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1. Introduction

Lattice strategies to study the large-𝑁 limit of gauge theories can be mainly divided into two
broad classes:

• Standard approaches, namely, numerical results obtained from theories discretized on regular
extended lattices for 𝑁 ≲ 10 are extrapolated towards 1/𝑁 → 0 [1–11];

• Reduced models [12–15], namely, calculations are performed for 𝑁 = 𝑂 (100) or larger
(i.e., practically already in the large-𝑁 limit), with the lattice volume either very small or
completely reduced to just a single point [16, 18–29].

These two different methods can be regarded as complementary. On one hand, the excellent
agreement found for the large-𝑁 limit of several observables obtained from these two different
methods is highly non-trivial. On the other hand, since the finite-𝑁 corrections of the reduced
models are different from those of the standard approach, results from both methods can be combined
to extract the actual 𝑁-dependence of a given observable.

This manuscript deals with the computation of the large-𝑁 limit of an observable which plays
an intriguing role both from the theoretical and the phenomenological point of view: the chiral
condensate. The computation of this observable has been performed for SU(3) with a variety of
lattice discretizations and fermion contents [30–37], but so far only few large-𝑁 determinations
have been given in the literature, either involving just one lattice spacing [6, 38], or presenting a
preliminary study of the large-𝑁 limit [11]. This proceeding reports on the main results of [39],
where the large-𝑁 limit of the chiral condensate is computed using the Twisted Eguchi–Kawai
(TEK) model [14, 15]. In particular, we obtain the chiral condensate at large 𝑁 from the low-lying
spectrum of the Dirac operator, and we perform controlled continuum and chiral extrapolations to
provide a solid determination of this quantity in the large-𝑁 limit. Perfectly compatible results are
obtained from the quark mass dependence of the pion mass, as we will show in the following.

This paper is organized as follows: in Sec. 2 we briefly summarize our numerical setup;
in Sec. 3 we present and discuss the main results of [39] about the large-𝑁 limit of the chiral
condensate; finally in Sec. 4 we draw our conclusions.

2. Numerical setup

Below we briefly summarize our TEK lattice discretization, as well as the Giusti–Lüscher
method to extract the chiral condensate from the low-lying spectrum of the lattice Dirac–Wilson
operator.

2.1 Lattice discretization

The pure-gauge TEK model is a matrix model where the dynamical degrees of freedom are
𝑑 = 4 SU(𝑁) matrices. It can be thought of as the reduction on a single site lattice of an ordinary
Wilson lattice Yang–Mills theory defined on a discretized torus with twisted periodic boundary
conditions. The Wilson pure-gauge TEK action reads:

𝑆
(TEK)
W [𝑈] = −𝑁𝑏

∑︁
𝜈≠𝜇

𝑧𝜈𝜇Tr
{
𝑈𝜇𝑈𝜈𝑈

†
𝜇𝑈
†
𝜈

}
, (1)
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where 1/𝑏 is the bare ’t Hooft coupling, 𝑈𝜇 are the SU(𝑁) 𝑑 = 4 link matrices, 𝑁 = 𝐿2, and
𝑧𝜈𝜇 = 𝑧∗𝜇𝜈 = exp

{
𝑖

2𝜋𝑘 (𝑁 )√
𝑁

}
(𝜈 > 𝜇) is the twist factor, with 𝑘 (𝑁) an integer number co-prime with

√
𝑁 ∈ Z . There is now plenty of theoretical and numerical evidence that this model reproduces the

infinite-volume large-𝑁 behavior of ordinary Yang–Mills gauge theories [18, 20, 21, 24, 25, 27].
Concerning Monte Carlo methods, gauge configurations were generated using the over-relaxation
algorithm described in [23].

In our work we do not consider any dynamical fermion, as in the large-𝑁 limit the contributions
of fundamental flavors is exactly zero. We will however consider one flavor of Dirac–Wilson
fermions in the valence sector. In this case the lattice Dirac operator reads [24]:

𝐷
(TEK)
W [𝑈] = 1

2𝜅
− 1

2

∑︁
𝜇

[
(I + 𝛾𝜇) ⊗W𝜇 [𝑈] + (I − 𝛾𝜇) ⊗W†

𝜇

]
, (2)

with 𝜅 the hopping parameter andW𝜇 [𝑈] ≡ 𝑈𝜇⊗Γ∗𝜇, where Γ𝜇 represent the twist eaters, satisfying
Γ𝜇Γ𝜈 = 𝑧∗𝜈𝜇Γ𝜈Γ𝜇.

