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Axions are light pseudoscalar bosons postulated with many motivations in particle physics and
cosmology, including the strong CP problem and the dark matter in our Universe. In this lecture
notes, we discuss a variety of known ultraviolet (UV) theories for axions and their low energy
properties. We are primarily concerned with the quantum chromodynamics axion solving the
strong CP problem, as well as lighter axion-like particles. In regard to their UV origin, such light
axions may arise from the spontaneous breakdown of a linearly realized global Peccei-Quinn
𝑈 (1) symmetry in the context of 4-dimensional effective field theories, or they may originate
from a gauge field in higher dimensional theories. It is noted that different UV models for these
axions predict a distinctive pattern of low energy axion couplings, which may have interesting
implications for laboratory, astrophysical, or cosmological studies of axions. We also provide an
introductory discussion of the effective field theory for axions from 𝑝-form gauge fields in string
theory with concrete examples.
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Axion Theory and Model Building

1. Introduction

Axions are light pseudo-scalar bosons described by an angular field variable. There are many
motivations to postulate axions, which have been discussed in many excellent reviews and lectures,
for instance in [1–6]. They include first of all the strong CP problem of the Standard Model (SM) of
particle physics, which can be solved by a specific type of axion called the quantum chromodynamics
(QCD) axion. Light axions may also constitute the dark matter or dark radiation in our Universe,
even the dark energy for ultralight axion with a mass near the Hubble scale. Such light axions can
have a variety of observable consequences including astrophysical and cosmological phenomena.
Moreover, an axion with certain features could have played a key role in the early Universe inflation.
Finally, axions generically appear in 4-dimensional effective theories of string/M theory, which is
regarded as the best candidate for a theory incorporating both the SM and quantum gravity. In this
lecture, we discuss some theory and model building aspects of axion physics while focusing on
the connection between the ultraviolet (UV) origin of axions and the associated low energy axion
physics. In the latter part of the lecture, we provide an introductory discussion of the effective theory
for string theory axions with concrete examples.

2. QCD axion and axion-like particles

As is well known, the SM involves two CP-odd angle parameters, the Kobayashi-Maskawa
phase and the QCD angle1, which are given by

𝛿KM = arg · det( [𝑦𝑢𝑦†𝑢, 𝑦𝑑𝑦†𝑑]), 𝜃 = 𝜃QCD + arg · det(𝑦𝑢𝑦𝑑), (1)

where 𝑦𝑢,𝑑 are the Yukawa coupling matrices of the 3-generations of the up and down-type quarks.
Observed CP violation in the weak interactions implies 𝛿KM ∼ 1,while the absence of CP violation
in the strong interactions leads to the upper bound |𝜃 | ≲ 10−10 [1]. Such a small value of 𝜃 requires
an unnatural fine-tuning of the involved parameters in (1), called the strong CP problem [1–4]2.

An appealing solution of the strong CP problem is to introduce a global Peccei-Quinn (PQ)
𝑈 (1) symmetry [10] which is (i) non-linearly realized in the low energy limit, with the associated
Nambu-Goldstone boson “the QCD axion” [11, 12], and (ii) explicitly broken dominantly by the
QCD anomaly. For a generic low energy effective theory with non-linear𝑈 (1)PQ, one can choose a
field basis for which only the axion field transforms under𝑈 (1)PQ [13] as

𝑈 (1)PQ :
𝑎(𝑥)
𝑓𝑎

→ 𝑎(𝑥)
𝑓𝑎

+ 𝛼 (𝛼 = constant) , (2)

where 𝑓𝑎 is the axion decay constant defining the axion field range as

𝑎(𝑥) � 𝑎(𝑥) + 2𝜋 𝑓𝑎 . (3)

1As for the angles 𝜃𝑊 and 𝜃𝑌 for the electroweak gauge group 𝑆𝑈 (2)𝑊 × 𝑈 (1)𝑌 , one combination can be rotated
away by the baryon or lepton number (𝑈 (1)𝐵/𝐿) transformation. The combination 𝜃EM = 𝜃𝑊 + 𝜃𝑌 is invariant under
𝑈 (1)𝐵/𝐿 , however it is relevant only when the nonzero magnetic flux or topologically non-trivial spacetime are involved
[6].

2It has been argued that the smallness of 𝜃 can not be understood by an anthropic selection in the multiverse [7, 8].
See [9] for an anthropic argument which may account for small 𝜃, which was critically re-examined in [8].
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Axion Theory and Model Building

In this field basis which will be called the Georgi-Kaplan-Randall (GKR) basis [13], the generic
axion effective Lagrangian at scales below 𝑓𝑎 (but above the weak scale) takes the form

Laxion =
1
2
𝜕𝜇𝑎𝜕

𝜇𝑎 +
𝜕𝜇𝑎(𝑥)
𝑓𝑎

[∑︁
𝜓

𝑐𝜓�̄��̄�
𝜇𝜓 +

∑︁
𝜙

𝑖𝑐𝜙

(
𝜙†𝐷𝜇𝜙 − h.c.

)]
+ 1

32𝜋2
𝑎(𝑥)
𝑓𝑎

©«
∑︁

𝐹𝐴=𝐺,𝑊,𝐵,...

𝑐𝐴𝐹
𝐴𝜇𝜈 �̃�𝐴𝜇𝜈

ª®¬ + 𝛿Laxion, , (4)

where 𝑐𝜓 and 𝑐𝜙 parameterize the PQ-preserving axion derivative couplings to the canonically
normalized chiral fermion 𝜓 and scalar field 𝜙, while 𝑐𝐴 = (𝑐𝐺 , 𝑐𝑊 , 𝑐𝐵, ...) parameterize the PQ-
breaking couplings3 to the gauge fields 𝐹𝐴𝜇𝜈 including the SM gauge fields 𝐺𝑎𝜇𝜈 ,𝑊 𝑖

𝜇𝜈 , 𝐵𝜇𝜈 . Here
𝛿Laxion can include additional PQ-breaking terms, e.g. an axion potential induced by Planck scale
physics such as quantum gravity [14–16]. For the Lagrangian (4) to be valid over the full axion field
range, the axion periodicity (3) requires that 𝑐𝐴 are quantized [6], e.g. integers for gauge fields with
the kinetic terms − 1

4𝑔2
𝐴

𝐹𝐴𝜇𝜈𝐹𝐴𝜇𝜈 and properly normalized gauge couplings 𝑔2
𝐴
.

To obtain the axion couplings at lower energy scales, one may first consider the renormalization
group (RG) evolution of the parameters 𝑐𝜓, 𝑐𝜙 and 𝑐𝐴. The quantized nature of 𝑐𝐴 implies that 𝑐𝐴
are RG-invariant. On the other hand, generically 𝑐𝜙 and 𝑐𝜓 experience non-trivial RG evolution due
to the associated gauge and Yukawa interactions. For instance, for 𝜙 and 𝜓1,2 having the Yukawa
coupling 𝑦𝜙𝜓1𝜓2, one finds [17–20]

𝑑𝑐𝜙

𝑑 ln 𝜇
=

|𝑦 |2
8𝜋2 (𝑐𝜙 + 𝑐𝜓1 + 𝑐𝜓2),

𝑑𝑐𝜓1,2

𝑑 ln 𝜇
=

|𝑦 |2
16𝜋2 (𝑐𝜙 + 𝑐𝜓1 + 𝑐𝜓2) −

3
2

( 𝑔2
𝐴

8𝜋2

)2
C𝐴(𝜓1,2)

(
𝑐𝐴 − 2

∑︁
𝜓=𝜓𝑖

𝑐𝜓tr(𝑇2
𝐴(𝜓))

)
, (5)

where 𝑇𝐴(𝜓) is the gauge charge of 𝜓 for the 𝐴-th gauge group and C𝐴(𝜓) is its quadratic Casimir.
There can also be threshold corrections to axion couplings when heavy particles are integrated
out [19, 20]. Including the relevant RG evolution and threshold corrections, the axion couplings at
𝜇 ∼ 1 GeV are given by

1
32𝜋2

𝑎(𝑥)
𝑓𝑎

(
𝑐𝛾𝐹

𝜇𝜈 �̃�𝜇𝜈 + 𝑐𝐺𝐺𝑎𝜇𝜈�̃�𝑎𝜇𝜈
)
+

∑︁
Ψ=𝑢,𝑑,𝑠,𝑒,𝜇

𝐶Ψ

2
𝜕𝜇𝑎

𝑓𝑎
Ψ̄𝛾𝜇𝛾5Ψ − 𝛿𝑉axion, (6)

where 𝐹𝜇𝜈 is the 𝑈 (1)em gauge field strength, Ψ = 𝑢, 𝑑, 𝑠, 𝑒, 𝜇 are the relevant light Dirac quarks
and leptons, 𝛿𝑉axion is the axion potential induced by UV physics such as quantum gravity, and

𝑐𝛾 = 𝑐𝑊 + 𝑐𝐵,
𝐶𝑢 (𝜇) = 𝑐𝑞 (𝑣) + 𝑐𝑢𝑐 (𝑣) + 𝑐𝐻 (𝑣) + Δ𝐶𝑢,

𝐶𝑑 (𝜇) = 𝑐𝑞 (𝑣) + 𝑐𝑑𝑐 (𝑣) − 𝑐𝐻 (𝑣) + Δ𝐶𝑑 , etc. (7)

Here 𝑞, 𝑢𝑐, 𝑑𝑐, and 𝐻 denote the 1st generation of the left-handed 𝑆𝑈 (2)𝑊 -doublet quarks, up and
down-type singlet antiquarks, and the Higgs doublet, respectively, 𝑣 = 246 GeV is the weak scale,
and Δ𝐶Ψ are the radiative corrections over the scales from 𝑣 = 246 GeV to 𝜇 ∼ 1 GeV.

