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1. Introduction

In its classical version, the inflation scenario assumes that under typical initial conditions
and with a simple inflationary potential requiring minimal fine-tuning, inflation has the ability
to generate exponentially large spaces. These regions are typically characterized by uniformity,
isotropy, and flatness, along with an almost scale-independent spectrum of density fluctuations and
gravitational waves. These fluctuations are adiabatic, Gaussian and have predictable properties.
Classical inflation implies the assumption that volume serves as a natural measure: despite the low
probability of obtaining a piece of space with the right initial conditions, the inflated areas cover an
extremely large volume, thus their properties form the basis for further forecasts.

Initially, achieving the observed amplitude of the primordial density fluctuations demands
meticulous parameter fine-tuning across various inflationary potentials. Moreover, the likelihood of
a spatial region possessing precise initial conditions to initiate inflation is exponentially small[1, 2].
Conventional statistical mechanics reasoning suggests that even with simple inflaton potentials,
there are more cosmological solutions that are homogeneous and flat without undergoing prolonged
inflation[2].

The primary conceptual challenge arises from the multiverse problem, also known as the
measure problem, which arises from eternal inflation.[3] Despite assuming smooth and classical
evolution of the inflaton, inflation eventually ends when the inflaton reaches the bottom of its
potential. However, in the general case, classical evolution is sometimes interrupted by large
quantum fluctuations, including fluctuations that push the inflaton field uphill, away from its
expected path. As a result, inflation amplifies these rare quantum fluctuations, leading to eternal
inflation.

Continuing this line of thought, multiple quantum leaps occur as the inflaton evolves, leading
to different cosmological properties in different volumes of space. This eternal multiverse model
provides a variety of possibilities, with different outcomes repeating infinitely.

In the context of classical inflation, where volume is the natural measure, most of today’s
volumes remains in an inflating state, while non-inflating volumes (bubbles) are expected to be
exponentially younger than the observable universe[4, 5].

According to this generally accepted point of view, the cause of the beginning of the expansion
of the Universe lies in the effects of quantum gravity. That is, the resolution of this issue is
inseparable from the issue of the ultraviolet completion of General Relativity. However, there are
alternative scenarios that do not require the construction of such a completion. We are talking
about the Genesis and Bounce Universe scenarios. [6–8] The bounce Universe solution suggests
that the current expansion may be caused by a smooth "bounce" from an earlier phase of Minkowski
space. Over time, it begins to expand smoothly, connecting with the familiar FLRW cosmology,
thus resolving the Big Bang singularity. Another option is the Genesis scenario.This unperturbed
solution describes a universe that is asymptotically Minkowski in the past, expanding with increasing
energy density until it leaves the regime of validity of the effective field theory and reheats. This
solution is a dynamical attractor, and the universe is driven towards it, even if it was initially
contracting. Both of these scenarios require violating the null energy condition (NEC), which is
impossible in General Relativity.

Horndeski theory [9–12](See [13] for a review) is the most general scalar-tensor theory of
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gravity with one additional scalar field (we denote it by 𝜋) whose equations of motion do not exceed
the second order despite the presence of higher derivatives in the Lagrangian.

However, the construction of cosmological solutions that are stable over the entire time axis
faces a significant limitation due to the existence of the so-called no-go theorem [14–16]. This
theorem was originally formulated in terms of the unitary gauge, where perturbations of the scalar
field 𝜋 are set to zero. The statement of this theorem asserts that, in General Horndeski Theory,
without encountering strong coupling, gradient instabilities, or ghosts in the quadratic action,
it is impossible to construct a nonsingular solution with complete evolution over the interval
𝑡 = (−∞,∞).

Nevertheless, there is a well-known example of a stable solution in Horndeski theory: empty
Minkowski space. However, in this case, choosing the unitary gauge is not possible due to the
singularity of the coefficients in the quadratic action. Consequently, the no-go theorem does not
apply in this scenario.

