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Variations of supersymmetric quantum mechanics Vyacheslav P. Spiridonov

To the memory of Valery Rubakov

Supersymmetry is hypothetically valid for quantum field theory of elementary particles, but
it has not found experimental confirmations yet. Nevertheless, a realization of supersymmetry
in quantum mechanical systems [1] has shown that this is not an abstract notion, but a valid
mathematical construction describing properties of real physical models. This application triggered
intense research of corresponding simple supersymmetric systems. The joint work with V. Rubakov
[2] appeared from a wish to extend the quantum field theory of bosons and fermions to the
parastatistical degrees of freedom. It was inspired by the question on the possibility to break the
Pauli principle by admitting the third allowed state for electron, which was discussed at that time.
The things appeared to be complicated and, instead of the quantum field theory modifications, a
parafermionic extension of the supersymmetric quantum mechanics was proposed.

The standard supersymmetric quantum mechanics (SQM) is based on the following algebra

{𝑄+, 𝑄−} = 𝐻, [𝐻,𝑄±] = (𝑄±)2 = 0, (1)

where 𝐻 is the Hamiltonian and 𝑄± are conserved supercharges related by hermitian conjugation,
(𝑄−)† = 𝑄+. It is assumed that all operators are well defined in the Hilbert space of physical states.
Equivalently, one can use the hermitian supercharges 𝑄1 = 𝑄+ + 𝑄−, 𝑄2 = (𝑄+ − 𝑄−)/𝑖 and the
algebra takes the form {𝑄 𝑗 , 𝑄𝑘} = 2𝐻𝛿 𝑗𝑘 , [𝐻,𝑄 𝑗] = 0, 𝑗 , 𝑘 = 1, 2.

From this superalgebra it immediately follows that the spectrum of the Hamiltonian must be
semipositive, and all positive energy states are doubly degenerate. Breaking of supersymmetry is
determined by the existence of the zero energy states vanishing under the action of supercharges
𝐻 |0⟩ = 𝑄± |0⟩ = 0. The Witten index 𝐼𝑊 = 𝑇𝑟 (−1)𝐹𝑒−𝛽𝐻 , where 𝐹 is the fermion charge,
equals to the difference between the number of bosonic and fermionic vacua. When 𝐼𝑊 ≠ 0,
supersymmetry is definitely not broken. For simplicity we consider only systems with the discrete
spectrum, when there is no problem with the continuous spectrum going down to the zero energy.
Also it is convenient to assume that we deal with the Hilbert space L2(R) in order to simplify the
boundary conditions.

The simplest realization of this algebra uses the supercharges

𝑄+ =

(
0 𝐴+

0 0

)
, 𝑄− =

(
0 0
𝐴− 0

)
, 𝐴± = ∓𝜕𝑥 + 𝑣(𝑥), 𝜕𝑥 :=

𝑑

𝑑𝑥
, (2)

which yield the Hamiltonian

𝐻 =

(
ℎ1 0
0 ℎ2

)
= −𝜕2

𝑥 + 𝑣2(𝑥) − 𝑣′(𝑥)𝜎3, 𝜎3 =

(
1 0
0 −1

)
, (3)

where 𝑣′(𝑥) ≡ 𝜕𝑥𝑣(𝑥). Physically, one has a spin 1/2 particle on the line in an external magnetic
field in the vertical direction.

Consider this model in a more general context. Take an infinite sequence of one-dimensional
Schrödinger operators and eigenvalue problems for them

𝐿 𝑗 = −𝜕2
𝑥 + 𝑢 𝑗 (𝑥), 𝐿 𝑗𝜓

( 𝑗 ) (𝑥) = 𝜆𝜓 ( 𝑗 ) (𝑥), 𝑗 ∈ Z. (4)
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Let us demand that the neighboring eigenfunctions are connected to each other by the action of
differential operators of the first order

𝜓 ( 𝑗+1) (𝑥) = 𝐴−
𝑗 𝜓

( 𝑗 ) (𝑥), 𝐴−
𝑗 = 𝜕𝑥 + 𝑣 𝑗 (𝑥). (5)

The compatibility condition of equations in (4) and (5) leads to the intertwining relation 𝐿 𝑗+1𝐴
−
𝑗
=

𝐴−
𝑗
𝐿 𝑗 . Resolving it, one finds explicit connection between 𝑢 𝑗 (𝑥) and 𝑣 𝑗 (𝑥):

𝑢 𝑗 (𝑥) = 𝑣2
𝑗 (𝑥) − 𝑣′𝑗 (𝑥) + 𝜆 𝑗 , 𝑢 𝑗+1(𝑥) = 𝑢 𝑗 (𝑥) + 2𝑣′𝑗 (𝑥), (6)

where 𝜆 𝑗 are the integration constants. Equivalently,

𝑣2
𝑗+1(𝑥) − 𝑣

′
𝑗+1(𝑥) + 𝜆 𝑗+1 = 𝑣2

𝑗 (𝑥) + 𝑣′𝑗 (𝑥) + 𝜆 𝑗 . (7)