2.2 The Giusti–Lüscher method

The Banks–Casher relation equates the chiral condensate to the spectral density 𝜌 of the
eigenmodes of the Dirac operator in the origin:

Σ

𝜋
= lim

𝜆→0
lim
𝑚→0

lim
𝑉→∞

𝜌(𝜆, 𝑚) (3)

Another physical quantity that is equivalent to 𝜌, but that is more convenient to be computed
on the lattice, is the mode number of the massive Dirac operator:

⟨𝜈(𝑀)⟩ ≡ ⟨# |𝑖𝜆 + 𝑚 | ≤ 𝑀⟩ (4)

= 𝑉

∫ Λ

−Λ
𝜌(𝜆, 𝑚)𝑑𝜆, Λ2 ≡ 𝑀2 − 𝑚2. (5)

Being the mode number and the spectral density connected by an integral relation, it is clear
that the Banks–Casher implies a linear behavior of ⟨𝜈(𝑀)⟩ as a function of Λ:

⟨𝜈(𝑀)⟩ = 2
𝜋
𝑉ΣΛ + 𝑜(Λ), (6)

where higher-order terms in Λ are sub-leading in 1/𝑁 [40, 41].
The Giusti–Lüscher method [42] consists in obtaining the chiral condensate Σ from a numerical

lattice computation of the slope of the mode number of the Dirac operator as:

Σ (eff ) (𝑚) =
𝜋

2𝑉

√︄
1 −

(
𝑚

𝑀

)2 [
𝜕 ⟨𝜈(𝑀)⟩

𝜕𝑀

] �����
𝑀=𝑀

←− slope of ⟨𝜈(𝑀)⟩ in 𝑀 = 𝑀, (7)

Σ = lim
𝑚→0

Σ (eff ) (𝑚), (8)

where 𝑀 is the point in which the slope is computed.
As a final comment, let us here stress that, within TEK models, the obtained results should be

thought of as if they were obtained on a lattice with effective size ℓ = 𝑎𝐿 = 𝑎
√
𝑁 . Therefore, the

volume appearing in (7) is given by 𝑉 = 𝑎4(
√
𝑁)4 = 𝑎4𝑁2.
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3. Results

In this manuscript, we will mainly refer to results obtained for 𝑁 = 289, for which the 𝑘

parameter appearing in the twist factor defined in the previous section was chosen to be 𝑘 = 5.
Since we expect the following large-𝑁 scaling for the chiral condensate:

Σ(𝑁) = 𝑁

[
Σ̄ +𝑂

(
1
𝑁2

)]
, (9)

in the following we will always report results for Σ/𝑁 , which we expect to approach a finite large-𝑁
limit. Finally, all reported results for the renormalized chiral condensate are always expressed in
the MS scheme at the conventional renormalization scale 𝜇 = 2 GeV.

3.1 Best fit of the mode number

Let us summarize our practical numerical implementation of the Giusti–Lüscher method, as
well as the procedure we followed to compute the chiral condensate from our Dirac spectra:

• Renormalization properties: ⟨𝜈⟩ = ⟨𝜈R⟩, 𝑀R = 𝑀/𝑍P, 𝜆R = 𝜆/𝑍P;

• Scale setting: determinations of the string tension 𝑎
√
𝜎 obtained from the TEK model in

Refs. [18, 27];

• We solved numerically the eigenproblem (𝛾5𝐷
(TEK)
W [𝑈])𝑢𝜆 = 𝜆𝑢𝜆 for 100 well-decorrelated

gauge configurations using the ARPACK library, and computed the first 300 lowest-lying
eigenvalues and eigenvectors;

• From the knowledge of 𝑍A and𝑚PCAC (computed at large-𝑁 from the TEK model in Ref. [27]),
we obtained the renormalized eigenvalues as: 𝜆R/𝑚R = 𝜆/(𝑍A𝑚PCAC);

• We counted the renormalized modes 𝜆R/𝑚R below the threshold 𝑀R/𝑚R to obtain ⟨𝜈(𝑀R)⟩ =
⟨𝜈R(𝑀R)⟩;

• From a linear best fit of ⟨𝜈R(𝑀R)⟩ /𝑁 vs 𝑀R/𝑚R we obtain the slope
[
𝜕⟨𝜈 (𝑀 ) ⟩

𝜕𝑀

] ���
𝑀=𝑀

, where

𝑀 is the middle point of the fit range (cf. Fig. 1, top panel);

• From the slope of the mode number we extract the RG-invariant quantity Σ
(eff )
R 𝑚R/(𝜎2𝑁)

from Eq. (7);

• Using 𝑍A𝑚PCAC = 𝑍P𝑚R and the conventional value
√
𝜎 = 440 MeV, we get rid of the quark

mass and finally obtain the bare effective chiral condensate Σ
(eff )
R /(𝜎3/2𝑁𝑍P) in MeV3;

• All our results where obtained for 𝑁 = 289, but we explicitly checked that results obtained
for 𝑁 = 361 gave perfectly agreeing results (cf. Fig. 1, bottom panel).
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Figure 1: Linear best fit of the mode number ⟨𝜈R⟩ /𝑁 as a function of 𝑀R/𝑚R for 4 different values of the ’t
Hooft coupling 1/𝑏, and for 4 different values of 𝜅 tuned to correspond approximately to the same value of
the pion mass 𝑚𝜋 (top plot). Filled points correspond to the fitted ones. All our results refer to 𝑁 = 289, but
in one case (bottom plot) we also checked that results obtained for 𝑁 = 361 where perfectly agreeing (in the
latter case, 𝑘 = 7 was used for the twist factor).

