by
its well known OPE expansion. The function 𝑏∗(𝑏T, 𝑏max) is constructed to behave like 𝑏T for
small values and freeze to 𝑏max and 𝜇𝑏∗ ≡ 2𝑒−𝛾𝐸/𝑏∗. The functions 𝑔 and 𝑔𝐾 are universal
functions defined to describe the remaining region from 𝑏max to infinity, and in applications they are
modeled with an appropriate ansatz generally chosen to vanish like a power of 𝑏T for 𝑏T → 0. The
introduction of the auxiliary parameter 𝑏max is manifestly arbitrary, and the full parametrization
must be independent of its choice. In most practical implementations, however, this is not found.
Indeed, in our example shown in Fig. 1(a) there is a strong 𝑏max dependence on the SIDIS cross
section. Particularly, we notice how the choice of 𝑏max affects the large 𝑞T region, which should in
principle be solely characterized by collinear factorization and should be minimally affected by the
small transverse momentum content of the TMDs.
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Figure 1: (a) W (TMD) term of the SIDIS cross section for different values of 𝑏max for fixed parameters and
Gaussian core model. (b) SIDIS differential cross section showing W (TMD), FO and Asy terms calculated
according to the conventional approach for a range of model mass parameters.

An additional limitation is manifested when one tries to describe the cross section over the
full kinematic range in the observed transverse momentum 𝑞T. Processes like SIDIS, Drell-Yan
and 𝑒+𝑒− into two back-to-back hadrons are described by TMD factorization in the small 𝑞T region
(the so-called W term), while the large 𝑞T region is purely dictated by collinear factorization (also
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known as the Fixed Order or FO term). In general it is

d𝜎
d𝑞T . . .

= 𝑇small
d𝜎

d𝑞T . . .︸          ︷︷          ︸
W

−𝑇small𝑇large
d𝜎

d𝑞T . . .︸                 ︷︷                 ︸
Asy

+𝑇large
d𝜎

d𝑞T . . .︸         ︷︷         ︸
FO

+O
(
ΛQCD

𝑄

)
.

(4)

The asymptotic (Asy) term acts as a natural interpolator between the two contributions in the region
where the two approximations start to fail, i.e. ΛQCD ≪ 𝑞T ≪ 𝑄. This is exactly the region
where the three terms should share the same behavior and be roughly equal. However, as shown in
Fig. 1(b) and better in Fig. 2, this is generally not the case. Due to unconstrained parametrizations
conventionally used, the existence of a “matching region" is not guaranteed.
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Figure 2: (a) Same as Fig. 1(b) but for fixed parameters. (b) Same as (a) but with linear axes and multiplied
by 𝑞2

T.

3. HSO approach

3.1 Input scale

The HSO approach cures these issues. It preserves the integral constraint in Eq. (1) and
the large 𝑘T tail constraint in Eq. (2) explicitly at the input scale 𝑄0. A realization of the HSO
parametrization was studied in [1] where the TMD at the input scale 𝜇𝑄0 = 𝑄0 reads (similarly for
the FF)

𝑓inpt,𝑖/𝑝 (𝑥, 𝒌T; 𝜇𝑄0 , 𝑄
2
0) =

1
2𝜋

1
𝑘2

T + 𝑚2
𝑓𝑖,𝑝

[
𝐴
𝑓

𝑖/𝑝 (𝑥; 𝜇𝑄0) + 𝐵
𝑓

𝑖/𝑝 (𝑥; 𝜇𝑄0) ln
𝑄2

0

𝑘2
T + 𝑚2

𝑓𝑖,𝑝

]
+ 1

2𝜋
1

𝑘2
T + 𝑚2

𝑓𝑔,𝑝

𝐴
𝑓 ,𝑔

𝑖/𝑝 (𝑥; 𝜇𝑄0)

+ 𝐶 𝑓

𝑖/𝑝 𝑓core,𝑖/𝑝 (𝑥, 𝒌T;𝑄2
0) , (5)

where the first two lines follow from the large 𝑘T tail region with the addition of mass parameters
(only the order 𝛼𝑆 was implemented but generalizations to higher orders is straightforward). The
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Figure 3: HSO approach to the SIDIS differential cross section. (a) Logarithmic scale. (b) Linear scale.

last contribution 𝑓core is any small 𝑘T model which can be easily swapped with another. A crucial
part is the 𝐶 𝑓

𝑖/𝑝 factor which is not simply a trivial normalization constant, but it is defined in such a
way that the two constraints mentioned in Eq. (1) and Eq. (2) are satisfied. In particular, the integral
relation between TMDs and collinear distribution is satisfied with a cutoff scheme