In the operator language one comes to the factorization of the Schrödinger operators

𝐿 𝑗 = 𝐴
+
𝑗 𝐴

−
𝑗 + 𝜆 𝑗 , 𝐿 𝑗+1 = 𝐴−

𝑗 𝐴
+
𝑗 + 𝜆 𝑗 = 𝐴

+
𝑗+1𝐴

−
𝑗+1 + 𝜆 𝑗+1, (8)

where 𝐴+
𝑗
= −𝜕𝑥 + 𝑣 𝑗 (𝑥). The hermitian conjugation conditions 𝐴+

𝑗
= (𝐴−

𝑗
)†, 𝐿†

𝑗
= 𝐿 𝑗 assume

that these operators are well defined on a sufficiently dense domain of L2(R), in particular, that all
superpotentials 𝑣 𝑗 (𝑥) do not have singularities spoiling normalizability of 𝜓 𝑗 (𝑥) eigenfunctions.

The Lax pair (in the terminology of the theory of integrable systems) (4) and (5) was introduced
by Infeld [3], but the transformation (5) for an ordinary differential equation of the second order
was considered much earlier by Darboux. Described formulas define basics of the factorization
method for solving eigenvalue problems in quantum mechanics initiated by Schrödinger himself,
see the survey [4]. Evidently, any pair of neighbouring operators 𝐿 𝑗 can be used for constructing
the supersymmetric Hamiltonian (3), ℎ1 = 𝐿 𝑗 − 𝜆 𝑗 , ℎ2 = 𝐿 𝑗+1 − 𝜆 𝑗 .

The system (2), (3) contains a bosonic degree of freedom described by the variables 𝑥 and

𝑝 = −𝑖𝜕𝑥 , [𝑥, 𝑝] = 𝑖, and a fermionic one described by the matrices 𝑓 + =

(
0 1
0 0

)
, 𝑓 − =(

0 0
1 0

)
, so that ( 𝑓 −)2 = ( 𝑓 +)2 = 0, { 𝑓 −, 𝑓 +} = 1. Supercharges are built as products of bosonic

and fermionic operators 𝑄+ = 𝐴+ 𝑓 +, 𝑄− = 𝐴− 𝑓 −. Working with a bigger number of bosonic
and fermionic degrees of freedom, it is possible to build models with the extended supersymmetry
involving bigger number of conserved supercharges.

There are statistics other than the bosonic and fermionic ones called parastatistics. They
describe different types of symmetrization or antisymmetrization of wave functions for a system
of identical particles. The latter are characterized by an integer 𝑝 describing the number of rows
(for parabosons) or columns (for parafermions) in the corresponding Young diagrams. Parabosonic
and parafermionic creation and annihilation operators satisfy some general trilinear relations. A
variation of SQM proposed in [2] used the parafermion of order 𝑝 = 2 instead of the fermion. It
was called the parasupersymmetric quantum mechanics (PSQM). The corresponding creation and
annihilation operators satisfy relations

𝑎3 = 0, 𝑎2𝑎+ + 𝑎+𝑎2 = 2𝑎, 𝑎𝑎+𝑎 = 2𝑎

3
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and their hermitian conjugates following from relations 𝑎† = 𝑎+, (𝑎+)† = 𝑎. Operators 𝑎, 𝑎+ can be
realized by 3×3 matrices which are not described here. With their help, the following parafermionic
(of order two) generalization of supercharges was suggested in [2]

𝑄+ =
©«

0 𝐴+
1 0

0 0 𝐴+
2

0 0 0

ª®®¬ , 𝑄− =
©«

0 0 0
𝐴−

1 0 0
0 𝐴−

2 0

ª®®¬ , (𝑄±)3 = 0.

These operators generate the following parasuperalgebra

(𝑄−)2𝑄+ +𝑄−𝑄+𝑄− +𝑄+(𝑄−)2 = 2𝑄−𝐻,

(𝑄+)2𝑄− +𝑄+𝑄−𝑄+ +𝑄− (𝑄+)2 = 2𝑄+𝐻, (9)

where the Hamiltonian 𝐻 commutes with the parasupercharges, [𝐻,𝑄±] = 0, and has a 3 × 3
diagonal matrix form

𝐻 = −𝜕2
𝑥 + diag(𝑣2

1 − 𝑣
′
1 − 𝑐, 𝑣

2
1 + 𝑣

′
1 − 𝑐, 𝑣

2
2 + 𝑣

′
2 + 𝑐)

with arbitrary real constant 𝑐. The middle element of the Hamiltonian can be written in the form
−𝜕2

