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The instability problem of the gravitational baryogenesis (GBG) is analysed. It is shown that the
explosive growth of the curvature scalar, inherent to GBG, can be terminated by introducing the
R2-term into the classical action of General Relativity. As a result, the exponential rising curvature
is transformed into a quickly oscillating one. The high-frequency curvature oscillations lead to
the production of energetic particles which, according to the estimates presented, could make a
noticeable contribution to ultra high energy cosmic rays (UHECR).
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1. Introduction

Our existence critically relies on the prevalence of matter over antimatter, a fact strongly
supported by observational evidence. In the local universe, matter clearly dominates. The amount
of antimatter is very small, which can be explained as a result of high-energy collisions in space. The
presence of large regions of antimatter nearby would lead to the production of high-energy radiation
due to matter-antimatter annihilation, which is not actually observed. Any initial asymmetry during
inflation could not resolve the issue of the observed excess of matter over antimatter, as the energy
density associated with the baryon number did not allow inflation to last long enough.

On the other hand, matter and antimatter appear to possess similar properties, leading to the
expectation of a universe symmetric in matter and antimatter. A satisfactory model of our universe
should be able to explain the origin of the matter-antimatter asymmetry that surrounds us. The
term "baryogenesis" is used to denote the "generation of asymmetry" between baryons (essentially
protons and neutrons) and antibaryons (antiprotons and antineutrons).

In 1967, A.D. Sakharov introduced three conditions, now known as the Sakharov principles [1],
to produce matter-antimatter asymmetry from an initially symmetric universe. These principles are:
1) non-conservation of baryonic number; 2) symmetry breaking between particles and antiparticles;
3) deviation from thermal equilibrium. However, not all of these conditions are strictly necessary.
There are interesting scenarios of baryogenesis where one or several of these conditions are not
satisfied. For instance, spontaneous baryogenesis (SBG) and gravitational baryogenesis (GBG) can
occur in thermal equilibrium and do not require explicit C and CP violation.

The idea that cosmological baryon asymmetry can be generated by spontaneous baryogenesis
in thermal equilibrium was first proposed in the original paper by A. Cohen and D. Kaplan in 1987
[2], and in subsequent papers by A. Cohen, D. Kaplan, and A. Nelson [3, 4] (for a review see [5–8]).
The theory’s underlying symmetry, ensuring conservation of total baryonic number in the unbroken
phase, is assumed to be spontaneously broken. In the broken phase, the Lagrangian density acquires
the term LSBG = (∂µθ)J

µ
B, which in a spatially homogeneous case simplifies to:

LSBG = Ûθ nB , nB ≡ J0
B, (1)

Here, θ is a (pseudo) Goldstone field, and JµB is the baryonic current of matter fields, becoming non-
conserved. nB is the baryonic number density, suggesting Ûθ could be identified with the chemical
potential, µB, of the system. However, such identification is questionable and depends on the chosen
representation for the fermionic fields [9].

Motivated by spontaneous baryogenesis, the concept of gravitational baryogenesis was pro-
posed [10]. The SBG scenario was enhanced by introducing a coupling between the baryonic
current and the derivative of the curvature scalar R:

SGBG = −
1

M2

∫
d4x
√
−g (∂µR)JµB , (2)

where g is the determinant of the space-time metric tensor, and the mass parameter M defines the
energy scale of baryogenesis. There are many articles on this subject, with a partial list of references
included in [11–15]. According to these papers, the GBG mechanism can successfully explain the
magnitude of the cosmological baryon asymmetry of the universe.
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However, as shown in [16, 17], the addition of a curvature-dependent term to the standard
Lagrangian of general relativity (GR) leads to higher-order gravitational equations of motion,
which become highly unstable in response to small perturbations. In the presented paper, we
demonstrate that the stability problem can be resolved by introducing a curvature-squared term into
the Hilbert-Einstein action of GR.

2. Instability problem of gravitational baryogenesis

2.1 Bosonic case

Let’s examine the model in which the baryonic number is conveyed by a complex scalar field
φ with potential U(φ, φ∗):

S = −
∫

d4x
√
−g

[
M2

Pl

16π
R +

1
M2 (∂µR)Jµ − gµν∂µφ ∂νφ∗ +U(φ, φ∗)

]
+ Sm , (3)

where MPl = 1.22 · 1019 GeV is the Planck mass, Sm is the action for matter.
If the potential U(φ) is not invariant with respect to the U(1)-rotation, φ→ eiβφ, the baryonic

current defined in the usual way

Jµ = iq(φ∗∂µφ − φ∂µφ∗)

is not conserved. Here q represents the baryonic number of field φ.
The equation of motion for the curvature scalar in this model is expressed as follows:

M2
Pl

16π
R +

1
M2

[
(R + 3D2)DαJα + Jα DαR

]
− DαφDαφ∗ + 2U(φ) = −

1
2

Tµ
µ , (4)

where Dµ is the covariant derivative, Tµ
µ is the trace of the energy-momentum tensor of matter

derived from the action Sm.
For a homogeneous curvature scalar R(t) in a spatially flat Friedmann-Lemaitre-Robertson-

Walker (FLRW) metric, ds2 = dt2 − a2(t)dr2, Eq. (4) simplifies to:

M2
Pl

16π
R +

1
M2

[
(R + 3∂2

t + 9H∂t )DαJα + ÛR J0] = −T (tot)

2
. (5)

Here J0 is the baryonic number density of the φ-field, H = Ûa/a is the Hubble parameter, T (tot) is
the trace of the energy-momentum tensor of matter including contribution from the φ-field.

In the homogeneous case, the covariant divergence of the current is given by:

DαJα =
2q2

M2

[
ÛR (φ∗ Ûφ + φ Ûφ∗) + ( ÜR + 3H ÛR) φ∗φ

]
+ iq

(
φ
∂U
∂φ
− φ∗

∂U
∂φ∗

)
. (6)

The expectation values of the products of quantum operators φ, φ∗ and their derivatives after the
thermal averaging, according to [16], are equal to:

〈φ∗φ〉 =
T2

12
, 〈φ∗ Ûφ + Ûφ∗φ〉 = 0 ,

3
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where T is the plasma temperature.
The equation of motion for the classical field R in the cosmological plasma is as follows:

M2
Pl

16π
R +

q2

6M4

(
R + 3∂2

t + 9H∂t
) [ (
ÜR + 3H ÛR

)
T2] + 1

M2
ÛR 〈J0〉 = −

T (tot)

2
. (7)

Here 〈J0〉 is the thermally averaged value of the baryonic number density of φ. This term can be
neglected, as it is initially small and later becomes subdominant.

Focusing only on the linear in curvature terms and disregarding higher powers of R, such as
R2 or HR, we derive the fourth-order differential equation for the curvature scalar:

d4R
dt4 + µ

4R = −
1
2

T (tot) , µ4 =
M2

Pl
M4

8πq2T2 . (8)

The homogeneous part of this equation has exponential solutions:

R ∼ eλt , λ = |µ|eiπ/4+iπn/2 , n = 0, 1, 2, 3. (9)

There are two solutions with positive real parts of λ. This implies that the curvature scalar is expo-
nentially unstable with respect to small perturbations. Consequently, R should rise exponentially
fast over time and oscillate rapidly around this ascending function.

2.2 Fermionic case

We now turn to a more realistic scenario where the baryonic number is carried by fermions.
The action for this case is presented as follows:

S = −
∫

d4x
√
−g

[
M2

Pl

16π
R − L[Q, L]

]
+ Sm, (10)

where the Lagrangian L[Q, L] is given by

L[Q, L] =
i
2
(Q̄γµ∇µQ − ∇µQ̄ γµQ) − mQQ̄ Q +

i
2
(L̄γµ∇µL − ∇µ L̄γµL) − mL L̄ L (11)

+
g

m2
X

[
(Q̄ Qc)(Q̄L) + (Q̄cQ)(L̄Q)

]
+

d
M2 (∂µR)Jµ

Q
.

In this setup: Q represents the quark (or quark-like) field with a non-zero baryonic number BQ, L
is another fermionic field, possibly a lepton. ∇µ denotes the covariant derivative of Dirac fermions
in the tetrad formalism. Jµ

Q
= BQQ̄γµQ is the quark current, where γµ are the curved space

gamma-matrices; d = ±1 is a dimensionless coupling constant introduced to allow for an arbitrary
sign. The four-fermion interaction between quarks and leptons is included to ensure the necessary
non-conservation of the baryonic number.

Taking trace of gravitational equations for matter, we come to the following:

−
M2

Pl

8π
R = mQQ̄Q + mL L̄L +

2g
m2

X

[
(Q̄ Qc)(Q̄L) + (Q̄cQ)(L̄Q)

]
−

2d
M2 (R + 3D2)DαJαQ

+Tother , (12)

4
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where Tother is the trace of the energy-momentum tensor of all other fields. At the relativistic stage,
we can put Tother = 0.

Using the kinetic equation, we find an explicit dependence of DαJα
Q

on ÛR, in cases where
the current is not conserved, as detailed in Ref. [17]. Consequently, this results in a high-order
(fourth-order) equation for R.