𝑓 𝑐
𝑖/𝑝 (𝑥; 𝜇𝑄0 , 𝜇 𝑓 ) ≡

∫ 𝜇 𝑓

0
d2𝒌T 𝑓inpt,𝑖/𝑝 (𝑥, 𝒌T; 𝜇𝑄0 , 𝑄

2
0) = 𝑓 (𝑥; 𝜇𝑄0) + Δ(𝑥; 𝜇𝑄0 , 𝜇 𝑓 ), (6)

where 𝑓 (𝑥; 𝜇𝑄0) is the usual renormalized collinear pdf in the MS scheme, for instance, and Δ is
calculable in perturbation theory up to power suppressed contributions. Notice how the above is
inherently independent of any auxiliary parameters such as 𝑏max and 𝑏min.

The W term at the input scale is readily constructed

d𝜎SIDIS

d𝑥d𝑦d𝑧d𝑞2
T

����
𝑞T≪𝑄0

=
2𝜋2𝑧2𝛼2

𝑒.𝑚

𝑄2
0

[
𝑦 + 2

(
1 − 𝑦
𝑦

)] ∑︁
𝑗

∥𝐻∥2
𝑗×∫

d2𝒌T 𝑓inpt,j/p(𝑥, 𝑘T; 𝜇𝑄0 , 𝑄
2
0)𝐷inpt,h/j(𝑥, 𝑧(𝑘T + 𝑞T); 𝜇𝑄0 , 𝑄

2
0)

(7)

as well as the asymptotic term (Asy) which is nothing but the large 𝑞T approximation to the
above expression and it is completely determined by fixed order collinear factorization. The full
expression is rather lenghty and can be found in Ref. [1] but the important point for this talk is
that, by construction, it follows the large 𝑞T tail of the W term, in contrast to the conventional
approach (see Fig. 1-2). Furthermore, plotting the new W and asymptotic terms along with the FO
one (see Fig. 3), now yields a clear improvement. That is, the existence of a matching region is now
manifested in the matching behavior of the curves in the region 0.4 ≲ 𝑞T ≲ 1 GeV, which is more
or less where it is expected that to happen.

3.2 Evolution

Once the constraints in Eq. (1) and Eq. (2) are manifestly imposed at the input scale, the
evolution is implemented according to the usual RG equations. The Fourier conjugate space to
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transverse momentum is the natural space to implement evolution since the latter is solely contained
in an exponential factor whose 𝑏T dependence is uniquely due to the CS kernel. The full solution is

𝑓 (𝑥, 𝑏T; 𝜇, 𝜇2) = 𝑓 (𝑥, 𝑏T; 𝜇𝑄0 , 𝜇
2
𝑄0
)

× exp

{∫ 𝜇

𝜇𝑄0

d𝜇′

𝜇′

(
𝛾 (𝛼𝑆 (𝜇′)) − ln

(
𝜇

𝜇′

)
𝛾𝐾 (𝛼𝑆 (𝜇′))

)
+ ln

(
𝜇

𝜇𝑄0

)
𝐾

(
𝑏T; 𝜇𝑄0

)}
≡ 𝑓 (𝑥, 𝑏T; 𝜇𝑄0 , 𝜇

2
𝑄0
)𝐸 (𝜇𝑄0 → 𝜇),

(8)

where we have defined the evolution factor as 𝐸 (𝜇𝑄0 → 𝜇) with 𝜇𝑄0 the input scale and 𝜇 any
other higher scale we wish to evolve to. Naturally, we give the recipe to build the Collins-Soper
kernel in the HSO spirit. That is, an input scale parametrization that smoothly interpolates between
the small 𝑏T OPE expansion and a large 𝑏T “core" model 𝐾core(𝑏T) of our choice. At order 𝛼𝑆 (𝜇)
it reads

𝐾input(𝑏T; 𝜇𝑄0) = 2𝐶𝐹
𝛼𝑆 (𝜇𝑄0)

𝜋

(
𝐾0(𝑚𝐾bT) + ln

(
mK
𝜇Q0

))
+ 𝐾core(𝑏T), (9)

where 𝑚𝐾 is a mass parameter. Under evolution it behaves as expected, i.e.

𝐾 (𝑏T; 𝜇) = 𝐾input(𝑏T; 𝜇𝑄0) −
∫ 𝜇

𝜇𝑄0

d𝜇′

𝜇′
𝛾𝐾 (𝛼𝑆 (𝜇)′) . (10)

Implementing the same steps for higher orders in the QCD coupling is straightforward, and we give
the full NLO parametrization for the Collins-Soper kernel in A.