𝑥 + 𝑣2
2 − 𝑣

′
2 + 𝑐 because the functions 𝑣1(𝑥) and 𝑣2(𝑥) are connected by the differential equation

𝑣′1(𝑥) + 𝑣
′
2(𝑥) + 𝑣

2
1(𝑥) − 𝑣

2
2(𝑥) = 𝜆2 − 𝜆1 ≡ 2𝑐. (10)

In terms of the Hamitonians 𝐿 𝑗 defined earlier, we have

𝐻 = diag(𝐿1 − 𝑎, 𝐿2 − 𝑎, 𝐿3 − 𝑎), 𝑎 = 1
2 (𝜆1 + 𝜆2).

Our notation differs from the one used in [2] by the changes 𝑣 𝑗 (𝑥) → −𝑊 𝑗 (𝑥) and 2𝑐 → −𝑐. We
shall assume below that 𝑐 > 0. The models with 𝑐 = 0 are too specific for our goals and the case
𝑐 < 0 can be recovered by the changes 𝑣 𝑗 (𝑥) → −𝑣 𝑗 (𝑥).

For the hermitian charges 𝑄1 = 𝑄+ +𝑄−, 𝑄2 = (𝑄+ −𝑄−)/𝑖, one has the relations

𝑄𝑖 ({𝑄 𝑗 , 𝑄𝑘} − 2𝐻𝛿 𝑗𝑘) + cyclic perm. of 𝑖, 𝑗 , 𝑘 = 0, [𝐻,𝑄𝑖] = 0,

The spectrum of 𝐻 is now triply degenerate with possible exception of two smallest eigenvalues.
It is possible to realize the superalgebra (1) using matrices (2) with 𝐴± given by a linear

differential operator with 𝑣(𝑥) being a 2 × 2 matrix superpotential. In this case supersymmetric
Hamiltonian 𝐻 is given by a 4 × 4 matrix. By appropriate choice of the elements of the matrix
superpotential it is possible to diagonalize the 2× 2 analogue of ℎ1 (or ℎ2) in (3). The Hamiltonian
takes then a block-diagonal form. As shown in [5], after deleting one 1 × 1 dimensional block
(i.e., one row and one column) in 𝐻 there emerges a 3 × 3 matrix Hamiltonian satisfying the para-
supersymmetric algebra. Its further simplification yields the above diagonal PSQM Hamiltonian.
Thus parasupersymmetric systems can be obtained by projecting (truncating) the Hilbert spaces of
supersymmetric systems to lower dimension subspaces. Sometimes this is a natural procedure, if
the truncated subspace subhamiltonian is not self-adjoint due to some singularities of the potential.

Another type of variation of SQM was suggested by Andrianov, Ioffe and the author in [6]. It
was called the higher-derivative supersymmetric quantum mechanics (HSQM), since it used higher

4
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order differential operators as supercharges. Consider the simplest case when the supercharges are
defined by matrix differential operators of the second order

𝑄+ =

(
0 𝐴+

1𝐴
+
2

0 0

)
, 𝑄− =

(
0 0

𝐴−
2 𝐴

−
1 0

)
. (11)

They define the superalgebra

{𝑄+, 𝑄−} = (𝐻 − 𝑐) (𝐻 + 𝑐), [𝐻,𝑄±] = (𝑄±)2 = 0, 2𝑐 = 𝜆2 − 𝜆1,

where the Hamiltonian has the form

𝐻 =

(
−𝜕2

𝑥 + 𝑣2
1 − 𝑣

′
1 − 𝑐 0

0 −𝜕2
𝑥 + 𝑣2

2 + 𝑣
′
2 + 𝑐

)
=

(
𝐿1 − 𝑎 0

0 𝐿3 − 𝑎

)
. (12)

Clearly, this Hamiltonian is obtained from the parasupersymmetric one by deleting the middle
subhamiltonian corresponding to a truncation of the space of states. If one replaces in HSQM
supercharges (11) the product 𝐴+

1𝐴
+
2 by 𝐴+

1 · · · 𝐴
+
𝑛 and 𝐴−

2 𝐴
−
1 by 𝐴−

𝑛 · · · 𝐴−
1 , then we have the general

polynomial superalgebra

{𝑄+, 𝑄−} =
𝑛∏

𝑘=1
(𝐻 − 𝜆𝑘), [𝐻,𝑄±] = (𝑄±)2 = 0, 𝐻 =

(
𝐿1 0
0 𝐿𝑛+1

)
.

In our 𝑛 = 2 case we shifted the Hamiltonian by a constant in order to match with the parasuper-
symmetric case and with a different variation of SQM model considered below. For a detailed
description of various HSQM models and their properties, see [7].