First, we consider the quadratic action for scalar perturbations on the FLRW background. We
then integrate out the constraints in terms of the Bardeen variables and consider all possible variants
of singularities that may arise during this process. It is noteworthy to note that we find that, when
the unitary gauge becomes singular and the background scalar field is non-trivial (i.e., ¤𝜋 ≠ 0), the
scalar modes do not exhibit any dynamics. Conversely, if the background scalar field is static, for
example in Minkowski space, the scalar modes manifest as ordinary Lorentz-invariant waves with a
speed of sound equal to 𝑐2

𝑆
= 1 at high momenta. Finally, in section 4, we present a specific action

choice for a stable theory with a bounce, and we further evaluate how deviations from an isotropic
background affect the stability of this solution.

This manuscript is based on the report presented at the International Conference on Particle
Physics and Cosmology in memory of V.A.Rubakov and on [17, 18] papers.

2. Scalar perturbations in terms of Bardeen variables

We consider the General Horndeski theory with the following Lagrangian:

𝑆 =

∫
d4𝑥

√−𝑔 (L2 + L3 + L4 + L5) , (1a)

L2 = 𝐹 (𝜋, 𝑋), (1b)
L3 = 𝐾 (𝜋, 𝑋)□𝜋, (1c)
L4 = −𝐺4(𝜋, 𝑋)𝑅 + 2𝐺4𝑋 (𝜋, 𝑋)

[
(□𝜋)2 − 𝜋;𝜇𝜈𝜋

;𝜇𝜈] , (1d)

L5 = 𝐺5(𝜋, 𝑋)𝐺𝜇𝜈𝜋;𝜇𝜈 +
1
3
𝐺5𝑋

[
(□𝜋)3 − 3□𝜋𝜋;𝜇𝜈𝜋

;𝜇𝜈 + 2𝜋;𝜇𝜈𝜋
;𝜇𝜌𝜋 𝜈

;𝜌
]
, (1e)

where 𝜋 is the scalar field, 𝑋 = 𝑔𝜇𝜈𝜋,𝜇𝜋,𝜈 , 𝜋,𝜇 = 𝜕𝜇𝜋, 𝜋;𝜇𝜈 = ▽𝜈▽𝜇𝜋, □𝜋 = 𝑔𝜇𝜈▽𝜈▽𝜇𝜋,
𝐺4𝑋 = 𝜕𝐺4/𝜕𝑋 , etc.

In this paper we consider spatially flat FLRW background:

𝑑𝑠2 = 𝑑𝑡2 − 𝑎2(𝑡)
(
𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2

)
. (2)
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The decomposition of metric perturbations ℎ𝜇𝜈 into helicity components in the general case
has the form

ℎ00 = 2Φ (3a)
ℎ0𝑖 = −𝜕𝑖𝛽 + 𝑍𝑇

𝑖 , (3b)

ℎ𝑖 𝑗 = −2Ψ𝛿𝑖 𝑗 − 2𝜕𝑖𝜕 𝑗𝐸 −
(
𝜕𝑖𝑊

𝑇
𝑗 + 𝜕 𝑗𝑊𝑇

𝑖

)
+ ℎ𝑖 𝑗 , (3c)

and perturbation of scalar field 𝜋 we denote as 𝛿𝜋 = 𝜒.
In our work we are interested in the scalar sector of perturbations. After partial fixation of the

gauge 𝐸 = 0 , the quadratic action for this sector has the form:

𝑆 (2) =

∫
d𝑡 d3𝑥 𝑎3

(
𝐴1

( ¤Ψ)2 + 𝐴2
(−→∇Ψ)2

𝑎2 + 𝐴3 Φ
2 + 𝐴4 Φ

−→∇2𝛽

𝑎2 + 𝐴5 ¤Ψ
−→∇2𝛽

𝑎2 + 𝐴6 Φ ¤Ψ

+𝐴7 Φ

−→∇2Ψ

𝑎2 + 𝐴8 Φ

−→∇2𝜒

𝑎2 + 𝐴9

−→∇2𝛽

𝑎2 ¤𝜒 + 𝐴10 𝜒 ¥Ψ + 𝐴11 Φ ¤𝜒 + 𝐴12 𝜒

−→∇2𝛽

𝑎2 + 𝐴13 𝜒

−→∇2Ψ

𝑎2

+𝐴14 ( ¤𝜒)2 + 𝐴15
(−→∇ 𝜒)2

𝑎2 + 𝐴16 ¤𝜒
−→∇2Ψ

𝑎2 + 𝐴17 Φ𝜒 + 𝐴18 𝜒 ¤Ψ + 𝐴19 Ψ𝜒 + 𝐴20 𝜒
2

)
. (4)

Here dot denotes the derivative with respect to the cosmic time 𝑡, coefficients 𝐴𝑖 are the combinations
of the Lagrangian functions, their derivatives and background.