Similarly to what is achieved by the scale transformation 𝜇∗ in the common approach, the
HSO method allows us to perform RG improvements on the input parametrization only relying on
a scale transformation we call 𝑄0(𝑏T, 𝑄0) which behaves like 2𝑒−𝛾𝐸/𝑏T at small 𝑏T and it rapidly
converges to the input scale 𝑄0 for larger 𝑏T. The specific functional form we choose is

𝑄0 = 𝑄0

[
1 −

(
1 − 2𝑒−𝛾𝐸

𝑄0𝑏T

)
𝑒−𝑎

2𝑏2
T

]
, (11)

with the choice 𝑎 = 𝑄0, but any function with the same overall behavior is acceptable.
The final expression we use for our analyses is thus Eq. (8) with the replacement

𝑓 (𝑥, 𝑏T; 𝜇𝑄0 , 𝜇
2
𝑄0
) ↦→ 𝑓input(𝑥, 𝑏T;𝑄0, 𝑄

2
0)𝐸 (𝑄0 → 𝜇𝑄0) (12)

along with

𝐾
(
𝑏T; 𝜇𝑄0

)
↦→ 𝐾input

(
𝑏T;𝑄0

)
−

∫ 𝜇𝑄0

𝑄0

d𝜇′

𝜇′
𝛾𝐾 (𝛼𝑆 (𝜇′)). (13)

An example of how the input parametrization at𝑄0 = 4 GeV is improved after the𝑄0 prescription is
shown in Fig. 4(a). The same improvement procedure is illustrated in Fig. 4(b) for the Collins-Soper
kernel at leading order. This is a crucial advantage of the HSO approach as it never imposes an
explicit demarcation between what is considered perturbative and what is not unlike the common
approach. There, the role of 𝑏max is twofold since it is used to split the space in two as well as to
take care of the large logs coming from the small 𝑏T region by making a scale transformation using
the RG equations.
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Figure 4: Left: Example of an HSO parametrization for the up-quark TMD pdf in coordinate space. The
dashed yellow line shows the LO input parametrization as in Eq. (5) for 𝜇𝑄0 = 𝑄0 = 4 GeV, 𝑥 = 0.1,
𝑚 = 0.3 GeV and 𝑀 = 0.6 GeV (all mass parameters have been set equal to 𝑚 except fro the one
appearing in the core model, which we refer to as 𝑀). The “core" model chosen here is a gaussian:
𝑓core (𝑥, 𝑘T;𝑄0) = 𝑒−𝑘

2
T/𝑀

2/(𝜋𝑀2). Similarly, the dashed purple line implements the NLO version. The two
solid lines (blue for LO and red for NLO) show the RG improved TMD distribution as in Eq. (12). Right:
Same as before but for the Collins-Soper kernel at the input scale 𝜇𝑄0 = 5 GeV with the specific “core"
model 𝐾core = 𝑏𝐾 (exp

{
−𝑚2

𝐾
𝑏2

T
}
− 1). Here the dashed green line is the HSO parametrization after the RG

improvement of the leading-order input scale parametrization (solid yellow), which asymptotes to its OPE
expansion (dashed purple) for small 𝑏T.

3.3 Phenomenology

The hadronic structure emphasis of the HSO approach is also manifested in the phenomeno-
logical methodology we adopt.

With the HSO approach we are able to compare different nonperturbative models, in the low-
to-moderate𝑄 region where nonperturbative physics is dominant, in a very direct way. The effect of
evolution to increasingly high energies washes out most of the nonperturbative details of the input
parametrization, leaving the main description of the TMD distribution to its collinear perturbative
expression. This is why, despite being formally equivalent, an approach that focuses on backward
evolution introduces a higher uncertainty into the extracted nonperturbative information. The HSO
parametrization explicitly interpolates between the perturbative tail and the chosen “core" model,
regardless of its shape, ensuring that the moderate energies match the nonperturbative information
at small transverse momentum, while consistently agreeing with the large transverse momentum
behavior.
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For these reasons, we use a different strategy than that of a global fit analysis: we extract the non
perturbative parameters of the TMD models from the low-to-moderate energy data, which contain
most of the nonperturbative transverse momentum information. Then we evolve the resulting
TMDs to postdict the higher energy data sets. By doing this, we test in an unambiguous way the
assumptions made for the extractions. See for instance Fig. 5 where we give a preliminary fit for the
E288 Drell-Yan experiment, whose results will be tested againts the 𝑍0 boson production Drell-Yan
data. A more detailed analysis of this strategy and its results can be found in our most recent work
[4]. An additional advantage of the HSO approach is that the stringent requirements to match the

Figure 5: Fit of the E288 Drell-Yan experimental data using the HSO approach.

theoretical consistency constraints (1) and (2) ensure that the extracted fits are not contaminated by
models of nonperturbative transverse momentum in the perturbative collinear factorization regions
where it would not be sensible. Otherwise, uncontrolled leaking of model dependence may migrate
into regions where it is unreasonable and affect interpretations of fit results. Constraints like (1)
imply potentially strong correlations between collinear pdf parametrizations and nonperturbative
transverse momentum model, an effect that is lost if the constraint is not imposed explicitly. In
the latter case, an apparent lack of sensitivity to collinear pdfs may indicate overfitting rather than
dominance by nonperturbative transverse momentum dependence.