An interesting model of “weak” supersymmetric quantum mechanics (WSQM) was suggested
by Smilga in [8]. It represents further modification of PSQM and HSQM quantum mechanical
models with a non-standard superalgebra of symmetries. Define the supercharges

𝑄−
1 =

©«
0 0 0 0
𝐴−

1 0 0 0
𝐴−

1 0 0 0
0 𝐴−

2 −𝐴−
2 0

ª®®®®¬
, 𝑄−

2 =

©«
0 0 0 0

−𝐴−
1 0 0 0

𝐴−
1 0 0 0

0 𝐴−
2 𝐴−

2 0

ª®®®®¬
and their hermitian conjugates 𝑄+

𝛼 = (𝑄−
𝛼)†,

𝑄+
1 =

©«
0 𝐴+

1 𝐴+
1 0

0 0 0 𝐴+
2

0 0 0 −𝐴+
2

0 0 0 0

ª®®®®¬
, 𝑄+

2 =

©«
0 −𝐴+

1 𝐴+
1 0

0 0 0 𝐴+
2

0 0 0 𝐴+
2

0 0 0 0

ª®®®®¬
.

These supercharges satisfy the following algebraic relations

{𝑄±
𝛼, 𝑄

±
𝛽} = 0, {𝑄−

𝛼, 𝑄
+
𝛽} = 2

(
(𝐻 − 𝑌 )𝛿𝛼𝛽 + 𝑍𝛼𝛽

)
, (13)

where 𝐻 is the Hamiltonian given by the following 4 × 4 diagonal matrix

𝐻 = −𝜕2
𝑥 + diag(𝑣2

1 − 𝑣
′
1 − 𝑐, 𝑣

2
1 + 𝑣

′
1 − 𝑐, 𝑣

2
2 − 𝑣

′
2 + 𝑐, 𝑣

2
2 + 𝑣

′
2 + 𝑐), (14)

5
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and

𝑌 = 𝑐

©«
−1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

ª®®®®¬
, 𝑍11 = 𝑐

©«
0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

ª®®®®¬
= −𝑍22,

𝑍12 = 𝑐

©«
0 0 0 0
0 −1 1 0
0 −1 1 0
0 0 0 0

ª®®®®¬
, 𝑍21 = 𝑍

†
12 = 𝑐

©«
0 0 0 0
0 −1 −1 0
0 1 1 0
0 0 0 0

ª®®®®¬
.

One has [𝑄±
𝛼, 𝑌 ] = ±𝑐𝑄±

𝛼 and the Hamiltonian 𝐻, 𝑌 and 𝑍𝛼𝛽 commute with each other

[𝐻,𝑄±
𝛼] = [𝐻,𝑌 ] = [𝐻, 𝑍𝛼𝛽] = [𝑌, 𝑍𝛼𝛽] = 0. (15)

As we see, this Hamiltonian differs from the one emerging in the parasupersymmetric model by the
insertion of one more copy of the middle subhamiltonian.

Matrices
𝐽0 := 1

𝑐
𝑍11, 𝐽+ := 1

2𝑐 𝑍12 𝐽− := 1
2𝑐 𝑍21

form the 𝑠𝑙 (2) algebra, [𝐽0, 𝐽±] = ±2𝐽±, [𝐽+, 𝐽−] = 𝐽0. They have the following commutation
relations with other operators

[𝑄±
𝛼, 𝐽0] = ±𝑄±

𝛼, [𝑄±
1 , 𝐽±] = ±𝑄±

2 , [𝑄∓
2 , 𝐽±] = ∓𝑄∓

1 , (16)

with vanishing other commutators [𝑄∓
1 , 𝐽±] = [𝑄±

2 , 𝐽±] = 0. The described WSQM model was
originally written with the help of creation and annihilation operators for two fermions, which can
be realized by 4 × 4 matrices. Here we omit this representation and refer for its details to [8].

In Fig. 1 we presented all possible types of spectra for the WSQM model Hamiltonian.
Simultaneously, these describe the spectra for the PSQM Hamiltonian, as they were listed in [2].
The latter emerge after deletion of one of the middle towers of states (say, for ℎ3). If one deletes
both middle towers of states, leaving only the left and right extreme ones, then one comes to the
𝑛 = 2 HSQM Hamiltonian spectra.

One of the goals of the paper [6] was to analyze the structure of Witten index for HSQM
models. It was shown that for 𝑛 > 1 this index has drastically different properties from the standard
case 𝑛 = 1. In particular, it starts to depend on the fugacity used for computation of this index. The
notion of superconformal index was introduced in [9, 10]. It is an analogue of the Witten index
for an unusual realization of the supersymmetry algebra similar to the “weak” supersymmetry case
described above. This superconformal index is defined for a distinguished pair of supercharges and
depends on the fugacities introduced for all symmetry generators commuting with each other and
with these supercharges. Its important property is that it counts not the vacua, but the so-called
BPS states killed by the supercharges.