When disregarding the contribution from thermalmatter and considering the FLRW-background,
the following equation emerges:

M2
Pl

8π
R =

2d
M2 (R + 3D2)(∂t + 3H)nB . (13)

The baryonic number density is derived from the kinetic equation:

nB ∼
9d
10

gsBQ
ÛR

M2T
, (14)

where gs denotes the number of quark spin states.
Neglecting the H-factor in comparison to the time derivatives of R, we are led to a very simple

fourth-order differential equation for the curvature scalar:

d4R
dt4 + λ

4R = 0, λ4 =
5M2

Pl
M4

36πgsB2
Q

T2
. (15)

This equation yields an extremely unstable solution, with the instability time being significantly
shorter than the cosmological time. Such a situation would result in an explosive increase of R.

3. Stabilization of GBG in R2-modified gravity

As shown in the previous section, traditional gravitational baryogenesis, which is based on the
assumption of an interaction between the derivative of the curvature scalar, ∂µR, and the baryonic
current, JµB, can successfully explain the magnitude of the cosmological baryon asymmetry of
the universe. However, the back-reaction of the created nonzero baryonic density leads to strong
instability in the cosmological evolution.

A potential stabilization mechanism could be realized in R2- modified gravity, as described by
the following action:

SGrav = −
M2

Pl

16π

∫
d4x
√
−g

(
R −

R2

6M2
R

)
. (16)

The inclusion of the R2-term in the standard action of General Relativity arises from one-loop
corrections to the energy-momentum tensor of matter in curved space-time, initially identified in
Ref. [18]. This approach was further developed by V. T. Gurovich and A. A. Starobinsky [19]. It
is important to note that the R2-term leads to the excitation of a scalar degree of freedom, known
as scalaron, where MR represents the scalaron’s mass. In the very early universe, the R2-term can
induce inflation [20] and affect density perturbations. The observed amplitude of these density
perturbations suggests that MR = 3 · 1013 GeV [21].

Below we consider the models from sections 2.1 and 2.2 and show how the instability problem
of GBG can be solved in R2-modified gravity [22].

5
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3.1 Stabilization: bosonic case

We consider action (3) with the addition of an R2-term introduced for stabilization purposes:

Stot [φ] = −
∫

d4x
√
−g

[
M2

Pl

16π

(
R −

R2

6M2
R

)
+

1
M2 (∂µR)Jµ

(φ)
− gµν∂µφ ∂νφ

∗ +U(φ, φ∗)

]
+ Sm. (17)

Equation (4) for the curvature evolution correspondingly takes the form:

M2
Pl

16π

(
R +

1
M2

R

D2R

)
+

1
M2

[
(R + 3D2)DαJα

(φ) + Jα
(φ) DαR

]
− DαφDαφ∗ + 2U(φ)

= −
1
2

T (matt). (18)

For relativistic matter T (matt) = 0.
In a spatially flat FLRW-metric the equation is as follows:

M2
Pl

16π

[
R +

1
M2

R

(∂2
t + 3H∂t )R

]
+

1
M2

[
(R + 3∂2

t + 9H∂t )DαJα
(φ) +

ÛR J0
(φ)

]
+2U(φ) − (Dαφ)(Dαφ∗) = 0. (19)

Upon substituting the divergence of the current, DαJα
(φ)

, using Eqs. (6) and (7), we derive the
4th-order differential equation for the evolution of the curvature scalar:

M2
Pl

16π

(
R +

1
M2

R

D2R

)
+

q2

6M4

(
R + 3∂2

t + 9H∂t
) [ (
ÜR + 3H ÛR

)
T2] + 1

M2
ÛR 〈J0
(φ)〉 = −

Tµ
µ (φ)

2
. (20)

Focusing only on the dominant terms, we can simplify the preceding equation to:

d4R
dt4 +

κ4

M2
R

d2R
dt2 + κ

4R = −
1
2

Tµ
µ (φ), κ4 =

M2
Pl

M4

8πq2T2 . (21)

This equation is similar to Eq. (8), yet it is distinguished by a stabilizing term proportional to the
second derivative of curvature.

3.2 Stabilization: fermionic case

In a manner completely analogous to section 3.1, we consider the stabilization of GBG with
fermions by incorporating an R2-term into action (10). The action now is represented as:

Stot [Q, L] = −
∫

d4x
√
−g

[
M2

Pl

16π

(
R −

R2

6M2
R

)
+

d
M2 (∂µR)Jµ

Q
− L[Q, L]

]
, (22)

where L[Q, L] is given by Eq. (12).
The equation for the evolution of curvature takes the form:

−
M2

Pl

8π

(
R +

1
M2

R

D2R

)
= (23)

mQQ̄Q + mL L̄L + +
2g
m2

X

[
(Q̄ Qc)(Q̄L) + (Q̄cQ)(L̄Q)

]
−

2d
M2 (R + 3D2)DαJαQ + Tmatt .