3Note that 𝑐𝐴 can be regarded as PQ-preserving couplings in perturbation theory as 𝐹𝐴𝜇𝜈 �̃�𝐴𝜇𝜈 is a total divergence.
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Axion Theory and Model Building

A nonzero integer 𝑐𝐺 describing the axion coupling to the gluons in (4) represents the PQ-
breaking by QCD anomaly. Around the QCD scale, it generates an axion potential [3, 21]

𝑉QCD(𝑎) ≃ − 𝑓 2
𝜋𝑚

2
𝜋

𝑚𝑢 + 𝑚𝑑

√︃
𝑚2
𝑢 + 𝑚2

𝑑
+ 2𝑚𝑢𝑚𝑑 cos(𝑐𝐺𝑎/ 𝑓𝑎), (8)

where 𝑚𝑢,𝑑 are the light quark masses and 𝑓𝜋 = 92.4 MeV is the pion decay constant. Including
this QCD anomaly-induced potential, the full axion potential is given by

𝑉axion = 𝑉QCD + 𝛿𝑉axion. (9)

If 𝑈 (1)PQ is broken dominantly by the QCD anomaly to the extent that 𝛿𝑉axion/𝑉QCD < 10−10, the
axion vacuum value is small enough to solve the strong CP problem as

|𝜃 | ≡ |𝑐𝐺 ⟨𝑎(𝑥)⟩|
𝑓𝑎

< 10−10 (𝑐𝐺 ≠ 0). (10)

Such an axion is called the QCD axion. Obviously then the axion mass is determined by the axion
coupling to the gluons as

𝑚𝑎QCD = 𝑓𝜋𝑚𝜋

√
𝑚𝑢𝑚𝑑

𝑚𝑢 + 𝑚𝑑
𝑐𝐺

𝑓𝑎
≃ 0.57 ×

(1010 GeV
𝑓𝑎/𝑐𝐺

)
meV. (11)

Note that 𝑐𝐺 also parameterizes the number of degenerate vacua of 𝑉QCD. Therefore, for a QCD
axion with |𝑐𝐺 | > 1, the associated cosmic domain walls can cause a severe problem in the
cosmological scenario with post-inflationary PQ phase transition [2].

Generically there can also be different type of axions dubbed axion-like particles (ALPs) [2, 4].
They include for instance a heavy ALP with 𝛿𝑉axion(𝑎) ≫ 𝑓 2

𝜋𝑚
2
𝜋 , as well as an ultralight ALP with

𝛿𝑉axion(𝑎) ≪ 𝑓 2
𝜋𝑚

2
𝜋 and 𝑐𝐺 = 0, for which

𝑚heavy−ALP ≫ 1010 GeV
𝑓𝑎

meV, 𝑚ultralight−ALP ≪ 1010 GeV
𝑓𝑎

meV. (12)

In many cases, the axion couplings relevant for cosmological, astrophysical, or laboratory
processes are those below the QCD scale. Those couplings include [21, 22]

Leff =
1
4
𝑔𝑎𝛾𝑎(𝑥) ®𝐸 · ®𝐵 +

∑︁
ℓ=𝑒,𝜇

1
2
𝑔𝑎ℓ ℓ̄𝛾

𝜇𝛾5ℓ

+ 1
2
𝜕𝜇𝑎(𝑥)

[
𝑔𝑎𝑝𝑝𝛾

𝜇𝛾5𝑝 + 𝑔𝑎𝑛�̄�𝛾𝜇𝛾5𝑛 +
𝑔𝑎𝜋𝑁

𝑓𝜋

(
𝑖𝜋+𝑝𝛾𝜇𝑛 − 𝑖𝜋− �̄�𝛾𝜇𝑝

) ]
+ 1

2
𝑔𝑎𝜋

𝑓𝜋
𝜕𝜇𝑎(𝑥)

(
𝜋0𝜋+𝜕𝜇𝜋

− + 𝜋0𝜋−𝜕𝜇𝜋
+ − 2𝜋+𝜋−𝜕𝜇𝜋0

)
, (13)

where

𝑔𝑎𝛾 =
𝛼em

2𝜋 𝑓𝑎

(
𝑐𝑊 + 𝑐𝐵 − 2

3
(4𝑚𝑑 + 𝑚𝑢)
(𝑚𝑢 + 𝑚𝑑)

𝑐𝐺

)
, 𝑔𝑎𝑝 − 𝑔𝑎𝑛 =

1.27
𝑓𝑎

(
𝐶𝑢 − 𝐶𝑑 +

(𝑚𝑢 − 𝑚𝑑
𝑚𝑢 + 𝑚𝑑

)
𝑐𝐺

)
,

𝑔𝑎𝑝 + 𝑔𝑎𝑛 =
0.52
𝑓𝑎

(
𝐶𝑢 + 𝐶𝑑 − 𝑐𝐺

)
, 𝑔𝑎𝜋 =

2
√

2
3
𝑔𝑎𝜋𝑁 =

𝑔𝑎𝑝 − 𝑔𝑎𝑛
1.9

, 𝑔𝑎ℓ =
𝐶ℓ

𝑓𝑎
(14)
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Axion Theory and Model Building

for 𝐶𝑢,𝑑 renormalized at 𝜇 = 2 GeV. Then, putting the known light quark mass ratios, one finds

𝑔𝑎𝛾 ≃ 𝛼em
2𝜋

1
𝑓𝑎

(
𝑐𝑊 + 𝑐𝐵 − 1.92𝑐𝐺

)
, (15)

𝑔𝑎𝑝 ≃ 1
𝑓𝑎

(
0.90𝐶𝑢 − 0.38𝐶𝑑 − 0.48𝑐𝐺

)
, 𝑔𝑎𝑛 ≃

1
𝑓𝑎

(
0.90𝐶𝑑 − 0.38𝐶𝑢 − 0.04𝑐𝐺

)
. (16)

An important quantity for experimental detection of axions is the coupling to mass ratio
𝑔𝑎𝛾/𝑚𝑎. For a QCD axion, (11) and (15) imply

QCD axion:
𝑔𝑎𝛾

𝑚𝑎
∼ 𝛼em

2𝜋
1

𝑓𝜋𝑚𝜋

𝑐𝑊 + 𝑐𝐵
𝑐𝐺

. (17)

Typical QCD axion models give 𝑐𝑊,𝐵 ∼ 𝑐𝐺 , therefore predict 𝑔𝑎𝛾/𝑚𝑎 ∼ 𝛼em/2𝜋 𝑓𝜋𝑚𝜋 . This
corresponds to the QCD axion band on the plane spanned by (𝑚𝑎, 𝑔𝑎𝛾), which is the primary target
of axion search experiments [1]. Yet there can be models giving 𝑐𝑊,𝐵 ≫ 𝑐𝐺 [23], most notably
the clockwork axion model [24–26] with multiple (𝑁 > 1) axions, in which 𝑐𝑊,𝐵/𝑐𝐺 ∼ 𝑞𝑁−1 for
an integer-valued model parameter 𝑞. For ALPs with nonzero coupling to the photon, one typically
finds

Heavy ALP:
𝑔𝑎𝛾

𝑚𝑎
≪ 𝛼em

2𝜋
1

𝑓𝜋𝑚𝜋
, Ultralight ALP:

𝑔𝑎𝛾

𝑚𝑎
≫ 𝛼em

2𝜋
1

𝑓𝜋𝑚𝜋
, (18)

Note that clockwork QCD axion and ultralight ALP can have a similar value of 𝑔𝑎𝛾/𝑚𝑎 [26].

3. Axion models

As for the UV origin of axions, one can consider two types of models. The first are 4-dimensional
(4D) models with a linearly-realized 𝑈 (1)PQ symmetry which is spontaneously broken at a scale
around 𝑓𝑎 [10–12, 27–30]. The second are higher-dimensional models involving a 𝑝-form gauge
field, in which axions arise as the zero modes of 𝑝-form gauge field at the compactification scale
[31–34]. For the second type, there is no notion of linear 𝑈 (1)PQ symmetry, and the non-linear
𝑈 (1)PQ in 4D effective theory can be identified as a locally well-defined, but globally ill-defined
gauge symmetry in the underlying higher-dimensional theory. Due to this, PQ-breaking by quantum
gravity in the second type models can be exponentially suppressed in an appropriate limit. In the
following, we briefly discuss typical examples of both types of axion models. One of our primary
concerns will be the pattern of low energy axion couplings predicted by these models.