This action is invariant with respect to the residual gauge transformations:

Φ → Φ + ¤𝜉0, 𝛽 → 𝛽 − 𝜉0 + 𝑎2 ¤𝜉𝑆 , 𝜒 → 𝜒 + 𝜉0 ¤𝜋, Ψ → Ψ + 𝜉0𝐻,

where 𝐻 is the Hubble parameter and 𝜉0 is the gauge function.
So the action can be rewritten in explicitly gauge-invariant form by introducing new variables

(Bardeen variables):

X = 𝜒 + ¤𝜋 𝛽
𝑎2 , (5a)

Y = Ψ + 𝐻 𝛽

𝑎2 , (5b)

Z = Φ + d
d𝑡

[
𝛽

𝑎2

]
. (5c)

In terms of this variables the action (4) takes the form:

𝑆 (2) =

∫
d𝑡 d3𝑥 𝑎3

(
𝐴1

(
¤Y
)2

+ 𝐴2
(−→∇Y)2

𝑎2 + 𝐴3 Z2 + 𝐴6 Z ¤Y + 𝐴7 Z
−→∇2Y
𝑎2 + 𝐴8 Z

−→∇2X
𝑎2

+𝐴10 X ¥Y + 𝐴11 Z ¤X + 𝐴13 X
−→∇2Y
𝑎2 + 𝐴14

( ¤X)2 + 𝐴15
(−→∇X)2

𝑎2 + 𝐴16 ¤X
−→∇2Y
𝑎2

+𝐴17 ZX + 𝐴18 X ¤Y + 𝐴20X2
)
. (6)

After we have integrated all the constraints and done one more variable substitution

𝜁 = Y + 𝜂X, 𝜂 =
3𝐴11𝐴4 − 2𝐴10𝐴3

4𝐴1𝐴3 − 9𝐴4
2 , (7)

4



P
o
S
(
I
C
P
P
C
R
u
b
a
k
o
v
2
0
2
3
)
0
3
2

Stable solutions in Horndeski theory Shtennikova A.M.

we get the following action:

𝑆 (2) =

∫
d𝑡 d3𝑥 𝑎3 ©«G𝑆

( ¤𝜁 )2 − F𝑆

(−→∇ 𝜁 )2

𝑎2

ª®®¬ , (8)

where

G𝑆 =
4
9
𝐴3𝐴1

2

𝐴4
2 − 𝐴1, (9a)

F𝑆 = −1
𝑎

d
d𝑡

[
𝑎𝐴1𝐴7

3𝐴4

]
− 𝐴2 =

1
𝑎

d
d𝑡

[
𝑎𝐴5 · 𝐴7

2𝐴4

]
− 𝐴2. (9b)

3. 𝐴4 = 0 case

The key point is that the action (8) has a singularity at 𝐴4 = 0. If we consider this variant
separately and do all the previous procedures, we obtain the following action:

𝑆 (2) =

∫
d𝑡 d3𝑥 𝑎3 ©«𝐴2

(−→∇ 𝜁 )2

𝑎2 − 1
9
𝐴1

2

𝐴3

(−→∇2𝜁
)2

𝑎4

ª®®¬ (10)

which means the absence of dynamics of the field 𝜁 .
From the view of the Z–constraint from action (6), we can distinguish two other special cases:

𝐴4 = 0, 𝐴11 = 0 and 𝐴4 = 0, ¤𝜋 = 0 (we know that 𝐴3 = 3
2 𝐴4𝐻 − 1

2 𝐴11 ¤𝜋).