Let us compute for each 𝑛 = 2 HSQM spectrum pattern given in Fig. 1 the Witten index

𝐼𝑊 = 𝑇𝑟

(
(−1)𝐹𝑒−𝛽𝐻

)
, 𝐹 := 𝑓 − 𝑓 +, (17)

6
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Figure 1: Forms of the spectra for the WSQM Hamiltonian.

where the fermionic charge 𝐹 is chosen in such a way, that the upper element of the column of
HSQM Hamiltonian eigenfunctions is identified with the bosonic sector.

In the WSQM case, we compute the superconformal index associated with supercharges 𝑄±
1 :

𝐼𝑆𝐶𝐼 = 𝑇𝑟

(
(−1)𝐹𝑒−𝛾{𝑄−

1 ,𝑄
+
1 }𝑒−𝛽𝐻

)
, 𝐹 = 1

𝑐
𝑌 + 1. (18)

Here the operator 𝐹 has eigenvalues (0, 1, 1, 2), so that the upper and lower items of the column
of Hamiltonian eigenfunctions belong to the bosonic sector and the two middle ones—to the
fermionic sector. This index formally contains two chemical potentials 𝛾 and 𝛽, but for the same
reason as in the standard SQM case, dependence on 𝛾 is actually absent. This happens because for
non-zero eigenvalues of the operator {𝑄−

1 , 𝑄
+
1} the (−1)𝐹 sign alternating factor forces to cancel

equal contributions. Only zero modes of the supercharges 𝑄±
1𝜓(𝑥) = 0 (“BPS states”) may give a

contribution to this index.
The structure of the lowest energy levels depends on the normalizability of zero modes of the

operators 𝐴±
𝛼,

𝐴±
𝛼𝜙

±
𝛼 (𝑥) = 0, 𝜙±𝛼 (𝑥) = exp

(
±

∫ 𝑥

𝑣𝛼 (𝑦)𝑑𝑦
)
.

These functions are written up to arbitrary multiplicative factors, which can be fixed in cases when
𝜙±𝛼 (𝑥) ∈ L2(R) have unit norm. Let us denote 𝑣1(𝑥) = 𝑓 (𝑥) + 𝐵(𝑥), 𝑣2(𝑥) = 𝑓 (𝑥) − 𝐵(𝑥). Then

7
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the constraint (10) can be easily resolved, which yields 𝐵(𝑥) = (𝑐 − 𝑓 ′(𝑥))/(2 𝑓 (𝑥)) for arbitrary
function 𝑓 (𝑥). This simplifies the analysis of asymptotic behaviour of 𝜙±𝛼 (𝑥) for 𝑥 → ±∞.

1) Let 𝜙−1 (𝑥) be a normalizable function. Then 𝜙+1 (𝑥) is automatically not normalizable.
Suppose that 𝜙±2 (𝑥) are not normalizable as well. This situation is depicted in Fig. 1a. The vacuum
state is 𝜓𝐸0 (𝑥) = (𝜙−1 (𝑥), 0, 0, 0)

𝑡 (or 𝜓𝐸0 (𝑥) = (𝜙−1 (𝑥), 0)
𝑡 for HSQM) with the energy 𝐸0 = −𝑐.

It satisfies the conditions 𝑄±
1𝜓𝐸0 (𝑥) = 0 (or 𝑄±𝜓𝐸0 (𝑥) = 0 for HSQM) and yields

𝐼𝑊 = 𝐼𝑆𝐶𝐼 = 𝑒
𝛽𝑐 .

Note that in this case the second energy level has 𝐸1 > 𝑐.
2) Now we assume that 𝜙−1 (𝑥) is not normalizable. Then, for 𝑐 > 0, the function 𝜙+1 (𝑥) cannot

be normalizable alone. In this case ℎ2 and ℎ3 should have the lowest eigenvalue 𝐸0 = −𝑐, whereas
the lowest eigenvalue of isospectral to it operator ℎ4 should be bigger than 𝑐, which is not possible.

3) Let now only 𝜙−2 (𝑥) be normalizable. This situation is depicted in Fig. 1b. The ground state
is triply degenerate with 𝐸0 = 𝑐: 𝜓𝐸0 (𝑥) ∝ (0, 0, 𝜙−2 (𝑥), 0)

𝑡 , (0, 𝜙−2 (𝑥), 0, 0)
𝑡 , (𝐴+

1𝜙
−
2 (𝑥), 0, 0, 0)

𝑡 .
However, only one fermionic state satisfies the needed equations 𝑄±

1𝜓𝐵𝑃𝑆 (𝑥) = 0, 𝜓𝐵𝑃𝑆 (𝑥) =

(0, 𝜙−2 (𝑥),−𝜙
−
2 (𝑥), 0)

𝑡 , which gives the only non-zero contribution to 𝐼𝑆𝐶𝐼 . For HSQM we have
𝜓𝐸0 (𝑥) = (𝐴+

1𝜙
−
2 (𝑥), 0)

𝑡 with 𝐸0 = 𝑐 and 𝑄±𝜓𝐸0 (𝑥) = 0. As a result, we have

𝐼𝑊 = −𝐼𝑆𝐶𝐼 = 𝑒
−𝛽𝑐 .