3.1 Models with a linearly realized PQ symmetry

Generic linear PQ symmetry is defined as

𝑈 (1)PQ : Φ → 𝑒𝑖𝑞Φ𝛼Φ (19)

with the quantized PQ charges 𝑞Φ of the matter fields Φ = (𝜙, 𝜓) in the model. The associated
Noether current is given by

𝐽
𝜇

PQ =
∑︁
Φ

𝜕L
𝜕 (𝜕𝜇Φ)

𝛿Φ

𝛿𝛼
= −

∑︁
𝜓

𝑞𝜓�̄��̄�
𝜇𝜓 − 𝑖

∑︁
𝜙

𝑞𝜙 (𝜙†𝐷𝜇𝜙 − h.c.), (20)
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and the anomalous variation of the path integral measure of 𝜓 under𝑈 (1)PQ leads to [35]

𝜕𝜇𝐽
𝜇

PQ =
1

32𝜋2

∑︁
𝐴

𝑐𝐴𝐹
𝐴�̃�𝐴

(
𝑐𝐴 = −2

∑︁
𝜓

𝑞𝜓tr(𝑇2
𝐴(𝜓))

)
. (21)

In the following, we will take the PQ charge normalization for which the axion field 𝑎(𝑥) param-
eterizing the vacuum manifold of spontaneously broken 𝑈 (1)PQ transforms under 𝑈 (1)PQ as in
(2). Here we present three distinct models with linear 𝑈 (1)PQ, which have been widely discussed
in the literatures, i.e. Kim-Shifman-Vainshtein-Zakharov (KSVZ) model [27, 28], Dine-Fischler-
Srednicki-Zhitnitsky (DFSZ) model [29, 30], and composite axion model [36–38].

3.1.1 KSVZ model

In KSVZ model [27, 28], all SM fields are neutral under 𝑈 (1)PQ. Yet there exist exotic PQ-
charged and gauge-charged fermions which obtain a heavy mass due to the spontaneous breakdown
of 𝑈 (1)PQ. For illustration, let us consider a simple example with exotic 𝑆𝑈 (3)𝑐 (anti)triplet and
𝑆𝑈 (2)𝑊 singlet left-handed fermion𝑄 (𝑄𝑐) carrying the𝑈 (1)𝑌 hypercharge𝑌𝑄 (−𝑌𝑄). Introducing
also a PQ-charged, but gauge-singlet, scalar field 𝜎 for the spontaneous breakdown of 𝑈 (1)PQ, the
Lagrangian of the PQ sector is given by

LKSVZ = 𝜕𝜇𝜎𝜕
𝜇𝜎∗ + 𝑖�̄��̄�𝜇𝐷𝜇𝑄 + 𝑖�̄�𝑐�̄�𝜇𝐷𝜇𝑄𝑐 −

(
𝑦𝜎𝑄𝑄𝑐 + h.c.

)
− 𝜆

(
𝜎𝜎∗ − 1

2
𝑓 2
𝑎

)2
. (22)

The model is invariant (at tree level) under the linear PQ symmetry (19) with 𝑞𝜎 = 1, 𝑞𝑄 = 𝑞𝑄𝑐 =

−1/2 in our PQ charge normalization convention, for which 𝜕𝜇𝐽𝜇PQ = 1
32𝜋2

(
𝐺�̃� + 3𝑌2

𝑄
𝐵�̃�

)
. The

vacuum manifold of spontaneously broken𝑈 (1)PQ is described by

⟨𝜎⟩ = 1
√

2
𝑓𝑎𝑒

𝑖𝑎 (𝑥 )/ 𝑓𝑎 (23)

with 𝑎(𝑥) � 𝑎(𝑥) + 2𝜋 𝑓𝑎 which transforms under𝑈 (1)PQ as (2).
To obtain the low energy axion couplings in KSVZ model, one may first replace 𝜎 with

the axion-dependent vacuum value (23). To go to the GKR basis, one subsequently makes the
axion-dependent field redefinition

𝑄 → 𝑒𝑖𝑞𝑄𝑎 (𝑥 )/ 𝑓𝑎𝑄, 𝑄𝑐 → 𝑒𝑖𝑞𝑄𝑐 𝑎 (𝑥 )/ 𝑓𝑎𝑄𝑐, (24)

yielding the axion effective Lagrangian (4) with

𝑐𝑄,𝑄𝑐 = −𝑞𝑄,𝑄𝑐 =
1
2
, 𝑐𝐴 = (1, 0, 3𝑌2

𝑄) (𝐴 = 𝐺,𝑊, 𝐵). (25)

Note that the axion couplings to gauge fields with the coefficients 𝑐𝐴 arise from the anomalous vari-
ation of the path integral measure of𝑄,𝑄𝑐 under the field redefinition (24) [35]. As a consequence,
𝑐𝐴 in the GKR basis are identical to the anomaly coefficients in 𝜕𝜇𝐽𝜇PQ.

A key feature of the KSVZ axion is that at tree level the axion couplings to the SM fermions
and Higgs field are all vanishing. As a consequence, the low energy axion couplings to the light
quarks and electron are determined mainly by the RG running due to the SM gauge interactions
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[22, 39] and the top quark Yukawa coupling 𝑦𝑡 [17, 19], which occurs at scales below𝑚𝑄 = 𝑦 𝑓𝑎/
√

2.
Specifically one finds [20]

𝐶𝑢,𝑑 (𝜇 = 2 GeV) = 𝑟𝐺𝑢,𝑑𝑐𝐺 + 𝑟𝑊𝑢,𝑑𝑐𝑊 + 𝑟𝐵𝑢,𝑑𝑐𝐵, 𝐶𝑒 (𝑚𝑒) = 𝑟𝐺𝑒 𝑐𝐺 + 𝑟𝑊𝑒 𝑐𝑊 + 𝑟𝐵𝑒 𝑐𝐵, (26)

where the coefficients 𝑟𝐴
𝑢,𝑑,𝑒

(𝐴 = 𝐺,𝑊, 𝐵) are estimated for 𝑚𝑄 = 107 − 1016 GeV as

𝑟𝐺𝑢,𝑑 ≃ 2 × 10−2, 𝑟𝑊𝑢 ≃ (2 − 5) × 10−4, 𝑟𝑊𝑑 ≃ (3 − 8) × 10−4, 𝑟𝐵𝑢 ≃ (2 − 6) × 10−5,

𝑟𝐵𝑑 ≃ (1 − 4) × 10−5, 𝑟𝐺𝑒 ≃ (0.5 − 1) × 10−3, 𝑟𝑊𝑒 ≃ (4 − 9) × 10−4, 𝑟𝐵𝑒 ≃ (1 − 3) × 10−4.

3.1.2 DFSZ model

In DFSZ model [29, 30], the SM fermions are charged under the linear 𝑈 (1)PQ. Again,
introducing a PQ-charged gauge-singlet scalar 𝜎, the Lagrangian of the minimal DFSZ model is
given by

LDFSZ = 𝜕𝜇𝜎𝜕
𝜇𝜎∗ + 𝐷𝜇𝐻†

𝑢𝐷
𝜇𝐻𝑢 + 𝐷𝜇𝐻†

𝑑
𝐷𝜇𝐻𝑢 +

(
𝑦𝑢𝐻𝑢𝑞𝑢

𝑐 + 𝑦𝑑𝐻𝑑𝑞𝑑𝑐 + 𝑦ℓ𝐻𝑑ℓ𝑒𝑐 + h.c.
)

−𝜆
(
𝜎𝜎∗ − 1

2
𝑓 2
𝑎

)2
−
(
𝜅𝐻𝑢𝐻𝑑𝜎

2 + h.c.
)
+ . . . , (27)

where only the relevant terms are explicitly written. The associated PQ charges are 𝑞𝜎 = 1,
𝑞𝐻𝑢 ,𝐻𝑑

= −1, 𝑞𝜓SM = 1/2, where 𝜓SM denotes the left-handed SM quarks and leptons, yielding
𝜕𝜇𝐽

𝜇

PQ = − 1
32𝜋2

(
6𝐺�̃� + 6𝑊�̃� + 10𝐵�̃�

)
. Upon ignoring the small corrections of O(|𝐻𝑢,𝑑 |2/ 𝑓 2

𝑎 ), the
vacuum manifold of spontaneously broken𝑈 (1)PQ in DFSZ model is described by

⟨𝜎⟩ = 1
√

2
𝑓𝑎𝑒

𝑖𝑎 (𝑥 )/ 𝑓𝑎 (28)

for 𝑎(𝑥) � 𝑎(𝑥) + 2𝜋 𝑓𝑎 transforming under𝑈 (1)PQ as (2).
To obtain the axion couplings in the GKR basis, one can replace 𝜎 with its axion-dependent

vacuum value and subsequently make the field redefinition

𝐻𝑢,𝑑 → 𝑒
𝑖𝑞𝐻𝑢,𝑑

𝑎 (𝑥 )/ 𝑓𝑎𝐻𝑢,𝑑 , 𝜓SM → 𝑒𝑖𝑞𝜓SM𝑎 (𝑥 )/ 𝑓𝑎𝜓SM. (29)