𝐴11 = 0:

In this case, the action (6) takes the following form:

𝑆 (2) =

∫
d𝑡 d3𝑥 𝑎3 𝑚Y2, (11)

where𝑚 = 𝑚(𝐴𝑖) is a long combination of 𝐴𝑖 and ¤𝐴𝑖 . This case also turns out to be non-dynamical.

¤𝜋 = 0:

Since ¤𝜋 = 0, only the summand 𝐺4𝐻 remains from the condition 𝐴4 = 0. Because the
coefficient 𝐴2 is equal to

𝐴2 = 2𝐺4 − 2𝐺5𝑋 ¤𝜋2 ¥𝜋 − 𝐺5𝜋 ¤𝜋2, (12)

condition 𝐺4 = 0 leads to a strong coupling in the action for tensor perturbations, so it is necessary
to impose the condition 𝐻 = 0, which corresponds to the case of Minkowski space (𝑎(𝑡) = const).

In this case, the action (6) is:

𝑆 (2) =

∫
d𝑡 d3𝑥 𝑎3 ©«G𝑆

( ¤X)2 + 𝑚X2 − F𝑆

(−→∇X
)2

𝑎2

ª®®¬ , (13)
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where

G𝑆 = F𝑆 =
1

2𝐺4

(
3𝐺2

4𝜋 + 2𝐹𝑋𝐺4 − 2𝐾𝜋𝐺4

)
, (14a)

𝑚 =
1
2
𝐹𝜋𝜋 . (14b)

This case corresponds to a non-minimally coupled scalar field in Minkowski background. We can
see that in this case the speed of sound squared is 𝑐2

∞ = 1. However, this does not mean that the
scalar mode propagates at the speed of light, since it has mass, but at higher momentum (𝑘 → ∞)
the speed of propagation will tend to 𝑐∞.

3.1 Brief summary

Here’s a table which is summarizing the results of the previous sections:

𝐴4 ≠ 0 𝑐2
∞ = F𝑆/G𝑆(9)

𝐴4 ≡ 0
¤𝜋 ≠ 0 no dynamics in scalar sector
¤𝜋 = 0 𝑐2

∞ = 1

Thus, we obtained that 𝐴4 = 0 everywhere, always leads to a stable solution in the scalar
perturbation sector. In the case of non-trivial field 𝜋 there are no dynamical scalar perturbations,
and thus the stability condition does not arise at all, and in the case of a static background field 𝜋,
we obtain a scalar perturbation with the sound speed squared 𝑐2

∞ = 1.
In the following section we construct specific examples of the bouncing scenario in Horndeski

theory imposing 𝐴4 ≡ 0

4. Bounce solution

Without loss of generality we choose the following form of the scalar field

𝜋(𝑡) = 𝑡, (15)

so that 𝑋 = 1. To reconstruct the theory which corresponds some solution we use the following
ansatz for the Lagrangian functions

𝐹 (𝜋, 𝑋) = 𝑓0(𝜋) + 𝑓1(𝜋) · 𝑋, (16a)
𝐾 (𝜋, 𝑋) = 𝑘1(𝜋) · 𝑋, (16b)

𝐺4(𝜋, 𝑋) =
1
2
. (16c)

We are interested to consider the case 𝐺4 = const, which corresponds to GR.
Hubble parameter can be choosen in the following form for the case of the bounce:

𝐻 (𝑡) = 𝑡

3
(
𝜏2 + 𝑡2

) , (17)

so that
𝑎(𝑡) =

(
𝜏2 + 𝑡2

) 1
6
, (18)
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Figure 1: Hubble parameter 𝐻 (𝑡), scale factor 𝑎(𝑡) and the Lagrangian functions 𝑓0 (𝑡), 𝑓1 (𝑡) of the bouncing scenario
with parameter 𝜏 = 25 (recall that 𝑘1 (𝑡) = 𝐻 (𝑡)).

.

and the bounce occurs at 𝑡 = 0. In what follows we take 𝜏 ≫ 1 to make this scale safely greater
than Planck time. The parameter 𝜏determines the duration of the bouncing stage.