4. Conclusion

We have studied transverse momentum observables like the SIDIS differential cross section,
guided by the HSO approach. The TMD distributions were constructed to explicitly satisfy the-
oretical constraints like the integral relation between TMD and collinear distributions as well as
the large 𝑘T behavior dictated by collinear factorization. In doing so, we have provided a consis-
tent parametrization designed to maximally exploit the nonperturbative information coming from
low-to-moderate 𝑄 data and thereby predict higher 𝑄 measurements.

We have successfully improved upon the so called “matching problem" by providing a set of
tools and instructions that, by construction, make the extracted cross section smoothly interpolate
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between its small 𝑞T approximator (W term) and its large 𝑞T approximator (the Fixed Order term)
at the input scale.

Additionally, we advocate for a shift in philosophy regarding the phenomenological extraction
of nonperturbative information about TMD distributions. We point out how the low-to-moderate
data should be considered more efficient than high energy data for the extraction of nonperturbative
phsyics. The HSO approach uses the latter as a step for postdiction tests which determine the
validity of the assumptions made for the fit extractions.

The hadron structure oriented approach we have discussed here is ideal also for extensions to
spin dependent observables like the Sivers effect [5], which we plan to address in the future.

A. NLO Collins-Soper kernel

The CS-kernel at NLO in the HSO spirit reads

𝐾̃inpt(𝑏T; 𝜇𝑄0) =

2𝜋
[
𝐴
(1)
𝐾

(𝜇𝑄0) + 𝐴
(2)
𝐾

(𝜇𝑄0)
]
𝐾0 (𝑚𝐾𝑏T) + 2𝜋𝐵 (2)

𝐾
(𝜇𝑄0)𝐾0 (𝑚𝐾𝑏T) ln

(
𝜇2
𝑄0
𝑏T

2𝑚𝐾𝑒−𝛾𝐸

)
(14)

+ 𝐾̃core(𝑏T) + 𝐷𝐾 (𝜇𝑄0) , (15)

where

𝐴
(1)
𝐾

(𝜇𝑄0) =
𝛼𝑠 (𝜇𝑄0)𝐶𝐹

𝜋2 , (16)

𝐴
(2)
𝐾

(𝜇𝑄0) = −
𝛼𝑠 (𝜇𝑄0)2𝐶𝐹

4𝜋3

(
−67

9
𝐶𝐴 +

𝜋2

3
𝐶𝐴 +

10
9
𝑛 𝑓

)
, (17)

𝐵
(2)
𝐾

(𝜇𝑄0) = −
𝛼𝑠 (𝜇𝑄0)2𝐶𝐹

4𝜋3

(
2
3
𝑛 𝑓 −

11
3
𝐶𝐴

)
, (18)

and

𝐷𝐾 (𝜇𝑄0) =
2𝛼𝑠 (𝜇𝑄0)𝐶𝐹

𝜋
ln

(
𝑚𝐾

𝜇𝑄0

)
+
𝐶𝐹𝛼𝑠 (𝜇𝑄0)2

2𝜋2

[
𝐶𝐴

(
7
2
𝜁3 −

101
27

)
+ 14

27
𝑛 𝑓

]
−
𝛼𝑠 (𝜇𝑄0)2𝐶𝐹

18𝜋2 ln
(
𝑚𝐾

𝜇𝑄0

) [ (
33𝐶𝐴 − 6𝑛 𝑓

)
ln

(
𝑚𝐾

𝜇𝑄0

)
+

(
3𝜋2 − 67

)
𝐶𝐴 + 10𝑛 𝑓

]
. (19)

The “nonperturbative" function 𝐾̃core(𝑏T) can be freely chosen to describe the large 𝑏T behavior of
the CS-kernel. The example chosen in Fig. 4(b) reads

𝐾̃core = 𝑏𝑘

(
𝑒−𝑚

2
𝐾
𝑏2

T − 1
)
, (20)

so that
lim
𝑏T→∞

𝐾̃inpt(𝑏T; 𝜇𝑄0) = −𝑏𝐾 + 𝐷𝐾 (𝜇𝑄0) = −𝑏𝐾 + O (𝛼𝑆) . (21)
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