This results in the axion couplings at 𝜇 ∼ 𝑓𝑎, determined by the coefficients

𝑐𝐻𝑢,𝑑
= −𝑞𝐻𝑢,𝑑

= 1, 𝑐𝜓SM = −𝑞𝜓SM = −1
2
, 𝑐𝐴 = −(6, 6, 10) (𝐴 = 𝐺,𝑊, 𝐵), (30)

where 𝑐𝐴 arise from the anomalous variation of the path integral measure of 𝜓SM [35].
Let 𝑚�̃� denote the mass of the heavier combination of 𝐻𝑢 and 𝐻𝑑 . At 𝜇 > 𝑚�̃� , there is no

RG running of the axion couplings in DFSZ model. Once �̃� is integrated out at 𝜇 ∼ 𝑚�̃� , 𝐻𝑢,𝑑
can be parameterized as 𝐻𝑢 = 𝐻 sin 𝛽 and 𝐻𝑑 = 𝐻∗ cos 𝛽, where 𝐻 is the SM Higgs doublet
and tan 𝛽 = ⟨𝐻𝑢⟩/⟨𝐻𝑑⟩. One then finds 𝑐𝐻 (𝜇 = 𝑚�̃�) = 𝑐𝐻𝑢

sin2 𝛽 − 𝑐𝐻𝑑
cos2 𝛽 = − cos 2𝛽. In

DFSZ model, RG running due to 𝑦𝑡 begins at 𝜇 = 𝑚�̃� , while the RG running due to the SM gauge
interactions begins at𝑚𝑡 [20]. However, those radiative corrections can be ignored over the majority
of parameter space, giving the low energy couplings at 𝜇 ∼ 1 GeV as

𝐶𝑢 ≃ −2 cos2 𝛽, 𝐶𝑑 ≃ 𝐶𝑒 ≃ −2 sin2 𝛽. (31)

For the parameter region of the DFSZ model where the RG running effect gives a significant
consequence, see [40].
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3.1.3 Composite axion model

A key motivation for the composite axion is to generate 𝑓𝑎 dynamically without causing a
scale hierarchy problem [36, 37]. The first composite axion model was proposed in [36], involving
a confining axicolor gauge group 𝑆𝑈 (𝑁𝑎) with the axicolored left-handed fermions:

𝜓𝐴 =
[
𝜓𝐴1 , 𝜓𝐴2

]
=
[
(𝑁𝑎, 3), (𝑁𝑎, 1)

]
, 𝜓𝑐𝐴 =

[
𝜓𝑐𝐴1

, 𝜓𝑐𝐴2

]
=
[
(�̄�𝑎, 3̄), (�̄�𝑎, 1)

]
, (32)

where 𝑁𝑎, �̄�𝑎 denote the 𝑆𝑈 (𝑁𝑎) representation, and 3, 3̄ are the 𝑆𝑈 (3)𝑐 representation. The PQ
charges in our normalization convention are 𝑞𝜓𝐴1

= 𝑞𝜓𝑐
𝐴1

= 1/2 and 𝑞𝜓𝐴2
= 𝑞𝜓𝑐

𝐴2
= −3/2, for which

𝜕𝜇𝐽
𝜇

PQ = − 𝑁𝑎

32𝜋2𝐺�̃�. Then the confining axicolor gauge interactions form fermion condensations
which break𝑈 (1)PQ spontaneously,

⟨𝜓𝐴1𝜓
𝑐
𝐵1
⟩ = Λ3

𝑎𝑒
𝑖𝑎 (𝑥 )/ 𝑓𝑎 , ⟨𝜓𝐴2𝜓

𝑐
𝐵2
⟩ = Λ3

𝑎𝑒
−3𝑖𝑎 (𝑥 )/ 𝑓𝑎 , (33)

where 𝑓𝑎 ∼ Λ𝑎 and the periodic axion 𝑎(𝑥) � 𝑎(𝑥) + 2𝜋 𝑓𝑎 transforms under𝑈 (1)PQ as (2).
Recently it has been noted that in certain composite axion models, 𝑈 (1)PQ appears as an

accidental symmetry which is valid up to the operators of dim = 8 due to the gauge symmetries
of the model [38]. As a consequence, 𝑈 (1)PQ is protected from quantum gravity well enough
to implement the axion solution to the strong CP problem. The axicolor gauge group is 𝑆𝑈 (5)𝑎
with the axicolored left-handed fermions 𝜓10 =

[
𝜓 (10,3) , 𝜓 (10,3̄)

]
and 𝜓5̄ =

[
𝜓 (5̄,3) , 𝜓 (5̄,3̄)

]
, where

the subscripts denote the 𝑆𝑈 (5)𝑎 × 𝑆𝑈 (3)𝑐 representation. The PQ charges in our normalization
convention are 𝑞𝜓10 = 1/10 and 𝑞𝜓5̄ = −3/10, for which 𝜕𝜇𝐽

𝜇

PQ = 2
32𝜋2𝐺�̃�. This 𝑈 (1)PQ is

spontaneously broken by the dim = 9 fermion condensation involving the axion field as

⟨𝜓10 · 𝜓5̄ · 𝜓5̄ · 𝜓10 · 𝜓5̄ · 𝜓5̄⟩ = Λ9
𝑎𝑒
𝑖𝑎 (𝑥 )/ 𝑓𝑎 . (34)

As the SM fields have vanishing PQ-charges in these composite axion models, the low energy axion
couplings are similar to those of the KSVZ axion.

3.2 Axions from higher-dimensional gauge field

In the previous subsection, we presented several models with a linear 𝑈 (1)PQ which might
be simply assumed or may arise as an accidental symmetry of the model. In this subsection, we
consider a different type of models in which a 4D axion originates from a higher-dimensional gauge
field [31–34]. Such models do not admit a linear 𝑈 (1)PQ, but yet have a nonlinear 𝑈 (1)PQ in the
low energy limit, which is intriguingly related to the higher-dimensional gauge symmetry of the
model. We first present a simple 5D model whose axion shares many features with the axions from
𝑝-form gauge fields in string theory, and later discuss axions in string theory.

3.2.1 Axion from 5D gauge field

Our example is the model proposed in [34]. The 5D action of the model is given by

𝑆5D =

∫
𝑑5𝑥

√︁
−�̃�

[ 1
2
𝑀3

5R5(�̃�) −
1

4𝑔2
5𝐴
𝐴𝑀𝑁 𝐴𝑀𝑁 − 1

4𝑔2
5𝑆
𝐺𝑎𝑀𝑁𝐺𝑎𝑀𝑁

+ 𝑖
∑︁
𝐼

�̄�𝐼
(
𝛾𝑀𝐷𝑀 + 𝜇𝐼𝐴𝑀𝑁𝛾𝑀𝑁

)
𝑄𝐼 +

𝑘CS

32𝜋2
𝜀𝑀𝑁𝑃𝑄𝑅
√
−�̃�

𝐴𝑀𝐺
𝑎
𝑁𝑃𝐺

𝑎
𝑄𝑅 + . . .

]
, (35)
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where R5 is the Ricci scalar for the 5D metic �̃�𝑀𝑁 , 𝐴𝑀𝑁 and 𝐺𝑎
𝑀𝑁

are the𝑈 (1)𝐴 × 𝑆𝑈 (3)𝑐 gauge
field strength tensors with the 5D gauge couplings 𝑔5𝐴 and 𝑔5𝑆 , and 𝑄𝐼 = (𝑄𝑖 , 𝑄𝑐𝑖 ) are 𝑆𝑈 (3)𝑐-
charged, but 𝑈 (1)𝐴-neutral 5D (anti)quarks with the 𝑈 (1)𝐴 dipole moment 𝜇𝐼 . Here 𝑀5 is the 5D
Planck mass, 𝛾𝑀𝑁 = 1

2 [𝛾
𝑀 , 𝛾𝑁 ] for the 5D gamma matrices 𝛾𝑀 = (𝛾𝜇, 𝛾5), and 𝑘CS is the integer-

valued Chern-Simons coefficient. For simplicity, we limit the discussion to the compactification on
a flat orbifold 𝑆1/𝑍2 with radius 𝑅, which is described by the 5-th coordinate

𝑦 � −𝑦 � 𝑦 + 2𝜋𝑅. (36)

The𝑈 (1)𝐴 gauge field 𝐴𝑀 = (𝐴𝜇, 𝐴5) obeys the 𝑍2-odd boundary condition (BC) giving an axion
zero mode, i.e.

𝐴𝜇 (𝑥, 𝑦) = 𝐴𝜇 (𝑥, 𝑦 + 2𝜋𝑅) = −𝐴𝜇 (𝑥,−𝑦), 𝐴5(𝑥, 𝑦) = 𝐴5(𝑥, 𝑦 + 2𝜋𝑅) = 𝐴5(𝑥,−𝑦), (37)

while �̃�𝑀𝑁 and 𝐺𝑎
𝑀

obey the 𝑍2-even BC giving the 4D graviton and gluon zero modes. We also
impose 𝑄𝐼 (𝑦) = 𝑄𝐼 (𝑦 + 2𝜋𝑅) = 𝛾5𝑄𝐼 (−𝑦), which would give 4D chiral fermion zero modes.