Corresponding Lagrangian reads

L =
𝜋2 − 𝜏2

3
(
𝜏2 + 𝜋2)2 − 𝜋2𝑋(

𝜏2 + 𝜋2)2 + 𝜋𝑋

3
(
𝜏2 + 𝜋2)□𝜋 + 1

2
𝑅. (19)

You can see the graphs at 1.

5. Deviation from isotropic background

The next part of our study was to check whether the stability of the solution we found is a
consequence of the isotropy of the background. For this purpose, we considered the background as
Bianchi I type metric:

𝑑𝑠2 = 𝑑𝑡2 −
(
𝑎2(𝑡)𝑑𝑥2 + 𝑏2(𝑡)𝑑𝑦2 + 𝑐2(𝑡)𝑑𝑧2

)
. (20)
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In this case, the analogous (4) action takes the form

𝑆 (2) =

∫
d𝑥 𝑎𝑏𝑐

(
1
6
𝐴1

∑︁
𝑖≠ 𝑗

¤Ψ𝑖
¤Ψ 𝑗 +

𝐴2
2

∑︁
𝑖=𝑎,𝑏,𝑐
𝑖≠ 𝑗≠𝑘

Δ𝑖Ψ 𝑗Δ𝑖Ψ𝑘 + 𝐴3Φ
2

+Φ

(
𝐴𝑖

4Δ
2
𝑖 𝛽

)
+ 𝐴5

∑︁
𝑖=𝑎,𝑏,𝑐
𝑖≠ 𝑗≠𝑘

¤Ψ𝑖

(
Δ2

𝑗 𝛽 + Δ2
𝑘𝛽

)
+Φ

(
𝐴𝑖

6
¤Ψ𝑖

)
+ 𝐴7

2
Φ

∑︁
𝑖=𝑎,𝑏,𝑐
𝑖≠ 𝑗≠𝑘

Δ2
𝑖

(
Ψ 𝑗 + Ψ𝑘

)
+Φ

(
𝐴𝑖

8Δ
2
𝑖 𝜒

)
+ ¤𝜒

(
𝐴𝑖

9Δ
2
𝑖 𝛽

)
+ 𝜒

(
𝐴𝑖

10
¥Ψ𝑖

)
+ 𝐴11Φ ¤𝜒 + 𝜒

(
𝐴𝑖

12Δ
2
𝑖 𝛽

)
+ 𝜒1

2
𝐴
𝑖 𝑗

13

(
Δ2
𝑖Ψ 𝑗 + Δ2

𝑗Ψ𝑖

)
+ 𝐴14( ¤𝜒)2 + 𝐴𝑖

15 (Δ𝑖𝜒)2 + 𝐴17Φ𝜒 + 𝜒
(
𝐴𝑖

18
¤Ψ𝑖

)
+ 𝐴20𝜒

2 + 1
2

∑︁
𝑖, 𝑗=𝑎,𝑏,𝑐

𝑖≠ 𝑗

𝐵𝑖 𝑗Ψ𝑖
¤Ψ 𝑗 − Ψ𝑎

(
𝐵𝑎𝑏Δ2

𝑏𝛽 + 𝐵
𝑎𝑐Δ2

𝑐𝛽

)
+ Ψ𝑏

(
𝐵𝑎𝑏Δ2

𝑎𝛽 + 𝐵𝑏𝑐Δ2
𝑐𝛽

)
+ Ψ𝑐

(
𝐵𝑎𝑐Δ2

𝑎𝛽 − 𝐵𝑏𝑐Δ2
𝑏𝛽

) )
. (21)

Here dot denotes the derivative with respect to the cosmic time 𝑡, Δ𝑎 = 𝑎−1𝜕𝑥 ,Δ𝑏 = 𝑏−1𝜕𝑦 ,Δ𝑐 =

𝑐−1𝜕𝑧 , Ψ𝑖 = �̄�𝑖Ψ and �̄�𝑖 = 𝐻𝑖/𝐻 and we assume summation by dummy indices.
To further analyze the theory, we consider the action (4) in the unitary gauge 𝜒 = 0 and direct

the momentum ®𝑘 along the x-axis, so ®𝑘 = (𝑘𝑥 , 0, 0). Then by integrating out all constrains we
obtain the following action for one dynamical scalar mode:

𝑆 (2) =

∫
d𝑡 d3𝑥 𝑎𝑏𝑐

(
G𝑆

( ¤Ψ)2 + 𝑀Ψ2 + F𝑆

𝑘2
𝑥

𝑎2 Ψ
2
)
, (22)

where

G𝑆 =
2
9
𝐴3𝐴1

2(
𝐴𝑥

4
)2

(
�̄�𝑏 + �̄�𝑐

)2 − 2
3
𝐴1
𝐴𝑥

4

(
𝐴
𝑦

4 �̄�𝑏 + 𝐴𝑧
4�̄�𝑐

) (
�̄�𝑏 + �̄�𝑐

)
+ 2

3
𝐴1�̄�𝑏�̄�𝑐, (23a)

F𝑆 = −2𝐴2�̄�𝑏�̄�𝑐 −
1

9𝑎3
(
�̄�𝑏 + �̄�𝑐

)2 𝑑

𝑑𝑡

[
𝐴2

1𝑎
3

𝐴𝑥
4

]
+ 𝐴1

2

9𝐴𝑥
4

(
�̄�2

𝑏 − �̄�
2
𝑐

)
(𝐻𝑏 − 𝐻𝑐) , (23b)

𝑐2
𝑆 =

G𝑆

F𝑆

, (23c)

the explicit value of 𝑀 is not important to us now, we can use the expression for the square of the
speed of sound 𝑐2

𝑆
to check the stability of the solution(17).

Let us consider an anisotropic bounce - deviate from the isotropic case in two directions:

𝐻𝑎 =
𝑡(

𝜏2 + 𝑡2
) + 𝛼(

𝜏2 + 𝑡2
)3/2 , 𝐻𝑏 =

𝑡(
𝜏2 + 𝑡2

) − 𝛼(
𝜏2 + 𝑡2

)3/2 , 𝐻𝑐 =
𝑡(

𝜏2 + 𝑡2
) . (24)

Here the parameter 𝜏 defines the bounce amplitude and 𝛼 the degree of deviation from the isotropic
case(See Fig.2).
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Figure 2: Hubble parametrs 𝐻𝑎 (𝑡), 𝐻𝑏 (𝑡), 𝐻𝑐 (𝑡), when we choose 𝛼 = 10, 𝜏 = 10.

To analyze the stability of the scalar field, we numerically plot the square of the speed of sound
𝑐2
𝑆
(Fig.3):
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Figure 3: The square of the speed of sound 𝑐2
𝑆
, when we choose 𝛼 = 0.1, 𝜏 = 10 (left panel) and 𝛼 = 1, 𝜏 = 20 (right

panel). In this case, the square of the speed of sound will have at least 2 symmetric singular points and tends to 0 as
univerce becomes isotropic.
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Figure 4: Zoom of the neighborhood of singular points of the square of the speed of sound 𝑐2
𝑆

for parameters
𝛼 = 0.1, 𝜏 = 10.
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The plots Fig.4 show that in the theory (19) the scalar field becomes unstable even with a
small deviation from the isotropic background. This tells us that the result obtained in the previous
sections is a very special case directly related to the background isotropy.

6. Conclusion

In this paper, we propose a method for constructing stable solutions in Horndeski theory. By
reducing the second-order action to an explicitly gauge-invariant form, we consider scenarios where
the previously used unitary gauge turns out to be singular. This not only of academic interest but
also allows us to construct cosmological models that have previously suffered from the presence of
singular points. As demonstrated by the example of the bouncing universe model, these solutions
present opportunities for studying new cosmological dynamics.

The absence of dynamical scalar modes of perturbation can be compensated by introducing
matter. In addition, we develop an action for the scalar modes of the metric and scalar field over an
anisotropic background. We then investigate whether the previously derived solution for a universe
with a bounce remains stable.

Our findings show that the stability of perturbations in the Universe with a bounce is closely
linked to its isotropy. Even small deviations from isotropy can lead to the divergence and eventual
negative value of the square of the sound speed. This emphasizes the delicate balance needed to
ensure stability in such cosmological models.
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