The second energy level 𝐸1 > 𝑐 remains unknown in general.
4) Assume now that only 𝜙+2 (𝑥) is normalizable. Then, 𝜓𝐸0 (𝑥) ∝ (0, 0, 0, 𝜙−2 (𝑥))

𝑡 with 𝐸0 = 𝑐.
As already mentioned, by the transformations 𝑣 𝑗 (𝑥) → −𝑣 𝑗 (𝑥), 𝑐 → −𝑐, this model reduces to the
situation 1) after reshuffling the subhamiltonians ℎ 𝑗 → ℎ5− 𝑗 . Therefore we drop this case.

5) Now we consider the cases when two zero modes are simultaneously normalizable. First pos-
sibility is that both 𝜙−𝛼 (𝑥) represent physical states. This situation is depicted in Fig. 1c. The ground
state is unique 𝜓𝐸0 (𝑥) = (𝜙−1 (𝑥), 0, 0, 0)

𝑡 , 𝐸0 = −𝑐, 𝑄±
1𝜓𝐸0 (𝑥) = 0. The next energy level 𝐸1 = 𝑐 is

triply degenerate 𝜓𝐸1 (𝑥) ∝ (0, 0, 𝜙−2 (𝑥), 0)
𝑡 , (0, 𝜙−2 (𝑥), 0, 0)

𝑡 , (𝐴+
1𝜙

−
2 (𝑥), 0, 0, 0)

𝑡 . However, there
is only one BPS state formed from them 𝜓𝐵𝑃𝑆 (𝑥) = (0, 𝜙−2 (𝑥),−𝜙

−
2 (𝑥), 0)

𝑡 , 𝑄±
1𝜓𝐵𝑃𝑆 (𝑥) = 0. As a

result, we have two nonzero contributions both to 𝐼𝑊 and 𝐼𝑆𝐶𝐼 :

𝐼𝑊 = 𝑒𝛽𝑐 + 𝑒−𝛽𝑐, 𝐼𝑆𝐶𝐼 = 𝑒
𝛽𝑐 − 𝑒−𝛽𝑐 .

For HSQM we have 𝜓𝐸0 (𝑥) = (𝜙−1 (𝑥), 0)
𝑡 with 𝐸0 = −𝑐 and 𝜓𝐸1 (𝑥) = (𝐴+

1𝜙
−
2 (𝑥), 0))

𝑡 with 𝐸1 = 𝑐,
𝑄±𝜓𝐸0,1 (𝑥) = 0. The third energy level 𝐸2 > 𝑐 remains unknown.

6) Let 𝜙−1 (𝑥) and 𝜙+2 (𝑥) be simultaneously normalizable. This case is presented in Fig.
1d. The lowest eigenvalue state 𝜓𝐸0 (𝑥) = (𝜙−1 (𝑥), 0, 0, 0)

𝑡 with 𝐸0 = −𝑐 and the next energy state
𝜓𝐸1 (𝑥) = (0, 0, 0, 𝜙+2 (𝑥))

𝑡 with 𝐸1 = 𝑐 are both BPS states,𝑄±
1𝜓𝐸0 (𝑥) = 𝑄±

1𝜓𝐸1 (𝑥) = 0. For HSQM
we have similar lowest energy eigenfunctions. As a result, we have two non-zero contributions to
both 𝐼𝑊 and 𝐼𝑆𝐶𝐼 , but with different signs:

𝐼𝑊 = 𝑒𝛽𝑐 − 𝑒−𝛽𝑐, 𝐼𝑆𝐶𝐼 = 𝑒
𝛽𝑐 + 𝑒−𝛽𝑐 .

The value of 𝐸2 > 𝑐 is not fixed.

8
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7) If both 𝜙+𝛼 (𝑥) represent physical states, then by the transformation 𝑣 𝑗 (𝑥) → −𝑣 𝑗 (𝑥), 𝑐 → −𝑐,
and reshuffling the subhamiltonians, we return to the case 5). The situation when 𝜙+1 (𝑥) and 𝜙−2 (𝑥)
both are normalizable is not possible

8) Finally, let none of 𝜙±𝛼 (𝑥) is normalizable. This case is depicted in Fig. 1e. There are
no BPS states for WSQM and supersymmetric vacua for HSQM. The ground state with unknown
energy 𝐸0 > 𝑐 is four times degenerate and

𝐼𝑊 = 𝐼𝑆𝐶𝐼 = 0.