The axion zero mode might be defined as

𝑎(𝑥)
𝑓𝑎

≡
∮

𝑑𝑦 𝐴5(𝑥, 𝑦), (38)

for which the axion periodicity 𝑎(𝑥) � 𝑎(𝑥) + 2𝜋 𝑓𝑎 is assured by the 𝑈 (1)𝐴 gauge transformation
𝐴5 → 𝐴5 + 1

𝑅
. Note that a generic𝑈 (1)𝐴 gauge transformation is defined as

𝑈 (1)𝐴 : 𝐴𝑀 → 𝐴𝑀 + 𝜕𝑀Λ (39)

for Λ obeying the BC:

Λ(𝑥, 𝑦) = Λ(𝑥, 𝑦 + 2𝜋𝑅) = −Λ(𝑥,−𝑦) mod 2𝜋, (40)

andΛ = 𝑦/𝑅 is a genuine gauge transformation on 𝑆1/𝑍2. Note also that the non-linear PQ symmetry
𝑎(𝑥)/ 𝑓𝑎 → 𝑎(𝑥)/ 𝑓𝑎 + 𝛼 (𝛼 = real constant) in the GKR basis can be identified as a locally well-
defined, but globally ill-defined 𝑈 (1)𝐴 transformation in the limit when all 𝑈 (1)𝐴-charged fields
are integrated out, i.e.

𝑈 (1)PQ : 𝐴5 → 𝐴5 + 𝜕𝑦Λ̃ for Λ̃ =
𝛼𝑦

2𝜋𝑅
. (41)

This implies that 𝑈 (1)PQ can be broken only by non-local effects associated with 𝑈 (1)𝐴-charged
fieldΦ𝐶 on 𝑆1/𝑍2, which would be exponentially suppressed as 𝑒−2𝜋𝑀Φ𝐶

𝑅 in the limit 𝑅 ≫ 1/𝑀Φ𝐶
.

To examine the low energy couplings of the axion (38), one may perform the dimensional
reduction of the model. For the zero mode fluctuations given by

�̃�𝜇𝜈 = 𝑔𝜇𝜈 (𝑥), 𝐺𝑎𝜇 = 𝐺𝑎𝜇 (𝑥), 𝐴5 =
1

2𝜋𝑅
𝑎(𝑥)
𝑓𝑎

,
(
𝑄𝑖 , 𝑄

𝑐
𝑖

)
=

(𝑞𝑖 (𝑥), 𝑞𝑐𝑖 (𝑥))√
𝜋𝑅

, (42)

one finds the 4D effective Lagrangian

L4𝐷 =
1
2
𝑀2
𝑃𝑅(𝑔) −

1
4𝑔2
𝑠

𝐺𝑎𝜇𝜈𝐺𝑎𝜇𝜈 +
1
2
𝜕𝜇𝑎𝜕

𝜇𝑎 +
∑︁

𝜓=𝑞𝑖 ,𝑞
𝑐
𝑖

𝑖�̄�𝛾𝜇𝐷𝜇𝜓

+ 𝑐𝐺

32𝜋2
𝑎(𝑥)
𝑓𝑎

𝐺𝑎𝜇𝜈�̃�𝑎𝜇𝜈 +
∑︁

𝜓=𝑞𝑖 ,𝑞
𝑐
𝑖

𝑐𝜓
𝜕𝜇𝑎

𝑓𝑎
�̄�𝛾𝜇𝜓, (43)
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where 𝑀2
𝑃

= 𝜋𝑅𝑀3
5 and 𝑔2

𝑠 = 𝑔2
5𝑆/𝜋𝑅 denote the 4D Planck scale and the 4D 𝑆𝑈 (3)𝑐 gauge

coupling, respectively, and the axion scale and couplings are determined as

𝑓 2
𝑎 =

1
4𝜋𝑔2

5𝐴𝑅
, 𝑐𝐺 = 𝑘CS, 𝑐𝜓 =

𝜇𝑄,𝑄𝑐

𝜋𝑅
. (44)

It has been conjectured in [41] that for a 𝐷-dimensional 𝑈 (1) gauge field compatible with
quantum gravity, there should exist a 𝑈 (1)-charged particle with a mass obeying 𝑚 ≲ 𝑔𝐷/𝐺1/2

𝐷

(there can be a coefficient of O(1) in this upper bound, which will be ignored), where 𝑔𝐷 and𝐺𝐷 are
the 𝐷-dimensional 𝑈 (1) gauge coupling and the 𝐷-dimensional Newton’s constant, respectively.
This conjecture goes under the name of Weak Gravity Conjecture (WGC), and can be extended to
general 𝑝-forms in 𝐷 dimensions [42]. Axions can be seen as 0-form gauge fields, and the WGC
can be formulated using the following analogy: the gauge coupling 𝑔𝐷 becomes the inverse decay
constant 1/ 𝑓𝑎, and the charged object is an instanton with the Euclidean action 𝑆inst which is the
analogue of the mass. Then the axion WGC states that there must exist an instanton satisfying
𝑆inst ≲ 𝑀𝑃/ 𝑓𝑎, where a coefficient of O(1) is again ignored.

Applying the above WGC to our case, the UV completion of the 5D model (35) should include
𝑈 (1)𝐴-charged matter field Φ𝐶 with a mass

𝑀Φ𝐶
≲ 𝑔5𝐴𝑀

3/2
5 . (45)

In the limit 𝑀Φ𝐶
≫ 1/𝑅 which we are concerned with, the Euclidean worldline of Φ𝐶 winding the

covering space of 𝑆1/𝑍2 can be interpreted as a worldline instanton (≡ the Φ𝐶-instanton) with the
Euclidean action

𝑆inst = 2𝜋𝑅𝑀Φ𝐶
. (46)

For this instanton action and the axion decay constant 𝑓𝑎 obtained from dimensional reduction as
(44), the 5D WGC (45) leads to

𝑓𝑎

𝑀𝑃

≲
1
𝑆inst

. (47)

This indicates that the Φ𝐶-instanton corresponds to the instanton required by the axion WGC for
the 5D model (35). One also finds that the quantum fluctuations of Φ𝑐 generate an axion potential
[33]

𝛿𝑉axion ∼ 1
(𝜋𝑅)4 𝑒

−𝑆inst cos
( 𝑎
𝑓𝑎

+ 𝛿
)
, (48)

which can be interpreted as a potential generated by the Φ𝐶-instanton [6]. Note that generically
𝛿 = O(1) for ⟨𝑎⟩/ 𝑓𝑎 identified as 𝜃 in the SM (see (1)), therefore 𝛿𝑉axion can spoil the PQ solution
of the strong CP problem unless 𝛿𝑉axion < 10−10 𝑓 2

𝜋𝑚
2
𝜋 .

As the Chern-Simons coefficient 𝑘CS is an integer, the axion coupling 𝑐𝐺 to 4D gluons is
integer-valued as required. The axion couplings to 4D chiral fermions are given by

𝑐𝜓 =
2𝜇𝑄,𝑄𝑐𝑀Φ𝐶

𝑆inst
∼ 1
𝑆inst

, (49)
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where we assumed4 𝜇𝑄,𝑄𝑐𝑀Φ𝐶
= O(1). Then, adding the leptons to the model (35), the axion

couplings to the light quarks (at 𝜇 ∼ 1 GeV) and electron (at 𝜇 = 𝑚𝑒) are estimated as

𝐶𝑢,𝑑,𝑒 ∼
1
𝑆inst

. (50)

What would be the probable value of the instanton action 𝑆ins? For a QCD axion, to solve
the strong CP problem, one needs 𝛿𝑉axion < 10−10𝑚2

𝜋 𝑓
2
𝜋 , which requires 𝑆ins ≳ 60 − 180 for

1/𝑅 = 103 − 1016 GeV. For ultralight ALP, one needs 𝛿𝑉axion ≲ 𝑚2
𝑎 𝑓

2
𝑎 , giving a numerically

similar lower bound on 𝑆inst. On the other hand, if 𝑆inst = 2𝜋𝑅𝑀Φ𝐶
≫ 102, the 4D QCD coupling

𝑔2
𝑠 = 𝑔

2
5𝑆/𝜋𝑅 at 𝜇 ∼ 1/𝑅 would be too small to be phenomenologically viable for reasonable values

of 𝑔2
5𝑆 and 𝑀Φ𝐶

. These imply that 𝑆inst needs to have a value of O(102).