6
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In the early universe, when various species are relativistic, Tmatt = 0. A higher order equation
for R emerges after substituting the current divergence DαJα

Q
, which is calculated from the kinetic

equation in the external field R.
In complete analogy with the previous cases, we derive the following equation:

d4R
dt4 +

κ4
f

M2
R

d2R
dt2 + κ

4
f R = 0, κ4

f =
5M2

Pl
M4

36πgsB2
Q

T2
. (24)

The value of κ f differs only slightly from κ in the scalar case (21).

3.3 Stability condition

Searching for a solution to Eq. (21) in the form R = Rin exp(λt), we arrive at the characteristic
equation:

λ4 +
κ4

M2
R

λ2 + κ4 = 0 (25)

with the eigenvalues λ determined by the expression:

λ2 = −
κ4

2M2
R

± κ2

√
κ4

4M4
R

− 1. (26)

Instability is absent if λ2 < 0, and Eq. (21) then has only oscillating solutions. This is realized
when κ4 > 4M4

R. Using the expression for κ4 from Eq. (21) and taking MR = 3 · 1013 GeV, we
establish the stability condition:

M > 3 · 104 GeV
(

q T
GeV

)1/2
, (27)

which is valid for all significant values of M .
The value of λ depends on the relation between κ and MR. If κ ∼ MR then the frequency of

curvature oscillations is of the order of MR and |λ | ∼ MR. If κ � MR then there are two possible
solutions: |λ | ∼ MR and |λ | ∼ κ(κ/MR) � MR.

Since the value of κ f in Eq. (24) only slightly differs numerically from κ in Eq. (21) and has
the same dependence on the essential parameters, the solutions of Eqs. (21) and (24) are practically
identical. Thus, the stability condition (27) is applicable to both the bosonic and fermionic cases.

High frequency oscillations of R would lead to effective gravitational particle production and
subsequently to the damping of these oscillations. It is intriguing to consider how such high-
frequency curvature oscillations might contribute to the ultra-high-energy cosmic ray (UHECR)
spectrum.

4. Curvature oscillations and high energy cosmic rays

Weposit that superheavy darkmatter (DM) particles were generated by the oscillating curvature
scalar R(t) within the framework of Starobinsky inflation [20], as described by action (16). This
concept has been explored in detail in the works [23–25]. In the R2-theory the oscillating curvature

7
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can be interpreted as an effective scalar field, scalaron, with mass MR and decay width Γ. We focus
on the scenario where scalaron decays yield particles with masses around 1021 eV, corresponding
to the energy range of UHECR. Let us stress, that the superheavy particle decays are suggested
as source only for the CR with energies above 1020 eV, that cannot be explained by the canonical
astrophysical processes. Such decays have been suggested in multitude of papers. For a review
see Ref. [26]. There are only several events with E > 1020 eV and statistics is too low to be
inconsistent with the data. The contribution of the suggested mechanism into lower energy cosmic
rays is sufficiently small, so it doesn’t distort the obsereved flux.

Dark matter particles are typically assumed to be absolutely stable. Nevertheless, Ya. B.
Zeldovich proposed a mechanism [27, 28], that implies the decay of any presumably stable particle
through the creation and evaporation of virtual black holes.

In our work [29], we demonstrate that superheavy DM particles with masses about 1012 GeV
may decay through the virtual black hole, with a life-time that is only a few orders of magnitude
longer than the age of the universe. The decay of such particles could significantly contribute to
the UHECR spectrum. This scenario becomes plausible in theories where gravitational coupling
increases at small distances or high energies.

We examine the model suggested in Refs. [30, 31], where the observable universe, containing
Standard Model particles, is confined to a 4-dimensional brane within a (4+d)-dimensional bulk.
In this framework, gravity is not restricted to the brane but propagates throughout the entire bulk.
As a result, the Planck mass MPl in such scenarios is reinterpreted as an effective long-distance
4-dimensional parameter. The relationship between MPl and the fundamental gravity scale M∗ is
established as follows:

M2
Pl ∼ M2+d

∗ Rd
∗ , (28)

where R∗ is the size of the extra dimensions:

R∗ ∼
1

M∗

(
MPl

M∗

)2/d
. (29)