3.2 Chiral limit at fixed lattice spacing

After obtaining the bare effective chiral condensate from the Giusti–Lüscher method, we need
to extrapolate our determinations towards the chiral limit, in order to get rid of the finite quark mass
we have used to determine our Dirac spectra. Our extrapolations towards the chiral limit, shown in
Fig. 2, are done according to the Chiral Perturbation Theory (ChPT) prediction:

Σ (eff ) (𝑚) = Σ + 𝑘 𝑚 + 𝑜(𝑚) (10)

= Σ + 𝑘 ′ 𝑚2
𝜋 + 𝑜(𝑚2

𝜋), (11)

with Σ (eff) = Σ
(eff)
R /𝑍P. Our chiral extrapolations will be performed, in all cases, at fixed 𝑏, i.e.,

at fixed lattice spacing. Thus, the renormalization constant 𝑍P will be, at fixed 𝑏, the same for all
explored values of the pion mass 𝑚𝜋 .

5
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Figure 2: Extrapolation towards the chiral limit of the bare effective chiral condensate [Σ (eff )
R /(𝑁𝑍P)]1/3

expressed in MeV physical units for all explored values of the ’t Hooft coupling.

3.3 Continuum limit

In order to extrapolate our results towards the continuum limit, we renormalize our large-𝑁 de-
terminations of ΣR using the large-𝑁 non-perturbative determinations of 𝑍P reported in [43], where
we refer the reader for more details about the numerical techniques to compute this renormalization
constant from lattice simulations.

The continuum extrapolation of our spectral determinations of the chiral condensate, shown in
Fig. 3 (top panel), are done assuming leading 𝑂 (𝑎2) corrections as usual:

ΣR(𝑎) = ΣR + 𝑐 𝑎2 + 𝑜(𝑎2). (12)

In the top panel of Fig. 3 we also show the renormalized determinations of the chiral condensate
obtained from the Gell-Man–Oakes–Renner (GMOR) relation,

𝑚2
𝜋 = 2

Σ

𝐹2
𝜋

𝑚 = 2
ΣR

𝐹2
𝜋

𝑚R, (13)

according to the large-𝑁 TEK determinations of the pion mass and of the pion decay constant of
Ref. [27]. We find perfectly agreeing results once the continuum limit is taken. Thus, we perform
a combined continuum limit (see bottom panel of Fig. 3), giving the joint estimate:

(ΣR/𝑁)1/3 = 184(13) MeV. (14)

6
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Figure 3: Extrapolation towards the continuum limit of the spectral determinations of the chiral condensate
obtained from the Giusti–Lüscher method, compared with the determinations obtained from the GMOR
relation (13) and using the determinations of 𝑚𝜋 vs 𝑚 and of 𝐹𝜋 of Ref. [27]. In the top panel we show
individual fits of the two data sets, in the bottom panel we show instead the combined fit of the two data sets.

4. Conclusions

This manuscript reports on the main results of Ref. [39], which presents a solid computation
of the large-𝑁 chiral condensate from TEK models using the Giusti–Lüscher spectral method for
𝑁 = 289, using 4 lattice spacings and 3 pion masses each to provide controlled chiral and continuum
extrapolations. The obtained results are in perfect agreement with those obtained from the quark
mass dependence of the pion mass and the GMOR relation, giving a joint estimate of:

lim
𝑁→∞

ΣR(𝑁)
𝑁

= [184(13) MeV]3, (MS, 𝜇 = 2 GeV,
√
𝜎 = 440 MeV) (15)

Our final result is in remarkable agreement with the FLAG21 [44] world-average for 2-flavor
QCD ΣR(𝑁 = 3)/3 = [184(7) MeV]3 when using

√
𝜎 to set the scale. Our calculation thus points

out that 1/𝑁2 corrections are small and 𝑁 = 3 is already very close to 𝑁 = ∞. Such conclusion fits
very well with other large-𝑁 calculations pointing towards the same scenario [1–4, 6–10].

In the next future, we plan to extend our calculation of the chiral condensate to the case of
adjoint Majorana fermions, which is of great theoretical interest.
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