3.2.2 Axions from 𝑝-form gauge fields in string theory

String/M theory involves a variety of extended objects, i.e. (𝑝 − 1)-dimensional branes, which
couple to 𝑝-form gauge fields 𝐴𝑝 with the associated (𝑝 − 1)-form gauge symmetry [43]:

𝐺 𝑝−1 : 𝐴𝑝 → 𝐴𝑝 + 𝑑Λ𝑝−1. (51)

Upon compactification, the zero modes of 𝐴𝑝 can be identified as 4D axions whose periodicity
is assured by the quantized charges of 𝐺 𝑝−1. For compactifications involving the 𝑝-cycles Σ

(𝑖)
𝑝

(𝑖 = 1, .., 𝑁𝑝) in the internal space, the axion zero modes5 are given by [31, 32]

𝐴𝑝 (𝑥, 𝑦) =
∑︁
𝑖

𝜃𝑖 (𝑥)𝜔 (𝑖)
𝑝 (𝑦), (52)

where 𝜃𝑖 (𝑥) ≡ 𝑎𝑖 (𝑥)/ 𝑓𝑖 � 𝜃𝑖 (𝑥) + 2𝜋, and 𝜔
(𝑖)
𝑝 are the harmonic 𝑝-forms dual to Σ

(𝑖)
𝑝 , i.e.∫

Σ
( 𝑗)
𝑝
𝜔

(𝑖)
𝑝 = 𝛿𝑖

𝑗
. Then the PQ transformation 𝑎𝑖/ 𝑓𝑎 → 𝑎𝑖/ 𝑓𝑖 + 𝛼𝑖 (𝛼𝑖 = constant) corresponds to

𝑈 (1) (𝑖)PQ : 𝐴𝑝 → 𝐴𝑝 + 𝛼𝑖𝜔 (𝑖)
𝑝 . (53)

As 𝜔 (𝑖)
𝑝 is locally an exact 𝑝-form, but not globally, 𝑈 (1) (𝑖)PQ can be identified as a locally well-

defined, but globally ill-defined 𝐺 𝑝−1 gauge transformation.
For compactifications preserving 4D N = 1 SUSY, the low energy properties of the axion

zero modes (52) can be described by the 4D N = 1 supergravity (SUGRA) Lagrangian. In such
compactifications, for each axion 𝜃𝑖 = 𝑎𝑖/ 𝑓𝑖 , there exists a saxion (modulus) partner 𝜏𝑖 , forming the
scalar component of chiral superfield (see Sec.4.1 for more details) as

𝑇𝑖 = 𝜏𝑖 + 𝑖𝜃𝑖 . (54)

Also, for 𝜃𝑖 � 𝜃𝑖 + 2𝜋, the vacuum value of 𝜏𝑖 can be identified as the Euclidean action of the brane
instanton6 which corresponds to the Euclidean (𝑝 − 1)-brane wrapping Σ

(𝑖)
𝑝 , i.e.

⟨𝜏𝑖⟩ = 𝑆 (𝑖)inst ∝ Vol(Σ (𝑖)
𝑝 ). (55)

4For the 5D model under discussion, this may look like an ad hoc assumption. Yet it applies for the parameters
describing the axions from 𝑝-form gauge fields in string theory.

5For 2-form gauge field 𝐴2, there is an additional axion zero mode given by 𝜕𝜇𝜃 (𝑥) = 𝜀𝜇𝜈𝜌𝜎𝜕𝜈𝐴𝜌𝜎2 (𝑥), which is
often called the model-independent axion [31].

6For the model-independent axion 𝜕𝜇𝜃 (𝑥) = 𝜀𝜇𝜈𝜌𝜎𝜕
𝜈𝐴

𝜌𝜎

2 (𝑥), the associated instanton is the Euclidean 5-brane
wrapping the 6D internal space, which magnetically couples to 𝐴2 [43].
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In 4D N = 1 SUGRA, the axion couplings and scales are determined by the Kähler potential
𝐾 and the holomorphic gauge kinetic function F𝐴 for which ⟨Re(F𝐴)⟩ = 1/𝑔2

𝐴
. Keeping only the

relevant terms, 𝐾 and F𝐴 take the form

8𝜋2F𝐴 = 𝑐𝐴𝑖𝑇
𝑖 , 𝐾 = 𝐾0(𝑇 𝑖 + 𝑇 𝑖∗) + 𝑍Φ(𝑇 𝑖 + 𝑇 𝑖∗)Φ∗Φ, (56)

where Φ stands for gauge-charged matter fields with the Kähler metric 𝑍Φ, and 𝑐𝑖𝐴 are integers for
properly normalized gauge couplings 𝑔2

𝐴
. The resulting 4D Lagrangian [44] includes

1
2
( 𝑓 2
𝑎 )𝑖 𝑗𝜕𝜇𝜃𝑖𝜕𝜇𝜃 𝑗 +

𝑐𝑖𝐴

32𝜋2 𝜃𝑖𝐹
𝐴𝜇𝜈 �̃�𝐴𝜇𝜈 + 𝜕𝜇𝜃𝑖

[
𝑖𝑐𝑖𝜙

(
𝜙∗𝐷𝜇𝜙 − h.c.

)
+ 𝑐𝑖𝜓�̄��̄�𝜇𝜓

]
, (57)

where 𝜙 and 𝜓 are the canonically normalized scalar and fermion components of Φ, and

( 𝑓 2
𝑎 )𝑖 𝑗 = 2𝑀2

𝑃

𝜕2𝐾0

𝜕𝑇 𝑖𝜕𝑇 𝑗∗
, 𝑐𝑖𝐴 = 8𝜋2 F𝐴

𝜕𝑇 𝑖
, 𝑐𝑖𝜙 =

𝜕 ln 𝑍Φ
𝜕𝑇 𝑖

, 𝑐𝑖𝜓 =
𝜕 ln(𝑒−𝐾0/2𝑍Φ)

𝜕𝑇 𝑖
. (58)

Generically the brane instanton with the Euclidean action (55) can give a non-perturbative
correction to the superpotential or to the Kähler potential [45, 46], yielding (see Sec.4.2)

𝛿𝑉axion = 𝑀4
𝑖 𝑒

−⟨𝜏𝑖 ⟩ cos(𝜃𝑖 + 𝛿𝑖)
(
𝑀4
𝑖 ∼ 𝑚3/2𝑀

3
𝑃 or 𝑚2

3/2𝑀
2
𝑃

)
. (59)

One may now repeat the argument to estimate 𝑆inst for the axion from 5D gauge field (see the
discussion below (50)). It again results in

𝑆inst = ⟨𝜏⟩ = O(102) (60)

for the brane instanton associated with the QCD axion or ultralight ALP from a 𝑝-form gauge field
in string theory.

One can now extract some qualitative feature of the axion scale and couplings. For relatively
simple compactifications not generating a big scale hierarchy, (58) and (60) imply

𝑓𝑎 ∼
𝑀𝑃

𝑆inst
∼ 1016 GeV, 𝑐𝜙 ∼ 𝑐𝜓 ∼ 1

𝑆inst
∼ 10−2. (61)

On the other hand, for more involved compactifications generating either a large volume [47] or
a strong warping [48], 𝑓𝑎 can be lowered by the large volume factor [49, 50] or red-shifted by an
exponentially small warp factor [34]. As 𝑐𝜙,𝜓 are not significantly affected by this rescaling of 𝑓𝑎,
the QCD axion or ultralight ALPs from 𝑝-form gauge fields in string theory can in principle have
𝑓𝑎 anywhere in the range O(108 − 1016) GeV, while their low energy couplings to the light quarks
and electron are estimated as

𝐶𝑢,𝑑,𝑒 ∼
1
𝑆inst

= O(10−2). (62)

3.3 Discriminating between different axion models with low energy observables

In the previous section, we discussed a variety of models in which a light axion arises from
either the spontaneous breakdown of a linear 𝑈 (1)PQ or a higher-dimensional gauge field. For the
purpose of presentation, let us call the axion from linear 𝑈 (1)PQ “field-theoretic axion” and the
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axion from higher-dimensional gauge field “string-theoretic axion”7, although it should be noted
that string theory can also provide field-theoretic axions8.

In view of their motivation and the prospect for experimental detection, there are two kinds
of particularly interesting axions, the “QCD axion” solving the strong CP problem with a nonzero
coupling to the gluons (𝑐𝐺 ≠ 0), and the “ultralight (UL) ALP” with nonzero coupling to the photon
(𝑐𝐺 = 0, 𝑐𝛾 = 𝑐𝑊 + 𝑐𝐵 ≠ 0). Let us examine to what extent we can discriminate between different
models for QCD axion or UL ALP with experimentally measured axion mass and couplings.
Considering only relatively simple models with 𝑐𝐺,𝑊,𝐵 = O(1), we first find

QCD axion:
𝑚𝑎

𝑔𝑎𝛾
∼ 10 GeV2, UL ALP:

𝑚𝑎

𝑔𝑎𝛾
≪ 10 GeV2. (63)

For further discrimination, we can also examine the coupling ratios 𝑔𝑎𝑋/𝑔𝑎𝛾 (𝑋 = 𝑝, 𝑛, 𝑒). From
the results in Sec.2 and Sec.3, we then obtain the following order of magnitude estimates:

* DFSZ QCD axion :
𝑔𝑎𝑝

𝑔𝑎𝛾
∼ 𝑔𝑎𝑛

𝑔𝑎𝛾
∼ 𝑔𝑎𝑒

𝑔𝑎𝛾
∼ 103,

* KSVZ (or composite) QCD axion:
𝑔𝑎𝑝

𝑔𝑎𝛾
∼ 20

𝑔𝑎𝑛

𝑔𝑎𝛾
∼ 103 𝑔𝑎𝑒

𝑔𝑎𝛾
∼ 103,

* String theoretic QCD axion:
𝑔𝑎𝑝

𝑔𝑎𝛾
∼ 20

𝑔𝑎𝑛

𝑔𝑎𝛾
∼ 102 𝑔𝑎𝑒

𝑔𝑎𝛾
∼ 103,

* KSVZ (or composite) UL ALP:
𝑔𝑎𝑝

𝑔𝑎𝛾
∼ 𝑔𝑎𝑛

𝑔𝑎𝛾
∼ (1 − 10) × 𝑔𝑎𝑒

𝑔𝑎𝛾
∼ 10−1 − 1,

* String theoretic UL ALP:
𝑔𝑎𝑝

𝑔𝑎𝛾
∼ 𝑔𝑎𝑛

𝑔𝑎𝛾
∼ 𝑔𝑎𝑒

𝑔𝑎𝛾
∼ 10. (64)

The above results imply that we might be able to discriminate between different axion models with
experimentally measured axion mass and axion couplings. In particular, measuring 𝑚𝑎, 𝑔𝑎𝛾 and
𝑔𝑎𝑒 may allow us to discriminate between all five different axions listed in (64).