So, we see that both indices 𝐼𝑊 for HSQM and 𝐼𝑆𝐶𝐼 for WSQM contain equivalent information
about the structure of lowest energy states (an equivalence of these models was anticipated in [8]).
The change of signs in front of certain terms occurs purely because of the flip of the fermionic and
bosonic state tags. In a recent paper [11] Smilga computed 𝐼𝑆𝐶𝐼 (referred to there as the generalized
Witten index) for a one-dimensional model corresponding to the situation of Fig. 1c and for a more
complicated two-dimensional system with infinitely many BPS states. Here we have considered all
possible one-dimensional cases and related them to the results of [2] and [6].

The paper [2] was a turning point for the author in changing the subject of research from quantum
field theory to mathematical physics problems. As shown in [2, 5], simple natural restrictions for
PSQM models to describe a spin 1 particle in external field result in the potentials for which the
whole spectra can be found exactly. The author decided to understand the hidden mechanism for
that and to search for the most general univariate exactly solvable model in quantum mechanics.
In short, it has led to the theory of special functions. Special functions can be interpreted as the
functions associated with self-similar solutions of the chains of spectral transformation like (7),
which are related to completely integrable systems. This gives a constructive tool for discovering
new examples of special functions. Especially, this was useful for building new exactly solvable
potentials in one-dimensional quantum mechanics [12].

Surprisingly, in more than 15 years after computing Witten indices in HSQM (i.e., the disguised
superconformal indices) in the work [6], the author was forced to investigate superconformal indices
in four-dimensional N = 1 supersymmetric field theories per se [13]. The reason for that came
from the fact that these indices coincided with the elliptic hypergeometric integrals representing a
new class of special functions of hypergeometric type discovered by the author [14]. And the latter
functions were found precisely in a hunt for a universal most general exactly solvable Schrödinger
equation inspired by [2].

Superconformal index for four-dimensionalN = 1 supersymmetric field theories with the gauge
group 𝐺 and flavor group 𝐹 is a substantially more complicated object than 𝐼𝑆𝐶𝐼 we considered
above [9, 10] (for a survey, see [15]). The flat space-time symmetry group 𝑆𝑈 (2, 2|1) is generated
by 𝐽𝑖 , 𝐽𝑖 (Lorentz rotations), 𝑃𝜇, 𝑄𝛼, 𝑄 ¤𝛼 (supertranslations), 𝐾𝜇, 𝑆𝛼, 𝑆 ¤𝛼 (special superconformal
transformations), 𝐻 (dilations) and 𝑅 (𝑈 (1)𝑅-rotations). The key relation, which is preserved when
the theory is put on the curved manifold 𝑆3 × 𝑆1, is defined by a distinguished pair of nilpotent
supercharges, say 𝑄 ∝ 𝑄1 and 𝑄† ∝ 𝑆1, 𝑄2 = (𝑄†)2 = 0, and has the form

{𝑄,𝑄†} = 2H , H = 𝐻 − 2𝐽3 − 3𝑅/2. (19)

Then the generators 𝑀𝑙 ∈ (𝐽3,R, 𝐹𝑘 ,H), where R = 𝐻 − 𝑅/2 and 𝐹𝑘 are the flavor group maximal
torus generators, form the maximal set of operators commuting with supercharges and with each

9
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other [𝑄, 𝑀𝑙] = [𝑄†, 𝑀𝑙] = [𝑀𝑙, 𝑀𝑙′] = 0. Then the superconformal index is defined as the trace

𝐼 (𝑝, 𝑞, 𝑦𝑘) = 𝑇𝑟
(
(−1)𝑁 𝑓 𝑝R/2+𝐽3𝑞R/2−𝐽3

∏
𝑘

𝑦
𝐹𝑘

𝑘
𝑒−𝛾H

)
,

where 𝑁 𝑓 is the fermion charge, and 𝑝, 𝑞, 𝑦𝑘 , 𝛾 are group parameters (fugacities or chemical
potentials). Here the dilation operator 𝐻 plays the role of Hamiltonian, not the operator H standing
on the right-hand side of (19). Because of the presence of different signs for contributions from the
bosonic and fermionc states, the index 𝐼 (𝑝, 𝑞, 𝑦𝑘) can get contributions only from the BPS states
𝑄 |𝜓⟩ = 𝑄† |𝜓⟩ = H|𝜓⟩ = 0 and therefore it does not depend on 𝛾.