For future application, we have chosen M∗ ≈ 3 × 1017 GeV, resulting in R∗ ∼ 10(4/d)/M∗ > 1/M∗.
Analogous to the proton decay, p → l+q̄q, let us consider the folliwng decay of X-particle:

X → L+q̄∗q∗, as depicted in the diagram in Fig. 1.
According to the calculations in Ref. [32], the decay width of the proton into a positively

charged lepton and a quark-antiquark pair is given by:

Γ(p→ l+q̄q) =
mp α

2

212 π13

(
ln

M2
Pl

m2
q

)2 (
Λ

MPl

)6 (
mp

MPl

)4+ 10
d+1

∫ 1/2

0
dxx2(1 − 2x)1+

5
d+1 , (30)

where mp ≈ 1GeV is the proton mass, mq ∼ 300 MeV is the constituent quark mass, Λ ∼ 300
MeV is the QCD scale parameter, α = 1/137 is the fine structure constant, and d is the number of
"small’ extra dimensions. The QCD coupling constant αs is supposed to be equal to unity. It can
be verified that the proton decay rate is exceedingly small. This results in a corresponding life-time
of 7.3× 10198 years which is significantly longer than the age of the universe, tU ≈ 1.5× 1010 years.

8
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Figure 1: Diagram describing X-particle decay into L+q̄∗q∗ through virtual black hole.

The mentioned case of a decaying proton serves merely as an illustrative example. Our
primary focus is on superheavy dark matter (DM) particles with masses around 1012 GeV. We aim
to develop a scenario where these superheavy DM particles, decaying through a virtual black hole,
have a life-time only a few orders of magnitude longer than the age of the universe.

We consider the decay process X → L+q̄∗q∗ and assume that heavy dark matter X-particle,
with a mass MX ∼ 1012 GeV, is composed of three heavy quarks, q∗, each having a comparable
mass. In this scenario, we leave Λ∗ as a free parameter. The life-time of X-particles can be
estimated using Eq. (30) with modifications to account for the characteristics of the X-particle.
Specifically, we replace the fine structure constant α = 1/137 with α∗ = 1/50, the proton mass mp

with MX = 1012 GeV, and the constituent quark mass mq∗ with 1012 GeV. Additionally, we consider
d = 7 extra dimensions in this calculation. Thus, we obtain:

τX =
1
ΓX
≈ 6.6 × 10−25s ·

210π13

α2
∗

(
GeV
MX

) (
M∗
Λ∗

)6 (
M∗
MX

)4+ 10
d+1

(
ln

M∗
mq∗

)−2
I(d)−1, (31)

where we took 1/GeV = 6.6 × 10−25s and

I(d) =
∫ 1/2

0
dxx2(1 − 2x)1+

5
d+1 , I(7) ≈ 0.0057. (32)

Now all the parameters, except for Λ∗, are fixed: M∗ = 3 × 1017 GeV, MX = 1012 GeV, mq∗ ∼ MX ,
allowing us to estimate the life-time of X-particles as follows:

τX ≈ 7 × 1012 years
(
1015 GeV/Λ∗

)6
vs tU ≈ 1.5 × 1010 years. (33)

By slightly adjustingΛ∗ to near 1015 GeV, we can set the life-time of dark matter X-particles within
an interesting range. Such particles would be sufficiently stable to act as cosmological dark matter,
and their decays could significantly contribute to cosmic rays at ultra-high energies. Anyway, the
lifetime is a free parameter that can be adjusted to satisfy the existing constraints, which are valid
in the lower energy range.

9
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5. Conclusions

In the gravitational baryogenesis scenario, the derivative coupling of the baryonic current to the
curvature scalar results in fourth-order equations for the gravitational field. These equations exhibit
instability with respect to small perturbations of the FLRW-background, leading to an exponential
increase in curvature. For a wide range of cosmological temperatures, the development of instability
occurs much faster than the rate of the Universe’s expansion. The stability issue can be addressed
by incorporating an R2-term into the Hilbert-Einstein action, which induces oscillations of the
curvature and leads to efficient particle production.

In the model of modified high-dimensional gravity, there may exist superheavy dark matter
(DM) particles that are stable against conventional particle interactions. Nonetheless, these DM
particles are expected to decay through the formation of virtual black holes. With an appropriate
selection of parameters, the lifetime of such quasi-stable particles may exceed the age of the universe
by only 3-4 orders of magnitude. This allows X-particles to significantly contribute to the flux of
ultra high-energy cosmic rays with energies above 1020 eV, not distorting the lower energy bulk. The
suggested mechanism could enable the efficient generation of high-energy cosmic ray neutrinos, as
detected by observatories such as IceCube and Baikal.
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