4. Model building for string axions

In this section, we show how to derive the effective theory of axions from string theory.
Specifically, we will work in type IIB superstring theory compactified on Calabi-Yau orientifolds
with O3/O7 planes. Although all the five 10D superstring theories could be used, type IIB has proven
to be particularly suitable for model building. Our focus will be on those axions coming from the
reduction of 𝐶4 gauge potentials, i.e. for the sake of exposition we are considering orientifolds
projecting out part of the axion spectrum. A large portion of the discussion also applies to the
axions deriving from 𝐵2 and 𝐶2 forms on 2-cycles, however for a more detailed treatment we refer
the reader to refs. [50, 55–57].

7This distinction is interesting in the context of quantum gravity. For instance, 𝑓𝑎 for a field-theoretic axion vanishes
at the origin in field space, while 𝑓𝑎 → 0 for a string-theoretic axion corresponds to an infinitely distant point where the
4D effective theory breaks down [6, 51]. In particular, the UV cutoff can be estimated as ΛUV ≲

√︁
𝑓𝑎𝑀𝑃 [52].

8For instance, in string compactifications with nonzero𝑈 (1)𝑋 magnetic flux, some of the string-theoretic axions can
transform non-linearly under the𝑈 (1)𝑋 gauge symmetry. Then a combination of𝑈 (1)𝑋-charged string-theoretic axions
is eaten by the𝑈 (1)𝑋 gauge boson while leaving a linear𝑈 (1)PQ which is the global𝑈 (1)𝑋 transformation applied only
for matter fields, not for the eaten string-theoretic axion [31, 53, 54]. This linear𝑈 (1)PQ can be spontaneously broken at
lower energy scale by the vacuum value of some𝑈 (1)𝑋-charged matter field, thereby giving a field-theoretic axion.
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4.1 Axions in type IIB string theory

We consider 10D type IIB string theory with N = 2 supersymmetry (32 supercharges) on a
manifold with metric 𝐺𝑀𝑁 . The action in Einstein frame reads

𝑆IIB =
1

2𝜅2
10

∫
𝑑10𝑥

√
−𝐺

(
R10 −

𝜕𝑀𝜏𝜕
𝑀𝜏

2(Im 𝜏)2 − |𝐺3 |2

12Im 𝜏
− |𝐹5 |2

4 · 5!

)
+ 1

8𝑖𝜅2
10

∫
𝐶4 ∧ 𝐺3 ∧ �̄�3

Im 𝜏
,

(65)
where 𝐺3 = 𝐹3 − 𝜏𝐻3, 𝜏 = 𝐶0 + 𝑖𝑒−𝜙 is the axio-dilaton and 𝜅2

10 ∼ 𝑙8𝑠 is the 10D gravitational
coupling, with 𝑙8𝑠 = 2𝜋

√
𝛼′, 𝑙𝑠 being the string length. The field strengths are defined in terms of

the gauge potentials as

𝐻3 = 𝑑𝐵2 , 𝐹3 = 𝑑𝐶2 , �̃�5 = 𝑑𝐶4 −
1
2
𝐶2 ∧ 𝑑𝐵2 +

1
2
𝐵2 ∧ 𝑑𝐶2 . (66)

Given that we are interested in the phenomenology, we have to first lower the number of dimensions
down to four. This translates into finding a solution for the 10D equations of motion with non-trivial
Riemann tensor, that nevertheless solve the vacuum Einstein’s equations 𝑅𝑀𝑁 = 0, i.e. the extra
dimensions must be described by a Ricci-flat manifold. A non-trivial class of such manifolds is called
Calabi-Yau (CY) threefold. We proceed with the ansatz of a 10D product manifoldM10 = R1,3×CY3
and compactify on the latter. This produces two important outcomes: (i) the theory is now 4D with 8
supercharges and (ii) we have a number of massless scalars counted by two topological quantities of
the CY, the Hodge numbers ℎ2,1 and ℎ1,1. The first counts the number of complex structure moduli
which describe the shape of the CY, while ℎ1,1 gives the number of Kähler moduli parametrizing
its size. These numbers range from order 1 to order few hundreds [58, 59].

To reduce further the amount of supersymmetry and arrive as close as possible to describe
our universe while maintaining computational control, we can remove half of the supercharges by
incorporating orientifold planes. Since these objects carry negative tension and negative charge with
respect to the gauge potentials, they also balance the positive charges sourced by fluxes and branes.
Orientifold planes project out half of the spectrum and divide the Hodge numbers into even and
odd under the involution, ℎ𝑝,𝑞± . Hence, the spectrum in our final 4D, N = 1 (i.e. 4 supercharges)
low energy theory is given by

𝑇𝑖 Kähler moduli, 𝑖 = 1, . . . , ℎ1,1
+ , 𝐺𝛼 2-form axions, 𝛼 = 1, . . . , ℎ1,1

− ,

𝑉𝑚 vector multiplets, 𝑚 = 1, . . . , ℎ2,1
+ , 𝑈𝑎 complex str. moduli, 𝑎 = 1, . . . , ℎ2,1

− ,
(67)

together with the axio-dilaton. In addition to the real part of the axio-dilaton 𝐶0, the (closed string)
axions 𝜃𝑖 , 𝑐𝛼, 𝑏𝛼 are encoded in the complex fields 𝑇𝑖 and 𝐺𝛼 as [56, 60]

𝑇𝑖 = 𝜏𝑖 + 𝑖(𝜃𝑖 −
1
2
𝜅𝑖𝛼𝛽𝑐

𝛼𝑏𝛽) +
𝜅𝑖𝛼𝛽

2(𝜏 − 𝜏)𝐺
𝛼 (𝐺𝛽 − �̄�𝛽) , 𝐺𝛼 = 𝑐𝛼 − 𝜏𝑏𝛼 , (68)

where 𝜅𝑖𝛼𝛽 are topological numbers of the CY and the 𝜏𝑖 = 1
2 𝜅𝑖 𝑗𝑘𝑡

𝑗 𝑡𝑘 are the volumes of the 4-cycles
Σ
(𝑖)
4 expressed as functions of the 2-cycle volumes 𝑡𝑖 . The axion fields 𝑏𝛼, 𝑐𝛼, 𝜃𝑖 arise, respectively,

from the integration of the 2-forms 𝐵2 and 𝐶2 over 2-cycles Σ (𝛼)
2 , and from the integration of the

4-form 𝐶4 over 4-cycles Σ (𝑖)
4 , namely

𝑏𝛼 =
1
𝑙2𝑠

∫
Σ
(𝛼)
2

𝐵2 , 𝑐𝛼 =
1
𝑙2𝑠

∫
Σ
(𝛼)
2

𝐶2 , 𝜃𝑖 =
1
𝑙4𝑠

∫
Σ
(𝑖)
4

𝐶4 . (69)
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Because of their origin, in the low energy theory they enjoy a continuous shift symmetry inherited
from the higher dimensional 𝑝-form gauge symmetry, as explained in Sec.3.2.2. For simplicity, in
what follows we focus on orientifolds with ℎ1,1

− = ℎ
2,1
+ = 0 and hence on the axions 𝜃𝑖 .

4.2 Axion potential

After compactifying on a CY threefold with orientifolds, the 4D effective theory contains
many massless scalar fields. In the following, we consider a setup in which the axio-dilaton and the
complex structure moduli are stabilized at high energies by fluxes [61]. At tree-level in 𝑔𝑠 and 𝛼′, the
Kähler moduli are massless and uncharged scalar fields which, thanks to their effective gravitational
coupling to all SM particles, would mediate undetected long-range fifth forces and affect the Big
Bang nucleosynthesis. Moreover, if these fields were to be massless during inflation, they could spoil
the slow-roll regime. This cosmological moduli problem can be avoided by generating a potential
for these particles and hence give them a mass at energies above the Big Bang nucleosynthesis one.