It was found that the superconformal index for a free chiral superfield with zero 𝑅-charge is
equal to the elliptic gamma function

𝐼𝑐ℎ𝑖𝑟 =

∞∏
𝑗 ,𝑘=0

1 − 𝑦−1𝑝 𝑗+1𝑞𝑘+1

1 − 𝑦𝑝 𝑗𝑞𝑘
≡ Γ(𝑦; 𝑝, 𝑞), |𝑝 |, |𝑞 | < 1,

where 𝑦 is the fugacity for the corresponding 𝑈 (1) flavour group. For gauge theories the index is
given by a matrix integral over the Haar measure of the gauge group 𝐺. Römelsberger conjectured
[16] that superconformal indices of the theories related by the Seiberg duality are equal. The
simplest case of such non-abelian electromagnetic duality was described in [17]. Corresponding
electric theory has the gauge group 𝐺 = 𝑆𝑈 (2) and the flavour group 𝑆𝑈 (6). It contains one
vector supermultiplet in the adjoint representation of 𝐺 and one chiral multiplet described by the
fundamental representations of𝐺 and 𝐹. The 𝑅-charge of the latter field is 1/3. The magnetic theory
is described by the Wess-Zumino type model of one chiral superfield described the antisymmetric
tensor representation of 𝑆𝑈 (6) with the 𝑅-charge 2/3. This means that in the strong coupling regime
one has the 𝑠-confinement (i.e., chiral symmetry is not broken).

Explicit computation of the corresponding indices was performed by Dolan and Osborn [18].
Electric superconformal index has the form

𝐼𝐸 =
(𝑝; 𝑝)∞(𝑞; 𝑞)∞

4𝜋𝑖

∫
T

∏6
𝑗=1 Γ(𝑡 𝑗 𝑧; 𝑝, 𝑞)Γ(𝑡 𝑗 𝑧−1; 𝑝, 𝑞)
Γ(𝑧2; 𝑝, 𝑞)Γ(𝑧−2; 𝑝, 𝑞)

𝑑𝑧

𝑧
, (20)

where (𝑞; 𝑞)∞ =
∏∞

𝑛=1(1 − 𝑞𝑛). The variables 𝑡 𝑗 = (𝑝𝑞)1/6𝑦 𝑗 are related to the flavour group
fugacities 𝑦 𝑗 and the 𝑅-charge of the chiral superfield. They satisfy the balancing condition∏6

𝑗=1 𝑡 𝑗 = 𝑝𝑞, which is a direct consequence of the constraint
∏6

𝑗=1 𝑦 𝑗 = 1 for the maximal torus
fugacities of the 𝑆𝑈 (6) group. The factor standing in front of the integral over unit circle T and the
denominator of the integrand describe the contribution from gluons and gluinos. The numerator of
the integrand is determined by the matter field contributions.

Magnetic superconformal index is given by the following product of elliptic gamma functions

𝐼𝑀 =
∏

1≤ 𝑗<𝑘≤6
Γ(𝑡 𝑗 𝑡𝑘 ; 𝑝, 𝑞). (21)

As shown in [18], the Römelsberger conjecture holds true in this case because of the Theorem proven
by the author in 2000 [14]. Namely, the exact integration formula for the elliptic beta integral (20)
was established in [14], which is identical with the equality 𝐼𝐸 = 𝐼𝑀 for |𝑝 |, |𝑞 |, |𝑡 𝑗 | < 1. Thus the
BPS state sectors in very differently looking electric and magnetic theories completely coincide.
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The elliptic beta integral is the top univariate exactly computable integral generalizing the
Gaussian integral, the Euler beta function and many other integrals serving as the orthogonality or
biorthogonality measures for some polynomials or rational functions. It comprises also the Newton’s
binomial theorem and its various extensions. From the general theory of special functions point of
view this is a key element for the whole theory of transcendental elliptic hypergeometric functions
unifying the standard hypergeometric functions, their 𝑞-analogues and elliptic functions.

As to the mathematical physics applications, the elliptic hypergeometric functions emerged in
the theory of integrable many-body problems of the Ruijsenaars type and in the solutions of the Yang-
Baxter equation. The elliptic beta integral evaluation provides the most general known solution
of the star-triangle relation serving as a key to solvability of two-dimensional statistical mechanics
systems of the Ising type. Simply speaking, the Seiberg duality is equivalent to integrability of such
systems. See [19] for a brief survey of these applications.

The process of evaluating elliptic beta integrals on root systems (multidimensional analogues
of the above formula) acquires an intriguing physical meaning. Specifically, it describes a transition
from the weak to strong coupling regime and the exact computability serves as a criterion for 𝑠-
confinement of the associated field theories. Of course, it was impossible to foresee such impressive
developments from plays with the variations (“weakening”) of supersymmetric quantum mechanics
in [2, 5, 6, 8]. Still, they may be considered as some rudimentary predecessors of these achievements.
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