The low-energy theory is a SUGRA theory. The (F-term) 4D scalar potential is given in terms
of a Kähler potential 𝐾 and a superpotential𝑊 as

𝑉 = 𝑒𝐾
[
𝐾 𝑖 𝑗D𝑖𝑊D 𝑗𝑊 − 3|𝑊 |2

]
, (70)

where𝐾 𝑖 𝑗 = (𝜕𝑖𝜕 𝑗𝐾)−1 is the inverse of the Kähler metric,D𝑖𝑊 ≡ 𝜕𝑖𝑊+𝐾𝑖𝑊 is the Kähler covariant
derivative and 𝑖, 𝑗 = 1, . . . , ℎ1,1

+ . The minimum of 𝑉 preserves supersymmetry if D𝑇𝑖𝑊 |⟨𝑇𝑖 ⟩ = 0.
After complex structure and axio-dilaton stabilization, we can write the superpotential as 𝑊 =

𝑊0 +𝑊np(𝑇𝑖), where𝑊0 is a constant proportional to the VEVs of𝑈𝑎 and 𝜏 while𝑊np includes the
non-perturbative corrections to 𝑇𝑖 .𝑊 is holomorphic and receives no perturbative corrections.𝑊np
can be generated either by Euclidean D3-brane instantons or by gaugino condensation on stacks of
D7-branes wrapping 4-cycles. Both these contributions read

𝑊np =
∑︁
𝑖

𝐴𝑖𝑒
−𝑆inst =

∑︁
𝑖

𝐴𝑖𝑒
−a𝑖𝑇𝑖 , (71)

where a𝑖 = 2𝜋 for ED3-branes and a𝑖 = 2𝜋/𝑐(𝐺𝑖) for the gaugino condensation case, 𝑐(𝐺𝑖) being
the dual Coxeter number of the gauge group 𝐺𝑖 on the 𝑖-th stack of D7-branes. The 1-loop Pfaffians
𝐴𝑖 depend on the stabilization of𝑈𝑎 and 𝜏. The Kähler potential is not holomorphic and can receive
both perturbative and non-perturbative corrections such that generically 𝐾 = 𝐾tree + 𝐾p + 𝐾np. The
tree-level piece is given by 𝐾tree = −2 log(V), where V = 1

6 𝜅𝑖 𝑗𝑘𝑡
𝑖𝑡 𝑗 𝑡𝑘 is the overall volume of the

CY. Note that it is not always possible to write V in terms of the Kähler coordinates 𝑇𝑖 , so the
dependence of 𝐾 on 𝜏𝑖 is often implicit. Let us include also the leading perturbative corrections,
such that

𝐾 = −2 log(V + 𝜉/2) , (72)

where 𝜉 is proportional to 𝑔−3/2
𝑠 [62].

Quantum corrections (as the ones mentioned above) are crucial to stabilize the remaining
massless moduli. The way in which those corrections are present and their magnitude result in
different stabilization regimes. The most studied approaches are KKLT [63] and the Large Volume
Scenario [47], see [64] for a recent review. Schematically, the former does not need corrections to
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𝐾 but requires |𝑊np | ∼ |𝑊0 |, such that𝑊0 has to be tuned small. LVS instead relies on the presence
of 𝐾p as in (72) and needs the CY volume to be large.

Finally, plugging the quantum-corrected 𝐾 and𝑊 in (70), the axion-dependent part of the total
potential is given by [65]

𝑉axion = 𝑒𝐾
(
𝐾 𝑖 𝑗

(
2a𝑖a 𝑗 |𝐴𝑖𝐴 𝑗 |𝑒−a𝑖 𝜏𝑖−a 𝑗 𝜏 𝑗 cos(a𝑖𝜃𝑖 + a 𝑗𝜃 𝑗 + 𝛾𝑖 𝑗)

)
− 4a𝑖𝜏𝑖 |𝑊0𝐴𝑖 |𝑒−a𝑖 𝜏𝑖 cos(a𝑖𝜃𝑖 + 𝛽𝑖) − 4a𝑖𝜏𝑖 |𝐴𝑖𝐴 𝑗 | cos(a𝑖𝜃𝑖 + a 𝑗𝜃 𝑗 + 𝛾𝑖 𝑗)

)
,

(73)

where 𝛾𝑖 𝑗 and 𝛽𝑖 are phases. Now, we can compute the mass matrix as 𝑀2
𝑖 𝑗
= 𝜕𝜃𝑖𝜕𝜃 𝑗𝑉axion, and the

eigenvalues of this matrix correspond to the mass-squared of the canonically normalized axions.
How to go from string-theoretical to canonically normalized axions is the subject of what follows.

4.3 Kinetic terms and canonical normalization

The kinetic terms of the effective Lagrangian are completely specified by the Kähler metric
𝐾𝑖 𝑗 = 𝜕𝑖𝜕 𝑗𝐾 . At the perturbative level the 10D gauge invariances of the 𝑝-form gauge fields of (51)
descend to continuous shift symmetries of their associated axions in 4D: 𝜃𝑖 ∼ 𝜃𝑖 + 𝑐, 𝑐 ∈ R. The
Lagrangian for massless axions reads

L ⊃ 𝜕2𝐾

𝜕𝑇 𝑖𝜕𝑇 𝑗
𝜕𝜇𝜃

𝑖𝜕𝜇𝜃 𝑗 . (74)

In order to work with canonically normalized fields, we need to diagonalize the Kähler metric and
find the eigenvalues 𝜆𝑖 and eigenvectors 𝜃𝑖 . We define the canonically normalized axion fields as
𝑎𝑖 =

√
𝜆𝑖 𝜃𝑖 such that

Lkin ⊃ 𝜆𝑖

2
𝜕𝜇𝜃𝑖𝜕

𝜇𝜃𝑖 =
1
2
𝜕𝜇𝑎𝑖𝜕

𝜇𝑎𝑖 . (75)

In the case of massless axions, it is common to refer to 𝑓𝑖 =
√
𝜆𝑖 as the axion decay constant, because

the couplings of the physical axions with all other fields scale as 1/ 𝑓 , cf. (58). So far we have only
considered massless axions but, as with the rest of the moduli, these fields need to be stabilized.
Axions acquire a mass through the non-perturbative quantum corrections in (71) that break the
continuous shift symmetry down to its discrete subgroup. The typical form of the potential arising
from a single non-perturbative correction reads (cf. (73))

𝑉 (𝑎𝑖) = Λ4
𝑖 cos(a𝑖𝜃𝑖) , (76)

whereΛ𝑖 is a dynamically-generated scale proportional to 𝑒−𝑆inst , cf. Sec.3.2.2. To work with physical
fields, we need to find a basis that diagonalizes both the mass matrix and the field space metric. Note
that this is not always possible, and in general one is able to diagonalize only either the kinetic terms
or the potential. In the simplest case where the Kähler metric is approximately diagonal (𝜃𝑖 ∼ 𝜃𝑖)
and we have a single non-perturbative correction, computing the decay constant becomes rather
simple. Since the field periodicity corresponds to that of the potential, using 𝑎𝑖 =

√
𝜆𝑖 𝜃𝑖 , the axion

decay constant 𝑓𝑖 derives from [50]:

a𝑖𝜃𝑖 → a𝑖𝜃𝑖 + 2𝜋𝑘 ⇒ 𝑎𝑖 → 𝑎𝑖 + 2𝜋𝑘 𝑓𝑖 , where 𝑓𝑖 =

√
𝜆𝑖

a𝑖
𝑀𝑃 . (77)
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4.4 String axions as dark matter

The phenomenology of string axions is characterized by their masses and decay constants.
From the discussion above, we see that generically they scale as

𝑚2
𝑖

𝑀2
𝑃

∼ ai𝜏𝑖 |𝑊0 |
V2 𝑒−a𝑖 𝜏𝑖 ,

𝑓𝑖

𝑀𝑃

∼ 1
a𝑖𝜏𝑖

. (78)

For example, we can use these quantities to compute the abundance of dark matter when composed
by UL ALPs as [49]:

Ω𝑎ℎ
2

0.112
≃ 2.2 ×

( 𝑚𝑎

10−22 eV

)1/2
(

𝑓𝑎

1017 GeV

)2
𝜃2

m , (79)

where 𝜃m ∈ [0, 2𝜋] is the initial misalignment angle. Eq. (79) holds for 𝑓𝑎 larger than the infla-
tionary scale and for 𝑚 ≳ 10−28 eV, i.e. to axions which oscillate before matter-radiation equality.
By considering different setups (where the moduli are appropriately stabilized) and plugging the
resulting values of 𝑚𝑎 and 𝑓𝑎 in (79), ref. [50] predicted the parameter space spanned by different
types of string axions. While a portion of this space is already excluded by experimental constraints,
interestingly a larger part will be covered by future searches. Hence, if at some point axions were to
be found, we may be able to learn from the data about the type of axion detected, its couplings and
potentially even something about their underlying microscopic theory.

5. Conclusion

Axions have been postulated with many motivations in particle physics and cosmology. In
regard to their UV origin, there are two types of axions, a field-theoretic axion arising from the
spontaneous breakdown of a linearly realized Peccei-Quinn 𝑈 (1) symmetry in the 4D theory, and
a string-theoretic axion originating from a gauge field in the higher dimensional theory. In this
lecture, we discussed some theory and model building aspects of axion physics for both types of
axions, in particular the possible connection between the UV origin of axions and the associated
low energy axion physics. We also gave an introduction to the effective theory of string-theoretic
axions in the latter part of the lecture. Interestingly, different axion models predict distinctive pattern
of low energy axion couplings, which might be testable in future axion detection experiments and
also have interesting implications for astrophysical or cosmological studies of axions.
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